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Abstract

The study of hypercompositional structures (introduced by Marty) is
now considered of a great value because of its applications in various sci-
ences. In this paper, we focus on a special hypercompositional structure;
quasi-ordering hypergroup. In this regard, we discuss some of the quasi-
ordering hypergroup’s properties and investigate some relations on it. Then,
we present an application of quasi-ordering hypercompositional structures
in genetics and define ordered hypercompositional structures for both sets:
phenotypes and genotypes of F2- offspring.
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1. Introduction

Since its introduction around 80 years ago, hypercompositional structures theory
has become an important area of research. In which researchers, and besides the
theoretical part, have been discussed its applications in various areas (see [10]).
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Several books and articles were written on the concepts and applications of hy-
percompositional theory (see [13, 21, 25, 26, 28]). Hypercompositional structures
are a natural extension of the ordinary algebraic structures. In an ordinary al-
gebraic structure, elements are composed to produce a single element, whereas
in hypercompositional structures, elements are composed to produce a non-void
set. Marty [22], who introduced this important concept in 1934, is considered
as the pioneer of hypercompositional structures theory. Since then, this theory
was developed by many researchers and thus new definitions were introduced like
cyclic hyperstructures [30] and studied by many researchers (see [1, 2, 3, 14, 20])
and ordered hypercompositional structures. The main link connecting the class of
hypercompositional structures with that of classical algebraic structures is funda-
mental relations.

Bakhshi and Borzooei [6] introduced the concept of ordered polygroups. Later,
Davvaz and Heidari generalized the concept of ordered semigroups to ordered
semihypergroups in [16]. Chvalina in [7] and Hort in [17] used ordered hyper-
compositional structures for the construction of hypergroups. Since then, or-
dered hypercompositional structures have been studied by different researchers
(see [8, 18, 27]). As an example, Omidi and Davvaz introduced in [27] the concept
of ordered (semi)hyperrings and used the notion of pseudo-order on an ordered
(semi)hyperring to obtain (semi)rings.

The laws of inheritance were put by Mendel in 1866 who first traced patterns
of certain pea plants’ traits and proved that some statistical rules were valid [24].
A connection between hypercompositional structures and inheritance was estab-
lished by Davvaz et al. in [11] where they provided some inheritance examples of
algebraic hypercompositional structures. The authors in [4] generalized the con-
nection related to phenotypes and found another connection related to genotypes
in [5].

The manuscripts aims at studying quasi-ordering hypercompositional struc-
tures and finding a connection between it and biological inheritance. The remain-
ing part of the manuscript is as follows: Section 2 covers the main concepts that are
needed throughout the paper. Sections 3 discusses quasi-ordering hypergroups and
studies its properties. Section 4 deals with equivalence relations of quasi-ordering
hypergroups. Section 5 presents an application of hypercompositional structures
in genetics found by the authors in [4, 5], proves that one of the hyperstructures
defined before is a po-ordering hypergroup and the other is a po-Hv-semigroup.

Throughout the manuscript, P is used for parents, F1 for first generation, F2

for second generation, and the genotypes ab, ba are considered equal.

2. Basic Notions and Concepts

This section presents the needed definitions related to both: hypercomposi-
tional structures (see [1, 12, 20]) and biological inheritance (see [24]).
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2.1 Hypercompositional Structures
Definition 2.1. [12] Let H ̸= ∅ be any set and P∗(H) = {X ̸= ∅ : X ⊆ H}.
Then a binary hyperoperation on H is a mapping ⋇ : H ×H → P∗(H) and (H,⋇)
is called a hypergroupoid.

In Definition 2.1, if K and L are non-void subsets of H and γ ∈ H, we have:

K ⋇ L =
∪

k∈K
l∈L

k ⋇ l, γ ⋇ L = {γ}⋇ L and K ⋇ γ = K ⋇ {γ}.

As an extension of hypercompositional structures, T. Vougiouklis [29] intro-
duced weak hypercompositional structures (Hv-structures). Where weak axioms
in the latter replace some axioms of classical hypercompositional structures.

An Hv-semigroup is a hypergroupoid (H,⋇) satisfying (α ⋇ (β ⋇ γ)) ∩ ((α ⋇
β) ⋇ γ) ̸= ∅ for all α, β, γ ∈ H. An Hv-subsemigroup R of an Hv-semigroup H
is a non-void subset of H satisfying R ⋇ R ⊆ R. An element ϱ ∈ H is called an
identity of (H,⋇) if ϱ ∈ α ⋇ ϱ ∩ ϱ ⋇ α, for all α ∈ H and it is said to be scalar
identity of (H,⋇) if α ⋇ ϱ = ϱ ⋇ α = {α}, for all α ∈ H. An idempotent is an
element α ∈ H satisfying α2 = α⋇α = α. A hypergroupoid (H,⋇) is commutative
if α ⋇ β = α ⋇ β, for all α, β ∈ H. A semihypergroup is a hypergroupoid (H,⋇)
satisfying the associative law and a quasihypergroup is a hypergroupoid satisfying
the reproduction axiom, i.i, α ∈ H, α⋇H = H = H⋇α. A hypergroupoid that is
both: a semihypergroup and a quasihypergroup is called a hypergroup. The total
hypergroup is an example of hypergroups where α ⋇ β = H for all α, β ∈ H. A
regular hypergroupoid is a hypergroupoid with at least one identity and each ele-
ment admits one inverse (or more). A non-void subset R of a hypergroup (H,⋇)
satisfying the reproduction axiom is called subhypergroup. And if α⋇ R = R ⋇ α
for all α ∈ H then R is a normal subhypergroup of H. A non-void subset I of H
is called a hyperideal of H if (I ⋇H)∪ (H ⋇ I) ⊆ I. If no proper hyperideals exist
then the hypergroup is simple.

