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Abstract

For a finite group G, the probability of two elements of G that commute
is the commutativity degree of G denoted by P (G). As a matter of fact, if
C = {(a, b) ∈ G×G | ab = ba}, then P (G) = |C|

|G|2 . In this paper, we are going
to find few formulas for P (G) independent of |C|; for some AC-groups, and
also in some special cases of finite minimal non-abelian groups. Moreover,
the study will present implications for certain qualified finite groups.
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1. Introduction
For a finite group G, the statistical results go back to 1965, with a number of
papers [6, 7, 8, 9, 10, 11, 12]. In [9], it has been proven, for a finite group G,

|C| = |{(a, b) ∈ G×G | ab = ba}| = |G|k(G),

where k(G) is the number of conjugacy classes of G. Moreover, let CG(a) be the
centralizer of a ∈ G, then clearly (a, b) ∈ C if and only if b ∈ CG(a). Therefore, we
also have |C| =

∑
a∈G |CG(a)|. In 1973, Gustafson, in [17], re-proved the results in
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[9]. He also, in that paper, considered the probability of two group elements that
commuted, for the first time, and proved some valuable results. Since then, the
investigations as to this probability have been interesting topics to research, and
up to now, many results have been published, see [4, 5, 13, 16, 18], for instance.

In a finite group G, the probability of two elements of G which commute, is also
known as the commutativity degree of G, and denoted by P (G). This probability
equals to |C|

|G|2 . Therefore, by the above mentioned discussion, we also have,

P (G) =
∑

a∈G |CG(a)|
|G|2 = k(G)

|G| .

In this paper, we consider the commutativity degree of those types of AC-
groups that every centralizer of their non-central elements has a certain cardinality,
and minimal non-abelian groups, so we present the definition of these types of
groups, at the following.

Definition 1.1. If every non-central element of a group has an abelian centralizer,
then the group is an AC-group.

Definition 1.2. Let G be an AC-group. If for every non-central element x, we
have |CG(x)| = ni, for the natural numbers ni, 1 ≤ i ≤ k, then G is called
(n1, n2, . . . , nk)-regular. In particular, if ni = k, for 1 ≤ i ≤ k, we simply call it
k-regular AC-group.

A non-abelian group H is a minimal non-abelian group, if all its non-trivial
subgroups are abelian. Clearly, every minimal non-abelian group is an AC-group.

Moreover, our results would be related to the cardinality of a specific subset of
a finite group H, which is called clique number of H. The clique number of H is
actually based on the definition of an important algebraic graph which called as
non-commuting graph. The non-commuting graph associated with a finite group
H is a simple graph as follows: The vertices of the graph are all elements of
H, and, an edge unites two elements of H that do not commute, hence, in non-
commuting graph, a clique defines as the pairwise non-commuting subset of H(for
more information see [3], for example). The number of vertices in a maximum
clique or, as we prefer in this paper, the pairwise non-commuting subset of H with
the maximal cardinality announced as clique number and labeled by ω(H).

Throughout this paper, for a group H, we use the notations Z(H) and NH(⟨a⟩)
for the center of H, and the normalizer of a ∈ H, respectively. Moreover, for two
elements a, b ∈ H, the commutator of a and b is denoted by [a, b]. For all further
unexplained notations, one can see [15], for example.

Finally, in this paper, in Section 2, some technical lemmas and theorems are
provided which are used throughout the paper. We present in Section 3, our
main results. First, the results related to the minimal non-abelian groups will be
presented, and in Subsection 3.1, the results as to AC-groups will be presented.
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2. Auxiliary Results

In this section, we collect some lemmas and theorems which are needed throughout
this paper. We begin with a very important lemma related to AC-groups from
[19], that is applied in several results.

Theorem 2.1. [19] A group H is an AC-group if and only if CH(h) = CH(k),
for all elements h, k ∈ H \ Z(H) with the condition [h, k] = 1.

