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Abstract

In this paper, we study the existence of the following optimal solution
for the system of differential inclusion

y′ ∈ Φ(t, y(t)) a.e. t ∈ I = [t0, b] and y(t0) = u2,

y′ ∈ Ψ(t, y(t)) a.e. t ∈ I = [t0, b] and y(t0) = u1.

in a Hilbert space, where Φ and Ψ are multivalued maps. Our existence result
is obtained via selection technique and the best proximity point methods
reducing the problem to a differential inclusion.
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1 Introduction and preliminaries

It is know that the fixed point theory is a principal tools in the study of the
existence of solution of differential equation and differential inclusion. In 2014,
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Veeramani and Rajesh [11], introduced the following system of differential equa-
tions

(1) y′ = φ(t, y(t)) t ∈ I = [t0, b] and y(t0) = u2,

(2) y′ = ψ(t, y(t)) t ∈ I = [t0, b] and y(t0) = u1.

where f, g are real-valued functions defined on

T = {(t, y) ∈ R2 : |t− t0| ≤ a, |y − y0| ≤ b}

for some a, b > 0, (t0, y0) ∈ R2 and (t, u1), (t, u2) ∈ T. Veeramani and Rajesh
investigated the existence of pair (y, z) under suitable condition on f and g, that
is, y and z are solution of system of differential equation given in (1) and (2),
respectively and ∥y− z∥ = ∥u1 − u2∥. The pair (y, z) is called an optimal solution
for the system of differential equations. They proved the existence optimal solution
of system of differential equation in real space by the well known best proximity
point theorems.

Now we present the following system of differential inclusion

(3) y′ ∈ Φ(t, y(t)) a.e. t ∈ I = [t0, b] and y(t0) = u2,

(4) y′ ∈ Ψ(t, y(t)) a.e. t ∈ I = [t0, b] and y(t0) = u1.

in a Hilbert spaces in which Φ,Ψ : I × H ⇒ H are multivalued maps and two
distinct elements u1, u2 ∈ H. We establish the existence optimal solution of the
above system of differential inclusion by the best proximity point theorem which
was proved by Fakhar et al. [4]. We introduce first some definitions and facts that
will be used in the paper.

Let S :M ⇒ N be a multivalued map. We say that

(i) S is upper-semi-continuous (usc), if for every closed set D ⊆ N , S−(D) =
{x ∈M : S(x) ∩D ̸= ∅} is closed in M.

(ii) S is lower-semi-continuous (lsc), if for every open set U ⊆ N , S−(U) = {x ∈
M : S(x) ∩ U ̸= ∅} is open in M.

(iii) S is continuous if it’s lsc and usc.

Suppose that (H, ⟨·, ·⟩) is a Hilbert space with the norm ∥.∥. Assume that C(I,H)
is the Banach space of all continuous functions y : I → H equipped with the
uniform norm ∥y∥C(I,H) := supt∈I ∥y(t)∥. Let (Ω,Σ, µ) be measurable space then
L1(Ω,H) denotes the Banach space of all Bochner integrable functions y : Ω → H,
i.e. y ∈ L1(Ω,H), such that y is measurable and ∥y∥L1(Ω,H) :=

∫
Ω
∥y(x)∥dµ(x) <

∞.

Definition 1.1. Let (M,d) be a metric space. The Pompeiu-Hausdorff metric on
nonempty bounded and closed subsets of M is given by

H(C,D) = max{e(C,D), e(D,C)},

where e(C,D) = supc∈C d(c,D) and d(c,D) = infd∈D d(c, d).
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Definition 1.2. Let C and D are nonempty subsets of metric space (M,d). Thus
a multivalued map S : C ∪D ⇒ C ∪D is called:

(i) cyclic if S(C) ⊂ D and S(D) ⊂ C.

(ii) cyclic contraction if there exists γ ∈ (0, 1) such that

H(S(x), S(y)) < γd(x, y) + (1− γ)d(C,D),

for every x ∈ C and y ∈ D.

(iii) cyclic Meir–Keeler contraction if for each ε > 0, there exists δ > 0 such that

d(x, y) < d(C,D) + ε+ δ ⇒ H(S(x), S(y)) < d(C,D) + ε,

for every x ∈ C and y ∈ D.

where d(C,D) = inf{d(x, y) : x ∈ C, y ∈ D}.

It’s easy to check that every multivalued cyclic contraction map is multivalued
cyclic Meir–Keeler contraction map.