Let (H,⋇) and (K, ⋆) be hypergroups (Hv-semigroups or Hv-groups). Then H
and K are isomorphic hypergroups if there exists a bijective function ϕ : H → K
with ϕ(α⋇ β) = ϕ(α) ⋆ ϕ(β) for all α, β ∈ H.

Definition 2.2. [12] A non-void subset L of a hypergroup (H, ⋆) is linear if for
all α, β ∈ L, α ⋆ β ⊆ L and α/β = {γ ∈ H | α ∈ γ ⋆ β} ⊆ L.

Definition 2.3. [23] Let (H,⋇) be a hypergroupoid with at least one identity ϱ.
An element α ∈ H is called ϱ-attractive if ϱ ∈ (ϱ⋇ α) ∩ (α⋇ ϱ).

Definition 2.4. [23] Let (H,⋇) be a hypergroupoid with an identity ϱ. Then ϱ
is called strong identity if ϱ ∈ ϱ⋇ α = α⋇ ϱ ⊆ {ϱ, α}.

A hypergroupoid H is cyclic if for some α ∈ H,

H = α ∪ α2 ∪ · · · ∪ αn ∪ · · · .
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If there exists a minimum positive integer m satisfying the following property

H = α ∪ α2 ∪ · · · ∪ αi,

then H is a cyclic hypergroupoid with finite period and α is a generator of H with
period m.

If there exists a minimum positive integer m satisfying H = αi then H is a
single-power cyclic hypergroupoid and α is a generator of H with period m (For
more details, see [30]).

2.2 Regular Relations and Complete Parts
Definition 2.5. [9, 12] Let R be an equivalence relation on the semihypergroup
(H,⋇). For X,Y ̸= ∅ ⊆ H,

1. by XRY , it is meant that for every x ∈ X there exists y ∈ Y satisfying xRy
and for every y′ ∈ Y there exists x′ ∈ X satisfying x′Ry′;

2. by XRY , it is meant that xRy for every x ∈ X and y ∈ Y .

Moreover, R is:

1. a regular on the right (on the left) if for all α ∈ H, xRy implies that that
(x⋇ α)R(y ⋇ α) ((α⋇ x)R(α⋇ y));

2. a strongly regular on the right (on the left) if for all α ∈ H, xRy implies
that (x⋇ α)R(y ⋇ α) ((α⋇ x)R(α⋇ y));

3. a regular (strongly regular) if it is regular (strongly regular) on both: the
left and the right.

Theorem 2.6. [9, 12] Let (H,⋇) be a hypergroup, R an equivalence relation on
H, and H/R be the set of all equivalence classes. Then R is strongly regular if
and only if (H/R,⊗) is a group.

Definition 2.7. Let n > 1 be an integer, (H,⋇) be a semihypergroup, and βn be
the relation on a H given as follows:

xβny if there exist x1, . . . , xn in H such that x, y ∈
n∏

i=1

xi.

Here, β1 = {(a, a) | a ∈ H} and β =
∪
n≥1

βn.

The above symmetric and reflexive relation was introduced by Koskas [19]
and studied by many scholars such asFreni, Davvaz, Corsini, Leoreanu-Fotea, and
Vougiouklis [9, 12, 15, 29].

The fundamental equivalence relation β∗ on H is the transitive closure of β
and it is the smallest strongly regular relation on H. Moreover, H/β∗ is called the
fundamental group. For a hypergroup H, β = β⋆ [15].
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Definition 2.8. [19] Let (H,⋇) be an Hv-group and C ̸= ∅ ⊆ H. Then C is
a complete part of H if for every positive integer m and for all P ∈ HH(m) =
{
∏m

i=1 xi : xi ∈ H}, we have C ∩ P ̸= ∅ =⇒ P ⊆ C.

2.3 Ordered Hypercompositional Structures
Definition 2.9. [7] A hypergroup (H,⋇) is called a quasi-ordering hypergroup if
for all x, y ∈ H, the following conditions hold.

1. x⋇ y = x2 ∪ y2,

2. x ∈ x2 = x3.

The quasi-ordering hypergroup (H,⋇) is an ordering hypergroup if x2 = y2 =⇒
x = y holds.