Lemma 2.2. [2] For an AC-group H,

(i) If x, y ∈ H \ Z(H) with distinct centralizers, then CH(x) ∩ CH(y) = Z(H).

(ii) If H = ∪k
i=1CH(hi), where CH(hi) and CH(hj) are distinct, for 1 ≤ i <

j ≤ k, then the set of {h1, h2, . . . , hk} is a pairwise non-commuting elements
with the maximal cardinality.

In what follows, we present some lemmas and theorems as to the minimal
non-abelian groups.

Lemma 2.3. [14] Let H be a finite minimal non-abelian group, and p ̸= q be
two prime divisors of |H|. If H = PQ, for a cyclic Sylow p-subgroup P, and an
elementary abelian minimal normal Sylow q-subgroup Q, then CH(b) = Z(H)×Q,
for any 1 ̸= b ∈ Q.

Theorem 2.4. [14] Let G be a finite minimal non-abelian group, and G = PQ,
for a cyclic Sylow p-subgroup P and an elementary abelian minimal normal Sylow
q-subgroup Q, for two distinct prime divisors p and q of |G|. Then ω(G) = |Q|+1.

Remark 1. If b ∈ Q, by Lemma 2.3, then clearly Q ⊆ CG(b). Therefore every
set of pairwise non-commuting elements of G with the maximal cardinality consists
of only one element of Q.

In Subsection 3.1, we illustrate the results for the group PSL(2, q), where q is
a power of a prime p. Therefore, at the following, the structure of these kinds of
finite groups would be needed.

Proposition 2.5. [1, 20] Let q be a power of a prime p, G = PSL(2, q), and
k = gcd(q − 1, 2). Therefore

(i) G has an elementary abelian Sylow p-subgroup P, with order q, and its Sylow
p-subgroups number is q + 1.

(ii) G has a cyclic subgroup A, with order t = q−1
k . In addition, for every non-

trivial element a ∈ A, NG(⟨a⟩) is a dihedral group of order 2t.

(iii) G has a cyclic subgroup B, with order s = q+1
k . In addition, for every non-

trivial element b ∈ B. NG(⟨b⟩) is a dihedral group of order 2s.
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(iv) a partition for G is the set {Pg,Ag,Bg | g ∈ G}.
Moreover, assume that α ∈ G \ Z(G), therefore

(v) if q ≡ 0 (mod 4), then

CG(α) =

 Ag α ∈ Ag, g ∈ G,
Bg α ∈ Bg, g ∈ G,
Pg α ∈ Pg, g ∈ G.

3. Main Results
In this section, we consider our main results. Our first focus is on the proof of the
commutativity degree of minimal non-abelian groups, and then we investigate the
commutativity degree of AC-groups.

Theorem 3.1. Suppose that H be a finite minimal non-abelian group, and H =
PQ, for a cyclic Sylow p-subgroup P, and an elementary abelian minimal normal
Sylow q-subgroup Q, where p and q are prime divisors of |H|. Then

P (H) =
|P|2 + |Z(H)|2(|Q| − 1)

|P|2|Q|
.

Proof. Assume that |Q| = qm, for a positive integer m. Then by Theorem 2.4
and Remark 1, there is a maximal subset of elements {a1, . . . , aqm , b} that every
two disjoint elements do not commute, with b ∈ Q and ai /∈ Q, for 1 ≤ i ≤ qm,
in which H =