Definition 1.3. Let S be a cyclic multivalued map on C ∪ D, then a point
y ∈ C ∪D is said to be a best proximity point of S if d(y, S(y)) = d(C,D).

Definition 1.4. ([9]) Suppose that (M,d) is a metric space and C and D are
nonempty subsets of a M. Then the pair (C,D) satisfies the property UC if se-
quences {an} and {bn} in C and sequence {dn} in D, respectively, such that
limn d(an, dn) = d(C,D) and limn d(bn, dn) = d(C,D), then limn d(an, bn) = 0
holds.

Remark 1. Notice that if M is a uniformly convex Banach space, then every pairs
of nonempty subsets C,D which C is convex satisfy the property UC.

2. Main Results

In this section, we prove an existence result of optimal solution for the system of
differential inclusion given in (3) and (4).

First we define C = {y ∈ C(I,H) : y(t0) = u1} andD = {y ∈ C(I,H) : y(t0) =
u2}. For any y ∈ C and z ∈ D, we have ∥y−z∥ ≥ ∥u1−u2∥ if d(C,D) = ∥u1−u2∥,
where d(C,D) = inf{∥y − z∥ : y ∈ C, z ∈ D}.
We define the multivalued map S : C ∪D ⇒ C(I,H) as

S(y) := {h ∈ C(I,H) | h(t) = u2 +

∫ t

t0

ϑ(s)ds, t ∈ I} y ∈ C,
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where

ϑ ∈ TΨ,y = {ϑ ∈ L1(I,H) | ϑ(t) ∈ Ψ(t, y(t)) for a.e. t ∈ I}.

and

S(z) := {g ∈ C(I,H) | g(t) = u1 +

∫ t

t0

ω(s)ds, t ∈ I}, z ∈ D,

where

ω ∈ TΦ,z = {ω ∈ L1(I,H) | ω(t) ∈ Φ(t, z(t)) for a.e. t ∈ I}.

Theorem 2.1. Let H be a real separable Hilbert space. Let S,C, and D are defined
as above. Suppose that Φ,Ψ : I × H ⇒ H are compact convex valued satisfy the
following conditions

(A1) Φ and Ψ are measurable in the first argument and continuous in the second
argument;

(A2) there is a function l ∈ L1(I, [0,∞)) such that

H(Φ(t, z),Ψ(t, y)) ≤ l(t)(∥y − z∥ − ∥u1 − u2∥),

for each t ∈ I and y ∈ C and z ∈ D;

(A3) there is a continuous nondecreasing function ξ1, ξ2 : [t0,∞) → [0,∞) and
ρ1, ρ2 ∈ L1(I,R+) such that for each t ∈ I and u ∈ H,

∥Φ(t, z)∥ := sup{∥ω∥ : ω ∈ Φ(t, z(t))} ≤ ρ1(t)ξ1(∥z∥),

and
∥Ψ(t, y)∥ = sup{∥ϑ∥ : ϑ ∈ Ψ(t, y(t))} ≤ ρ2(t)ξ2(∥y∥).

Then there exists y ∈ C∪D such that d(y, Sy) = d(C,D). Therefore, the pair (y, z)
such that z ∈ Sy and d(y, z) = d(C,D), is an optimal solution for the system of
differential inclusion given in (3) and (4).

Proof. First, notice that since H is separable and Φ satisfies condition (A1), then
by Theorem 7.25 of [5], S(y) is nonempty so S is well-defined. It is easy to check
that S(C) ⊂ D and S(D) ⊂ C. Also, It’s obvious that C is closed and convex.
Since H is a Hilbert space so it’s uniformly convex space then by Proposition 23.2
of [10] and Remark 1, pair (C,D) satisfies the property UC.

Now, we show that S(K) is compact for every compact set K ⊂ C ∪ D. Let
{hn} in S(K), then there exists yn ∈ K such that hn ∈ S(yn), but since K is
compact, so we can assume that yn converges to a point y ∈ K. If y ∈ C, since C
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and D are closed and C ∩D = ∅, then we can conclude that there exists N0 ∈ N
such that for n > N0, yn ∈ A so there is ϑn ∈ TΨ,yn such that

hn(t) = u2 +

∫ t

t0

ϑn(r)dr t ∈ I.