Definition 2.10. [16] Let (H,⋇) be a semihypergroup and ≤ a partially pre-
ordered (order) relation on H satisfying the monotone condition, i.e.,

x ≤ y =⇒ γ ⋇ x ≤ γ ⋇ y and x⋇ γ ≤ y ⋇ γ for all x, y, γ ∈ H.

Then (H,⋇,≤) is a partially preordered (ordered) semihypergroup.

The term po-semihypergroup is used for partially ordered semihypergroup and
the term po-hypergroup is used for partially ordered hypergroup.

Theorem 2.11. [16] A quasi-ordering hypergroup (H,⋇,≤) is a partially pre-
ordered hypergroup and an ordering hypergroup (H,⋇,≤) is a po-hypergroup. Here,
α ≤ β ⇐⇒ α ∈ β2 for all α, β ∈ H.

Definition 2.12. [16] Let (H,⋇,≤) be a po-semihypergroup and B ⊆ H. Then

1. (B] = {x ∈ H : x ≤ b, for some b ∈ B};

2. < B >= (B] ∪ (H ⋇B] ∪ (B ⋇H] ∪ (H ⋇B ⋇H].

If (H,⋇) is commutative then < B >= (B] ∪ (H ⋇B].

2.4 Biological Inheritance
The genetic information passing for traits from parents to their offsprings is

called inheritance. Autosomal inheritance is not affected by the sex of the parents.
It is a pattern of inheritance in which the transmission of traits depends on the
presence or absence of certain alleles. Inherited traits are controlled by genes and a
genotype is the complete set of genes within an organism’s genome. A phenotype is
the complete set of observable traits of the structure and behavior of an organism.

In 1865, teh concept of inheritance was introduced explicitly by Gregor Mendel
[24]. He found that paired pea traits were either dominant or recessive. The
inheritance factors are alleles that are different variants of the same gene. A
homozygote has two identical copies of the same allele whereas a heterozygote has
two different alleles.



6 M. Al-Tahan and B. Davvaz

3. Properties of Quasi-Ordering Hypergroups
This section discusses a commutative hypergroup defined by Chvalina in [7]

and proves some results regarding its properties.

Example 3.1. Let H ̸= ∅ be any set and define (H,⋇1) and (H,⋇3) as the total
hypergroup and Biset-hypergroup (B- hypergroup, i.e. α ⋇1 β = {α, β} for all
α, β ∈ H.) respectively. It is clear that (H,⋇1) is a quasi-ordering hypergroup
that is not an ordering hypergroup. Whereas, (H,⋇3) is an ordering hypergroup.

Remark 1. Let (H,⋇) be any quasi-ordering hypergroup. Then for all a, b ∈ H,

a⋇3 b ⊆ a⋇ b ⊆ a⋇1 b.

Example 3.2. Let H = {h1, h2} and define (H,⋇2) as follows:

⋇2 h1 h2

h1 H H

h2 H h2

It is clear that (H,⋇2) is an ordering hypergroup.

Remark 2. Since every ordering hypergroup is a quasi-ordering hypergroup, it
follows that properties of quasi-ordering hypergroups are applied to ordering hy-
pergroups.

Proposition 3.3. A quasi-ordering hypergroup is regular.

Proof. Let (H,⋇) be a quasi-ordering hypergroup and α, β ∈ H. Definition 2.9
asserts that α ∈ α ⋇ β = α2 ∪ β2. Thus, each element in H is an identity. The
latter implies that the set of all inverses I(α) of α ∈ H is equal to H.

Proposition 3.4. Let (H,⋇) be a quasi-ordering hypergroup then for all x, y ∈ H,
y is x-attractive.

Proof. The proof is straightforward.

Proposition 3.5. Let (H,⋇) be a quasi-ordering hypergroup having a strong iden-
tity e. Then x2 = x or x2 = {e, x} and x⋇ y = {x, y} or {x, y, e}.

Proof. Having that {e, α} ⊇ α ⋇ e = α2 ∪ e2 and e2 = e implies that α2 = α or
α2 = {e, α}. Consequently, α⋇ β = {α, β} or {α, β, e}.

Proposition 3.6. Let (H,⋇) be a non-trivial quasi-ordering hypergroup. Then
(H,⋇) doesn’t admit a scalar identity.

Proof. Let e ∈ H be a scalar identity and x ̸= e be an element in H. Then e2 = e
and x⋇ e = x. The latter implies that x⋇ e ̸= x2 ∪ e2.
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Example 3.7. There are three quasi-ordering hypergroups of order two (up to
isomorphism) given by (H,⋇1), (H,⋇2) and (H,⋇3) (defined in Examples 3.1 and
3.2).
It is clear that (H,⋇1) has no strong identity, (H,⋇2) has a unique strong identity
h2 and (H,⋇3) has two strong identities h1 and h2.

Remark 3. Strong identities in quasi- ordering hypergroup need not to be unique
((H,⋇3) in Example 3.7).

Proposition 3.8. A quasi-ordering hypergroup has no proper linear subsets.

Proof. Let L be a linear subset of the quasi-ordering hypergroup (H,⋇) and a ∈ L.
Having a/a ⊆ L implies that a/a = {x ∈ H : a ∈ x ⋇ a} and hence, a/a = H ⊆
L.