∪qm

i=1 CH(ai) ∪ CH(b). If for some elements, say x ∈ Q, we have
x ∈ CH(ai), for some 1 ≤ i ≤ qm, then by Theorem 2.1, CH(ai) = CH(b), which
is a contradiction, hence CH(ai) ⊆ P. Now, by Lemma 2.3, we have |CH(b)| =
|Q||Z(H)| and |CH(ai)| = |P|, for 1 ≤ i ≤ qm. So for the calculating of P (H) =∑

h∈H |CH(h)|
|H|2 , we have∑

h∈H

|CH(h)| =
∑

h∈Z(H)

|CH(h)|+
∑

h/∈Z(H)

|CH(h)|,

and so∑
h/∈Z(H)

|CH(h)| =
∑

h∈CH(a1)\Z(H)

|CH(h)|+ · · ·+
∑

h∈CH(aqm )\Z(H)

|CH(h)|

+
∑

h∈CH(b)\Z(H)

|CH(h)|

= |CH(a1) \ Z(H)||P|+ · · ·+ |CH(aqm) \ Z(H)||P|
+ |CH(b) \ Z(H)||Q||Z(H)|
= |Q|(|P| − |Z(H)||P|+ (|Q||Z(H)| − |Z(H)|)|Q||Z(H)|
= |Q||P|2 − |Q||P||Z(H)|+ |Q|2|Z(H)|2 − |Z(H)|2|Q|.
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Therefore, an easy calculation shows that

P (H) =
|P|2 + |Z(H)|2(|Q| − 1)

|P|2|Q|
,

as required.

3.1 On the Commutativity Degree of AC-Group
Assume that G be a finite k-regular AC-group. In this subsection, the results
would be on the investigation of the commutativity degree of G.

Lemma 3.2. If {a1, a2, . . . , aω(G)} be the maximal subset of a group G, such that
[ai, aj ] ̸= 1, for every 1 ≤ i ̸= j ≤ ω(G), then G =

∪ω(G)
i=1 CG(ai). Note that by

eliminating every CG(ai), for 1 ≤ i ≤ ω(G), the equality does not hold.

Proof. It is clear that
∪ω(G)

i=1 CG(ai) ⊆ G. Now, assume that g ∈ G\
∪ω(G)

i=1 CG(ai),
so, gai ̸= aig, for 1 ≤ i ≤ ω(G). Therefore, {a1, a2, . . . , aω(G), g} is a subset that
every its two elements do not commute, which is a contradiction.

Lemma 3.3. Let K be a k-regular AC-group. Therefore

ω(K) =
|K| − |Z(K)|
k − |Z(K)|

.

Proof. Suppose that {a1, a2, . . . , aω(K)} be the maximal subset of a group K, with
the condition [ai, aj ] ̸= 1, for every 1 ≤ i ̸= j ≤ ω(K). By Lemma 3.2, K =∪ω(K)

i=1 CK(ai). On the other hand, by Lemma 2.2,

|K \ Z(K)| =
ω(K)∑
i=1

|CK(ai) \ Z(K)|,

which concludes that,

|K| = |Z(K)|+ ω(K)(k − |Z(K)|) = |Z(K)|+ ω(K)(k − |Z(K)|),

therefore ω(K) = |K|−|Z(K)|
k−|Z(K)| , as required.

Now, we are ready to consider the commutativity degree of AC-groups. Our
first focus is on the commutativity degree of k-regular AC-groups, and then, as an
illustration to the results, we consider the commutativity degree of the projective
special linear group PSL(2, q), where q is a power of a prime p.

Theorem 3.4. For a finite AC-group H, if H is a k-regular group, then

P (H) =
|H||Z(H)|+ k|H \ Z(H)|

|H|2
.
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Proof. Since P (H) =
∑

h∈H |CH(h)|
|H|2 , by Lemma 2.2, we have

P (H) =

∑
h∈Z(H) |CH(h)|+

∑
h/∈Z(H) |CH(h)|

|H|2

=
|H||Z(H)|+ k|H \ Z(H)|

|H|2
,

as desired.

Here, an illustrative and expressive example is given as an application of Lemma
3.3 and Theorem 3.4. Let H be a finite p-group, and |H| = pn, where p is a prime
number and n is a positive integer. Moreover, assume that |H|

|Z(H)| = p2. Obviously,
for every element of H which is not central, say x, we have Z(H) ⊊ CH(x) ⊊ H,
and CH(x) = ⟨Z(H), x⟩, which concludes that CH(x) is abelian, so H is an AC-
group. Moreover, clearly H is pn−1-regular. For these types of groups, in [2], there
was a complex process to find the ω(H) = p+ 1, while by using Lemma 3.3, and
a simple calculation, it is easy to see that

ω(H) =
|H| − |Z(H)|
k − |Z(H)|

=
pn − pn−2

pn−1 − pn−2
= p+ 1.