Since, the sequence {yn} is convergent and ξ2 is continuous, from (A3) we have

∥ϑn∥ ≤ ρ2(t)ξ2(∥yn∥) ≤ kρ2(t),

thus, the set {ϑn} is bounded. Also, since Ψ and Φ are compact valued so {ϑn(t)}
is relatively compact in H for each t ∈ I. Therefore, the sequence {ϑn} satisfies
the hypotheses of Proposition 4.2.1 in [6], then it is weakly compact in L1(I,H),
hence we assume ϑn ⇀ ϑ in L1(I,H). Then by Theorem 5.1.1 of [6],

hn(t) = u2 +

∫ t

t0

ϑn(r)dr → u2 +

∫ t

t0

ϑ(r)dr.

We set h(t) := u2 +
∫ t

t0
ϑ(r)dr. Also, by Lemma 5.1.1 of [6], ϑ ∈ TΨ,y and we

conclude that h ∈ S(y) ⊂ S(K) and therefore S(K) is compact. If y ∈ D, the
proof is similar.

Now, we show that S is cyclic contraction. Let y ∈ C, z ∈ D and h ∈ S(y),
then there exists ϑ ∈ TΨ,y such that for each t ∈ I,

h(t) = u2 +

∫ t

t0

ϑ(r)dr.

From condition (A2),

H(Φ(t, z(t)),Ψ(t, y(t))) ≤ l(t)(∥y − z∥ − ∥u1 − u2∥) t ∈ I.

Since, Φ is compact valued, then there is φ(t) ∈ Φ(t, z(t)) such that

∥ϑ(t)− φ(t)∥ ≤ l(t)(∥y − z∥ − ∥u1 − u2∥) t ∈ I.

Now we define the multivalued map U : I ⇒ H as

U(t) := {φ ∈ H | ∥ϑ(t)− φ∥ ≤ l(t)(∥y − z∥ − ∥u1 − u2∥)}.

Since ϑ is measurable, then U is measurable, hence, by Proposition III.4 of [2],
F (t) = Φ(t, z(t)) ∩ U(t) is measurable. Therefore, Kuratowski Ryll-Nardzewski
Theorem of [8] conclude that F has a measurable selection ω. Thus, ω(t) ∈
Φ(t, z(t)) and

∥ϑ(t)− ω(t)∥ ≤ l(t)(∥y − z∥ − ∥u1 − u2∥) for each t ∈ I.
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For each t ∈ I, we define

g(t) = u1 +

∫ t

t0

ω(r)dr,

therefore

∥h(t)− g(t)∥ ≤ ∥u2 − u1∥+
∫ t

t0

|ϑ(r)− ω(r)|dr

≤ ∥u2 − u1∥+
∫ t

t0

l(r)(∥y − z∥ − ∥u2 − u1∥)dr

≤ ∥u2 − u1∥+
∫ t

t0

l(r)(eτL(r)e−τL(r)∥y − z∥ − eτL(r)∥u2 − u1∥dr

≤ ∥u2 − u1∥+
1

τ
(∥y − z∥1 − ∥u2 − u1∥)

∫ t

t0

(eτL(r))′dr

≤ ∥u2 − u1∥+
1

τ
eτL(t)(∥y − z∥1 − ∥u2 − u1∥).

where L(t) =
∫ t

t0
l(r)dr, t ∈ I, and

∥z∥1 = sup{e−τL(t)∥z(t)∥ | t ∈ I} τ > 1.

Then
∥h− g∥1 ≤ 1

τ
∥y − z∥1 − (1− 1

τ
)∥u2 − u1∥.

Therefore, by the same argument as in the above, we deduce that

H(S(y), S(z)) ≤ γ∥y − z∥1 − (1− γ)∥u2 − u1∥,

where γ = 1
τ < 1. Also, d1(C,D) = ∥u2 − u1∥1 = ∥u2 − u1∥ = d(C,D), where

d1(C,D) = inf{∥y − z∥1 : y ∈ C, z ∈ D}. Therefore, the map S is cyclic contrac-
tion.

Then by Theorems 2.10 of [4], S has a best proximity point y in C, so d(y, S(y)) =
d(C,D). Since S is compact valued, there exists z ∈ S(y) such that ∥y − z∥ =
d(C,D), then z is a best proximity point in D, and d(z, S(z)) = d(C,D). Since
the pair (C,D) satisfies the property UC, we conclude that y ∈ S(z).

Now we show that y, z are solution of system of differential inclusion given in
(3) and (4), respectively.