Proposition 3.9. Let (H,⋇) be a quasi-ordering hypergroup and (S,⋇) a subhy-
pergroup of (H,⋇). Then (S,⋇) is a quasi-ordering hypergroup.

Proof. The proof is straightforward.

Proposition 3.10. Let (H,⋇) be a quasi-ordering hypergroup and S ⊆ H. If
s2 ⊆ S for all s ∈ S then (S,⋇) is a subhypergroup of (H,⋇).

Proof. We need to show that (S,⋇) satisfies the reproduction axiom. We have
that x ∈ x⋇ S = {x2 ∪ y2 : y ∈ S} ⊆ S for all x ∈ S. Therefore, x⋇ S = S.

Proposition 3.11. A quasi-ordering hypergroup has no proper normal subhyper-
groups.

Proof. Let N be a normal subhypergroup of the quasi-ordering hypergroup (H,⋇)
and x ∈ H. Since x ∈ x⋇N = {x2 ∪ n2 : n ∈ N}, it follows that N = H.

Proposition 3.12. A quasi-ordering hypergroup is simple.

Proof. One can easily see that a quasi-ordering hypergroup has no proper hyper-
ideals and hence, it is simple.

Proposition 3.13. A cyclic quasi-ordering hypergroup (H,⋇) is a single-power
cyclic hypergroup of period two. Moreover, if h is a generator of it then h⋇x = H
for all x ∈ H.

Proof. Since (H,⋇) is cyclic and h is a generator of H, it follows that H =
h ∪ h2 ∪ . . .. Definition 2.9 implies that h ∈ h2 = h3. It is easy to see that
hi = h2 for all i ≥ 2. Thus, H = h2. Moreover, h ⋇ x = h2 ∪ x2 = H for all
x ∈ H.

Corollary 3.14. A cyclic ordering hypergroup then (H,⋇) has only one generator.
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Proof. Let h, x be generators of (H,⋇) then Proposition 3.13 asserts that H =
h2 = x2. Thus, h = x by Definition 2.9.

Example 3.15. Let H be any set with a least three elements x, y, z and define
(H,⋇) as follows:

x2 = x⋇ y = H and y ⋇ z = {y, z} for y, z ̸= x.

Then (H,⋇) is an ordering hypergroup.

Proposition 3.16. Let (H,⋇) be a quasi-ordering hypergroup, (K, ⋆) be any hy-
pergroup, and f : H −→ K be an isomorphism. Then (K, ⋆) is a quasi-ordering
hypergroup. Moreover, if (H,⋇) is an ordering hypergroup then (K, ⋆) is an or-
dering hypergroup.

Proof. For all (y1, y2 ∈ K there exists (x1, x2 ∈ H such that f(x1) = y1 and
f(x2) = y2. We have:

1. y1 ⋆ y2 = f(x1) ⋆ f(x2) = f(x1 ⋇ x2) = f(x1 ⋇ x1 ∪ x2 ⋇ x2) = f(x1 ⋇ x1) ∪
f(x2 ⋇ x2). Having f a good homomorphism implies that

f(x1 ⋇ x1) ∪ f(x2 ⋇ x2) = f(x1) ⋆ f(x1) ∪ f(x2) ⋆ f(x2) = y1 ⋆ y1 ∪ y2 ⋆ y2.

2. y1 ⋆ y1 = f(x1) ⋆ f(x1) = f(x1 ⋇ x1). And having (H,⋇) a quasi-ordering
hypergroup implies that x1 ∈ x2

1 = x3
1. Thus, y1 = f(x1) ∈ f(x2

1) = f(x3
1).

The latter and having f a good homomorphism imply that y1 ∈ y21 = y31 .

Thus, (K, ⋆) is a quasi-ordering hypergroup.
Let (H,⋇) be an ordering hypergroup and y21 = y22 . Then f(x2

1) = (f(x1))
2 =

(f(x2))
2 = f(x2

2). Having f an injective function implies that x2
1 = x2

2. Since
(H,⋇) is an ordering hypergroup, it follows that x1 = x2 and thus y1 = y2.

4. Fundamental Groups and Regular Relations of
Quasi-Ordering Hypergroups

This section studies equivalence relations on quasi-ordering hypergroups, finds its
fundamental group, and determines its complete parts.

Proposition 4.1. The fundamental group of a quasi-ordering hypergroup is the
trivial group.

Proof. Let (H,⋇) be a quasi-ordering hypergroup and x, y ∈ H. Then {x, y} ⊆
x ⋇ y. We get that xβ2y and hence, xβy. Having (H,⋇) a hypergroup implies
that β and β⋆ coincide. Therefore, H/β⋆ is the trivial group.

Proposition 4.2. A quasi-ordering hypergroup has no proper complete parts.
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Proof. Let C be a complete part of the quasi-ordering hypergroup (H,⋇) and
a ∈ C. For all b ∈ H, we have a ∈ C ∩ (a⋇ b) ̸= ∅. Since C is a complete part of
H, it follows that b ∈ a⋇ b ⊆ C.