In addition, Theorem 3.4 deduces that

P (H) =
(pn · pn−2) + (pn − pn−2)pn−1

p2n
=

p2 + p− 1

p3
.

Theorem 3.4 could be extended to the (m,n)-regular AC-group, for natural
numbers m and n.

Corollary 3.5. For every (m,n)-regular AC-group, say K, the commutativity
degree of K is:

P (K) =
|K||Z(K)|+ lm(m− |Z(K)|) + kn(n− |Z(K)|)

|K|2
,

where l and k are the number of centralizers of K with the orders of m and n,
respectively.

Proof. Suppose that X and Y are the set of all non-central elements of K with
the centralizers of orders m and n, respectively. Clearly, |X| = l(m− |Z(K)|) and
|Y | = k(n− |Z(K)|). By the similar process of Theorem 3.4, and by the following
fact: ∑

x∈K

|CK(x)| =
∑

x∈Z(K)

|CK(x)|+
∑
x∈X

|CK(x)|+
∑
x∈Y

|CK(x)|,

the conclusion would be straightforward.
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Moreover, according to the above discussion, we can logically find a formula
for all the cases in general.

Theorem 3.6. Let H be a (m1,m2, . . . ,mk)-regular AC-group, where mi and k
are positive integers, for 1 ≤ i ≤ k. Therefore

P (H) =
|H||Z(H)|+

∑k
i=1 nimi(mi−|Z(H)|)
|H|2 ,

where ni is the number of centralizer of H with the order of mi, for 1 ≤ i ≤ k.

Proof. Utilizing the same way of the proof of Corollary 3.5, the proof would be
straightforward.

In the following, we focus on the commutativity degree of some projective
special linear groups.

Theorem 3.7. The commutativity degree of the projective special linear group
PSL(2, q), where q is a power of a prime p, and q ≡ 0 (mod 4), is q2+q−1

q(q−1)2(q+1) .

Proof. By Proposition 2.5, obviously, PSL(2, q) is an AC-group. On the other
hand, Proposition 2.5 forces that every CG(a), for a ∈ G \ Z(G), is actually
equal to the conjugation of some subgroups A, B or P, which are introduced in
Proposition 2.5. Therefor, by the orbit-stabilizer theorem, the number of CG(a),
for a ∈ G, would be [G : NG(⟨a⟩)]. Hence if we deduce that nA and nB be
the number of centralizers of G with the orders of |A| and |B|, respectively, then
Proposition 2.5 and the fact that |PSL(2, q)| = q(q2 − 1) assure us

nA = |PSL(2,q)|
|NG(A)| = q(q2−1)

2(q−1) = q(q+1)
2 ,

and similarly, nB = q(q−1)
2 . The above discussion and Theorem 3.6 give us a

straightforward calculation to find the commutativity degree of PSL(2, q), where
q is a power of a prime p, and q ≡ 0 (mod 4), in fact, we have

P (G) =
|PSL(2, q)||Z(G)|+ nA|A|(|A| − |Z(G)|) + nB|B|(|B| − |Z(G)|+ nP |P|(|P| − |Z(G)|)

|PSL(2, q)|2
,

where np is the number of Sylow p-subgroups of PSL(2, q), which is q + 1, by
Proposition 2.5(i). By a simple calculation, we have:

P (G) =
q(q2−1)+

q(q+1)
2 (q−1)(q−2)+

q(q+1)
2 (q+1)q+q(q+1)(q−1)

q2(q2−1)2 = q2+q−1
q(q−1)2(q+1) ,

as required.
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