First notice that since ∥y − z∥ = d(C,D) = ∥u1 − u2∥, then by condition
(A2), we deduce that Ψ(t, y(t)) = Φ(t, z(t)) for each t ∈ I. We have y ∈ S(z) and
z ∈ S(y), so there exist ϑ, ω ∈ L1(I,H) such that ϑ(t) ∈ Ψ(t, y(t)) = Φ(t, z(t))
and ω(t) ∈ Φ(t, z(t)) = Ψ(t, y(t)) for a.e. t ∈ I and

z(t) = u2 +

∫ t

t0

ϑ(r)dr,
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y(t) = u1 +

∫ t

t0

ω(r)dr.

Then,

z′(t) ∈ Φ(t, z(t)) a.e. t ∈ I and z(t0) = u2,

y′(t) ∈ Ψ(t, y(t)) a.e. t ∈ I and y(t0) = u1.

Therefore, the pair (y, z) is an optimal solution for the system of differential in-
clusion given in (3) and (4).

Now we present the following system of differential inclusion

(5) y′ ∈ By(t) + Φ(t, y(t)) t ∈ I = [0, d] y(0) = u2,

(6) y′ ∈ By(t) + Ψ(t, y(t)) t ∈ I = [0, d] y(0) = u1.

in a Hilbert spaces in which Φ,Ψ : I×H ⇒ H are multivalued maps, {B(t)}t∈[0,d]

is a family of linear operators in H and u1, u2 ∈ H are distinct.

Definition 2.5. The two parameter family {E(t, s)}(t,s)∈△ that

△ = {(t, s) ∈ [0, d]× [0, d] : 0 ≤ s ≤ t ≤ d},

is said to be an evolution contraction system if E(t, s) : H → H for each (t, s) ∈ △,
is a bounded linear operator and satisfies in the following conditions:

(i) E(s, s) = I, s ∈ [0, d]; E(t, r)E(r, s) = E(t, s) 0 ≤ s ≤ r ≤ t ≤ d,

(ii) for each 0 ≤ s ≤ t ≤ d, map (t, s) → E(t, s) is strongly continuous.

(ii) ∥E(s, t)∥ ≤ 1 for each 0 ≤ s ≤ t ≤ d,

Now we prove an existence optimal solution for the system of differential in-
clusion given in (5) and (6).
First we define C = {y ∈ C(I,H) : y(0) = u1} and D = {y ∈ C(I,H) : y(0) =
u2}. We have d(C,D) = ∥u1 − u2∥. We define the multivalued map S : C ∪D ⇒
C(I,H) as

S(y) := {h ∈ C(I,H) | h(t) = E(t, 0)u2 +

∫ t

0

E(t, r)ϑ(r)dr, t ∈ I}, y ∈ C,

where

ϑ ∈ TΨ,y = {ϑ ∈ L1(I,H) | ϑ(t) ∈ Ψ(t, y(t)) for a.e. t ∈ I}.

and

S(z) := {g ∈ C(I,H) | g(t) = E(t, 0)u1 +

∫ t

0

E(t, r)ω(r)dr, t ∈ I}, z ∈ D,

where

ω ∈ TΦ,z = {ω ∈ L1(I,H) | ω(t) ∈ Φ(t, z(t)) for a.e. t ∈ I}.
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Theorem 2.2. Let H be a real separable Hilbert space. Let S is defined as above.
Suppose that Φ,Ψ : I ×H ⇒ H are compact convex valued satisfy the conditions
(A1), (A2) and (A3) of Theorem 2.1. We assume the family of linear operators
{B(t)}t∈[0,d] satisfy the following hypotheses:

(A4) B(t) : Dom(B) ⊆ H → H, where Dom(B) is not depending on t ∈ [0, d]
and dense in H and {B(t)}t∈[0,d] generates an evolution contraction system
{E(t, s)}(t,s)∈△.

Then there exists y ∈ C∪D such that d(y, Sy) = d(C,D). Therefore, the pair (y, z)
such that z ∈ Sy and d(y, z) = d(C,D), is an optimal solution for the system of
differential inclusion given in (5) and (6).

Proof. First, notice that since H is separable and Φ satisfies condition (A1), then
by Theorem 2.2, S(y) is nonempty and S is well-defined. It is easy to check that
S(C) ⊂ D and S(D) ⊂ C. By some minor modifications in the proof of Theorem
2.1, we obtain the conclusion for the system of differential inclusion given in (5)
and (6).
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