Proposition 4.3. Let (H,⋇) be a quasi-ordering hypergroup and R an equivalence
relation on it. Then R is a strongly regular relation on H if and only if H/R is
the trivial group.

Proof. The proof is straightforward.

Proposition 4.4. Let (H,⋇) be a quasi-ordering hypergroup and R be the relation
on H given as follows:

aRb ⇐⇒ a2 = b2 for all (a, b) ∈ H2.

Then R is a regular relation on H. Moreover, R is strongly regular relation on H
if and only if (H,⋇) is the total hypergroup.

Proof. It is clear that R is an equivalence relation on H. Let (a, b, x, α) ∈ H4, aRb
and α ∈ a ⋇ x = a2 ∪ x2. The latter implies that α ∈ a2 = b2 or α ∈ x2. Thus,
α ∈ b2 ∪ x2 = b⋇ x. Therefore, a⋇ xRb⋇ x.

It is clear that if (H,⋇) is a total hypergroup then R is strongly regular relation
on H. Let a ∈ H. For a strongly regular relation R on H, we have aRa implies
that (a⋇ z)R(a⋇ z) for all z ∈ H. Since {z, a} ⊆ a⋇ z, it follows that aRz. Thus
a2 = z2 for all a, z ∈ H. Definition 2.9 asserts that a2 = a⋇ z for all z ∈ H. The
reproduction axiom implies that a⋇ z = H.

5. Applications of Quasi-Ordering and Ordered
Hyperstructures in Genetics

This section considers the hyperstructures defined by the authors in [4] and [5]
and defines ordered hyperstructures on it.

Throughout this section, the hyperoperations“⊗" and “×": represent the mat-
ing.

5.5 Hyperstructures and Biological Ineritance

We present the results of the authors in [4] and [5].

5.5.1 Phenotypes of F2-offspring

The authors in [4] presented the following example of non-Mendelian inheritance.
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Example 5.1. [4] Epistasis of dominant gene in dogs’ coat color. Epistasis occurs
when genes at two different loci interact to affect the expression of a single trait.
We have: A is dominant over a, B is dominant over b, AxBy and Axbb have
phenotype white, and aaBy has phenotype black, and aabb has phenotype brown.
Here x ∈ {A, a} and y ∈ {b, b}. This experiment’s results are presented as follows.

P : AABB ⊗ aabb

F1 : AaBb

and
F1 ⊗ F1 : AaBb⊗AaBb

F2 : White, Black, Brown.

White is denoted by A1, Black by A2, and Brown by A3.
By setting H = {A1, A2, A3}, (H,⊗) is presented in the following table.

⊗ A1 A2 A3

A1 H H H
A2 H {A2, A3} {A2, A3}
A3 H {A2, A3} {A3}

.

The authors in [4] proved that (H,⊗) is a hypergroup. Moreover, they considered
the hypergroup of phenotypes in F2-offspring under simple inheritance and studied
it in details. More specifically, the n−hybrid cross (n ≥ 1) that differs in n traits;
a homozygous dominant parent (A1A1A2A2 . . . AnAn) ⊗ a homozygous recessive
parent (a1a1a2a2 . . . anan). This experiment’s results is summarized as follows.

P : A1A1A2A2 . . . An−1An−1AnAn ⊗ a1a1a2a2 . . . anan

F1 : A1a1A2a2 . . . Anan

and
F1 ⊗ F1 : A1a1A2a2 . . . Anan ⊗A1a1A2a2 . . . Anan

F2 : Â1(of genotypeA1x1A2x2 . . . Anxn), . . . ,

Âr(of genotype A1a1A2a2 . . . An−1an−1Anan), . . . ,

Âs(of genotypea1a1a2a2 . . . anan).

Here, s = 2n is the number of different phenotypes and xi ∈ {Ai, ai}.

Theorem 5.2. [4] Let H = {Â1, Â2, . . . , Âs}. Then (H,⊗) is a regular single
power cyclic hypergroup.

5.5.2 Genotypes of F2-offspring

We consider the Hv-semigroup of genotypes in F2-offspring discussed by the au-
thors in details in [5] which is isomorphic to Hv-semigroup of phenotypes in F2-
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offspring under incomplete inheritance discussed in [4]. And the Hv-semigroup
of phenotypes in F2- offspring for the case of incomplete and simpleinheritance
combined together.

The authors in [5] presented the results for the n-hybrid cross (n ≥ 1) that
differs in n traits; a homozygous parent (A1A1A2A2 . . . AnAn) × a homozygous
parent (B1B1B2B2 . . . BnBn). This experiment’s results is summarized as follows.

P : A1A1A2A2 . . . AnAn ×B1B1B2B2 . . . BnBn

F1 : A1B1A2B2 . . . AnBn

and
F1 × F1 : A1B1A2B2 . . . AnBn ×A1B1A2B2 . . . AnBn

F2 : B̂1, B̂2, . . . , B̂k,

where

B̂1 represents A1A1A2A2 . . . AnAn,

B̂2 represents A1A1A2A2 . . . An−1An−1AnBn, . . . ,

B̂r represents A1B1A2B2 . . . An−1Bn−1AnBn, . . . ,

and B̂s represents B1B1B2B2 . . . BnBn.

We have s = 3n different genotypes in F2.

Proposition 5.3. [5] Let H = {B̂1, B̂2, . . . , B̂s} be the set of genotypes in F2.
Then (H,×) is a cyclic Hv-semigroup.

The authors in [4] presented the results for the cross that differs in m+n traits
with m,n ≥ 1 (The case of combination of incomplete and simple dominance); a
homozygous parent (B1B1 . . . BnBnA1A1 . . . AmAm) ⊗ a homozygous parent (B1

B1 . . . Bn Bna1a1 . . . amam). The results of this hypothetical experiment can be
summarized as follows.

P : B1B1 . . . BnBnA1A1 . . . AmAm ⊗B1B1 . . . BnBna1a1 . . . amam

F1 : B1B1 . . . BnBnA1a1 . . . Amam

and

F1 ⊗ F1 : B1B1 . . . BnBnA1a1 . . . Amam ⊗B1B1 . . . BnBnA1a1 . . . Amam

F2 : Â1(of genotype B1B1 . . . BnBnA1y1 . . . Amym),

Â2(of genotype B1B1 . . . BnBnA1y1 . . . Am−1ym−1amam), . . . ,

Âr(of genotype B1B1 . . . BnBna1a1 . . . amam), . . .

and Âs(of genotype B1B1 . . . BnBna1a1 . . . amam).
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Here, yi ∈ {Ai, ai} for i = 1, . . . ,m and s = 2m3n is the number of different
phenotypes.

Theorem 5.4. [4] Let H = {Â1, Â2, . . . , Âs}. Then (H,⊗) is a cyclic Hv-
semigroup with identity and having 2n idempotent elements.

Here, Bi, Bi are codominant alleles and Ai is dominant over the recessive allele
ai.

5.6 Ordered Hyperstructures and Biological Ineritance

We present our results that relate ordered hyperstructures to biological inheritance.
We work on the relation “≤" that is defined as

x ≤ y ⇔ x ∈ y2.

The reason beyond choosing this relation is that if a genotype or a phenotype x
appears in one of the offsprings that result from mating between two creatures
sharing the same genotype or phenotype y then x ≤ y (x is weaker than y).

5.6.1 Phenotypes of F2-offspring is a Po-hypergroup

Theorem 5.5. Let (H,⊗) be the hypergroup defined in Example 5.1. Then (H,⊗)
is an ordering hypergroup. Moreover, (H,⊗,≤) is a po-hypergroup under the par-
tial order relation defined in [16].

Proof. From the table of (H,⊗) presented in Example 5.1, we can deduce the
following:

A1 ∈ A2
1 = A3

1, A2 ∈ A2
2 = A3

2 and A3 ∈ A2
3 = A3

3,

A1 ⋇A2 = A2
1 ∪A2

2, A1 ⋇A3 = A2
1 ∪A2

3 and A2 ⋇A3 = A2
2 ∪A2

3.

Thus, (H,⊗) is a quasi-ordering hypergroup.
To prove that (H,⊗) is an ordering hypergroup, let x ̸= y ∈ H. We examine

the following cases.

• Case A1 ̸= A2. We have A2
1 = H ̸= A2

2 = {A2, A3}.

• Case A1 ̸= A3. We have A2
1 = H ̸= A2

3 = {A3}.

• Case A2 ̸= A3. We have A2
2 = {A2, A3} ̸= A2

2 = {A3}.

Therefore, (H,⊗) is an ordering hypergroup.
Taking the partial order ≤ on H as:

x ≤ y ⇐⇒ x ∈ y2,

and using Theorem 2.11, we get that (H,⊗,≤) is a po-hypergroup.
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Next, we consider the hypergroup of phenotypes in F2- offspring under simple
inheritance. Before presenting the main results of this subsection, we present the
next proposition that is related to the monohybrid case (n = 1).

For the monohybrid case, (H,⊗) is presented by the following table.

⊗ Â1 Â2

Â1 H H

Â2 H {Â2}

Proposition 5.6. (H,⊗,≤) in the monohybrid case is a po-hypergroup.

Proof. Having (H,⊗) an ordering hypergroup, we get by Theorem 2.11 that
(H,⊗,≤) is a po-hypergroup.

Theorem 5.7. (H,⊗,≤) in the n-hybrid case is a po-hypergroup.

Proof. Let Âk, Âl ∈ H be the phenotypes corresponding to the genotypes:
x1x

′
1x2x

′
2 . . . xnx

′
n and y1y

′
1y2y

′
2 . . . yny

′
n respectively. We have that Âk

2
is the set

of phenotypes with the corresponding genotypes z1z′1z2z′2 . . . znz′n where {zi, z′i} =

{xi, x
′
i}. It is clear that Âk ∈ Âk

2
= Âk

3
. Let Âl

2
and Âk ⊗ Âl be the set of phe-

notypes with the corresponding genotypes t1t
′
1t2t

′
2 . . . tnt

′
n and s1s

′
1s2s

′
2 . . . sns

′
n

respectively where {ti, t′i, si, s′i} ⊆ {xi, x
′
i}. Since each pair of xi and x′

i, yi and y′i,
zi and z′i, ti and t′i are independent alleles for i ∈ {1, . . . , n}, we can consider just
the ith position while computing Âk ⊗ Âl, Âk

2
, Âl

2
. We consider the following

cases for the alleles of the ith position.

• Case xi = Ai and yi = Ai. We have that ziz
′
i = tit

′
i = {AiAi, Aiai, aiai} =

sis
′
i,

• Case xi = Ai and yi = ai.We have that ziz
′
i = {Aix

′
i, x

′
ix

′
i}, tit′i = aiai and

sis
′
i = {Aix

′
i, x

′
ix

′
i, aiai},

• Case xi = x′
i = ai and yi = y′i = ai. We have that zi = z′i = ai and ti =

t′i = ai. Moreover, si = s′i = ai.

The results of the above cases imply that Âk ⊗ Âl = Âk

2
∪ Âl

2
. We get now that

(H,⊗) is a quasi-ordering hypergroup.
Let Âk ̸= Âl then there exists i ∈ {1, . . . , n} such that xix

′
i ̸= yiy

′
i. We have

only one case; xi = Ai and yi = ai. We get that ziz
′
i = {AiAi, Aiai, aiai} and

tit
′
i = aiai. Thus, Âk

2
̸= Âl

2
.

Therefore, (H,⊗) is an ordering hypergroup. Theorem 2.11 completes the
proof.

Proposition 5.8. Let H = {Â1, Â2, . . . , Âs}. Then the following properties hold:
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1. (Âr] = H,

2. (Â1] = Â1 and (Âs] = Âs,

3. < Âi >= H for all i = 1, . . . , s.

Proof. Since Âr

2
= H, Â1

2
= Â1 and Âs

2
= Âs, it follows that (Âr] = {t ∈ H :

t ≤ Âr} = {t ∈ H : t ∈ Âr

2
} = H, (Â1] = Â1 and (Âs] = Âs.

Since H ⊗ Âi = H, it follows that

< Âi >= (Âi] ∪ (H ⊗ Âi] = H.

5.6.2 Genotypes of F2-offspring is a Po- Hv- semigroup

We consider the Hv-semigroup of genotypes in F2- offspring discussed by the au-
thors in details in [5] which is isomorphic to Hv-semigroup of phenotypes in F2-
offspring under incomplete inheritance discussed in [4]. And the Hv-semigroup of
phenotypes in F2- offspring for the case of incomplete and simple inheritance com-
bined together. First, we prove that our Hv-semigroups are not quasi-ordering.
Then we define a partial order relation on them and prove that they are po-Hv-
semigroups.

Proposition 5.9. Let H = {B̂1, B̂2, . . . , B̂s} be the set of genotypes in F2. Then
(H,×) is not quasi-ordering.

Proof. Having B̂1

2
= B̂1, B̂s

2
= B̂s and B̂1 × B̂s = B̂r implies that B̂1 × B̂s ̸=

B̂1

2
∪ B̂s

2
.

Theorem 5.10. Let H = {B̂1, B̂2, . . . , B̂s} be the set of genotypes in F2 and
define the relation “≤" on H as follows:

x ≤ y ⇐⇒ x ∈ y2 for all x, y ∈ H.

Then ≤ is a poset on H satisfying the monotone property.

Proof. Let B̂k, B̂l be the genotypes x1x
′
1x2x

′
2 . . . xnx

′
n, y1y

′
1y2y

′
2 . . . yny

′
n respec-

tively, where {xi, x
′
i, yi, y

′
i} ⊆ {Ai, Bi} for all i = 1, . . . , n.

We have that B̂k

2
is the set of genotypes z1z

′
1z2z

′
2 . . . znz

′
n where {zi, z′i} ⊆

{xi, x
′
i}. It is clear that B̂k ∈ B̂k

2
. Thus, B̂k ≤ B̂k.

Let B̂k ≤ B̂l and B̂l ≤ B̂k. Then B̂k ∈ B̂l

2
and B̂l ∈ B̂k

2
. Since each pair

of xi and x′
i, yi and y′i are independent alleles for all i = 1, . . . , n, we can con-

sider just the ith position. The latter implies that xix
′
i ∈ {yiyi, yiy′i, y′iy′i} and

yiy
′
i ∈ {xixi, xix

′
i, x

′
ix

′
i}. We get the following cases for the alleles of the ith posi-

tion:
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• Case xi = x′
i = yi. We get yiy

′
i ∈ {xix

′
i} = {yiyi}. Thus, xix

′
i = yiy

′
i,

• Case xi = yi and x′
i = y′i. It is clear that xix

′
i = yiy

′
i,

• Case xi = x′
i = y′i. We get yiy

′
i ∈ {y′iy′i}. Thus, yi = y′i = xi = x′

i.

To prove transitivity, let B̂m = u1u
′
1u2u

′
2 . . . unu

′
n ∈ H such that B̂k ≤ B̂l and

B̂l ≤ B̂m. Using the same argument as before, we get that xix
′
i ∈ {yiyi, yiy′i, y′iy′i}

and yiy
′
i ∈ {uiui, uiu

′
i, u

′
iu

′
i}. We consider the following cases for yiy

′
i:

• Case yiy
′
i = uiui. Then yi = y′i = ui and thus, xix

′
i ∈ {uiui}.

• Case yiy′i = uiu
′
i. Then yi = ui and y′iu

′
i. Thus, xix

′
i ∈ yiy

′
i ∈ {uiui, uiu

′
i, u

′
iu

′
i}

xix
′
i ∈ {uiui}.

• Case yiy
′
i = u′

iu
′
i. Then yi = y′i = u′

i and thus, xix
′
i ∈ {ui′ui′}.

We get now that ≤ is transitive. Therefore, ≤ is a poset.
We need to show that ≤ satisfies the monotone property. Suppose that α =

s1s
′
1s2s

′
2 . . . sns

′
n ∈ H, B̂k ≤ B̂l and β = m1m

′
1m2m

′
2 . . .mnm

′
n ∈ α× B̂k. Having

β ∈ α× B̂k implies that mim
′
i ∈ {sixi, six

′
i, xis

′
i, s

′
ix

′
i}. We get the following cases

for the alleles of the ith position of β: mim
′
i = sixi, mim

′
i = six

′
i, mim

′
i = xis

′
i

and mim
′
i = x′

is
′
i. We prove the case mim

′
i = sixi and the others are done in a

similar manner.
We have that the alleles of the i-th position in α× B̂l are {siyi, s′iyi, siy′i, s′iy′i}

and that of (α× B̂l)
2 = {γ2; γ ∈ α× B̂l} are

{yiyi, sisi, yiy′i, y′iy′i, siyi, siy′i, sis′i, s′iyi, s′iy′i, s′is′i}.

Since B̂k ∈ B̂l

2
, it follows that xix

′
i ∈ {yiyi, yiy′i, y′iy′i} and thus, mim

′
i ∈ {siyi, siy′i}.

Therefore, α× B̂k ≤ α× B̂l.

Corollary 5.11. Let H = {B̂1, B̂2, . . . , B̂s} be the set of genotypes in F2. Then
(H,×,≤) is a po-Hv-semigroup.

Proof. The proof results from Theorems 2.11 and 5.10.

Remark 4. A po-Hv-semigroup needs not to be a quasi ordering Hv-semigroup.
This is illustrated by Proposition 5.9 and Corollary 5.11.

Proposition 5.12. Let H = {B̂1, B̂2, . . . , B̂s}. Then the following properties
hold:

1. (B̂r] = H,

2. (B̂1] = B̂1 and (B̂s] = B̂s,

3. < B̂i >= H for all i = 1, . . . , s.
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Proof. Since B̂r

2
= H, B̂1

2
= B̂1 and B̂s

2
= B̂s, it follows that (B̂r] = {t ∈ H :

t ≤ B̂r} = {t ∈ H : t ∈ B̂r

2
} = H, (B̂1] = B̂1 and (B̂s] = B̂s.

Since B̂r ∈ B̂r ⊗ B̂i, it follows that

< B̂i >= (B̂i] ∪ (H ⊗ B̂i] = H.

The authors in [4] presented the results for the cross that differs in m+n traits
with m.n ≥ 1 (The case of combination of incomplete and simpledominance); a
homozygous parent (B1B1 . . . BnBnA1A1 . . . AmAm) ⊗ a homozygous parent (B1

B1 . . . Bn Bna1a1 . . . amam). where s = 2m3n is the number of different pheno-
types and yi = Ai or ai for i = 1, . . . ,m,

Proposition 5.13. Let H = {Â1, Â2, . . . , Âs} and s = 2m3n. Then (H,⊗) is not
quasi-ordering.

Proof. Having
Âs

2
= Âs, Âr

2
= Âr and Âk⊗Âr = Âs (of genotype B1B1 . . . BnBna1a1 . . . amam)

implies that Âk × Âr ̸= Âk

2
∪ Âr

2
.

Theorem 5.14. Let H = {Â1, Â2, . . . , Âs} and define a relation ≤ on H as
follows:

x ≤ y ⇐⇒ x ∈ y2 for all x, y ∈ H.

Then ≤ is a poset on H satisfying the monotone property.

Proof. The proof is similar to that of Theorem 5.10.

Corollary 5.15. Let H = {Â1, Â2, . . . , Âs}. Then (H,⊗,≤) is a po-Hv-semigroup.

Proof. The proof is a result of Theorems 2.11 and 5.14.

6. Conclusion

This manuscript discusses quasi-ordering hypergroups by studying its proper-
ties and determining its fundamental group and complete parts. Also, it improved
the authors’ work in [4, 5] by studying the ordered hypercompositional structures
of both phenotypes and genotypes of F2-offspring.
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