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Abstract

Using a filter technique, a new efficient nonmonotone trust region method
is proposed. The proposed scheme is based on updating the approximation
of the Hessian matrix with the scaled memoryless BFGS update formula.
To update the trust region radius, an appropriate adaptive scheme is used.
Moreover, a proper nonmonotone procedure is applied. Assuming some suit-
able assumptions, the global convergence is obtained. Numerical results are
reported to show the efficiency of the offered approach.
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1. Introduction
In this paper, we deal with the following optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is a twice continuously differentiable function. Two efficient
classes methods for solving such unconstrained optimization problems are trust
region and line search approaches. There has been a surge of articles on trust
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region methods over the past four decades. The reader can refer to [7, 22] for
a review on trust region methods. At the kth iteration of standard trust region
method, the trial step dk, is the solution of the following subproblem:

min qk(d) = fk + gTk d+
1

2
dTBkd

s.t.∥d∥ ≤ ∆k, (2)

where fk = f(xk), gk = ∇f(xk), Bk = B(xk) is a n×n symmetric matrix which is
the exact Hessian, i.e. ∇2f(xk), or its approximation, ∆k is a positive parameter
that is called trust region radius, and ∥.∥ denotes the Euclidean norm.

Given a trial step dk, we can evaluate the consistency of the model and the
original function by the trust region ratio:

ρk =
f(xk)− f(xk + dk)

qk(0)− qk(dk)
.

Then, we can decide that at the kth iteration, the trial step is accepted or rejected.
If ρk ≥ µ, the new point xk+1 = xk + dk is introduced and the trust region radius
is expanded. Conversely, if ρk < µ, the kth iteration is called unsuccessful and the
trial step is rejected.

Two crucial factors in the efficieny of the algorithm are selecting the initial
radius and the procedure of updating the trust region radius in each iteration
[27]. The large amount of trust region radius may causes increas in the number of
subproblems that should be solved. On the other hand, small trust region radius
increases the number of iterations. So, it is important to manage the updating
strategies of the radii properly.

So, many researchers studied these issues [9, 27, 28, 29, 32]. Sartnear [27]
proposed a procedure to determine an initial radius. Gould et al. [13] suggested
the practical scheme by choosing appropriate parameters for updating the trust
region radius. The adaptive trust region methods have interesting results, such as
Zhang et al. in [32] that proposed ∆k = cp∥gk∥∥B̂−1

k ∥, where c ∈ (0, 1), 0 < p ∈ Z

and B̂k = Bk + iI is a positive definite matrix for some i ∈ N. Unfortunatly,
becuase of calculating the inverse matrix B̂−1

k at each iteration, this method cannot
be applied on large scaled optimization problems. Therefore, Shi and Gou in [28]
defined:

∆k = −cp
gTk qk

qTk B̃kqk
∥qk∥,

where qk satisfies − gT
k qk

∥gk∥∥qk∥ ≥ τ , τ ∈ (0, 1), and c, p is defined from above. and
B̃k = Bk + iI where i is the smallest nonnegative integer such that qTk B̃kqk > 0.
Recently, Kamandi et al. [17] introduced another adaptive rule. Their proposed
scheme used the information of the model based on the current and previous
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iterations. So, the trust region radius is automatically adjusted such as follows:

qk =

{
−gk, if k = 0 or

−(gT
k dk−1)

∥gk∥∥dk−1∥ ≤ τ ;
dk−1, Otherwise,

and

sk =

 − gT
k qk

qTk Bkqk
∥qk∥, if k = 0;

max{− gT
k qk

qTk Bkqk
∥qk∥, λ∆k−1}, if k ≥ 1,

where, λ > 1, Bk is updated by a modified BFGS method,

∆k := cpk min{sk, ∆̄}, c ∈ (0, 1),

and ∆̄ is a real-valued nonnegative constant. Also, pk is the smallest nonnegative
integer for which ρk ≥ µ, where µ ∈ (0, 1).

Later, since this method suffers from some disadvantages, Kamandi and Amini
[18] offered another trust region scheme in such a way that the radius of trust region
in the rejected steps is regulated using a radius dependent shrinkage parameter.
As we know, often nonmonotone trust region algorithms have better convergence
behavior in comparison with the monotone case. So, in order to achieve good
computational experiments, the nonmonotone strategies have been proposed in
the structure of the trust region method [15, 19]. At first, Chamberlain et al.
suggested the watch-dog approach [6]. Then, Grippo et al. in [15] introduced a
nonmonotone line search method for Newton’s method. Grippo’s method suffers
from some disadvantages [1, 31]. Hence, Ahookhosh and Amini in [1] suggested
an efficient nonmonotone term as follows:

Rk = ϵkfℓ(k) + (1− ϵk)fk, (3)

where fk = f(xk), ϵk ∈ [ϵmin, ϵmax] ⊂ [0, 1] and fℓ(k) is the Grippo’s nonmonotone
term which is defined by

fℓ(k) = max
0≤j≤A(k)

fk−j , (4)

where A(0) = 0 and, for k ≥ 1, A(k) = min{k,A}, for given A > 0. Tarzanagh
et al., [4] provided a new variant of nonmonotone parameter as (1 + ωk)Rk where
Rk is defined by (3) and ωk is defined as the following positive sequence:

ωk =

{
ηk, if Rk > 0,
0, if Rk ≤ 0,

and it holds
∞∑
k=1

ωk ≤ ω < ∞, (5)
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In line search methods, at kth iteration, the new point is achieved by:

xk+1 = xk + αkdk,

where, dk and αk > 0 are a (descent) direction and the step length, respectively.
One of the most practical step length is proposed by Barzilai and Borwein [5].
Suppose that gk = ∇f(xk). Also, consider sk−1 = xk−xk−1 and yk−1 = gk−gk−1.
The new point in Barzilai-Borwein relation is computed by xk+1 = xk − Ukgk in
which,

Uk = αkI, (6)
In order to satisfy the quasi Newton property by Uk, we compute αk as the solu-
tion of min ∥sk−1−Ukyk−1∥2 and also by symmetry, we can solve min ∥U−1

k sk−1−
yk−1∥2 to compute αk. So, the step size αk is achieved from a two point approxi-
mation to the secant equation as the following relations:

αBB1
k =

sTk−1yk−1

yTk−1yk−1
, αBB2

k =
sTk−1sk−1

sTk−1yk−1
. (7)

For the first time, Filter technique has been proposed by Fletcher and Leyffer
[12] based on multi objective optimization. In this manner, the points in the
filter set is accepted when it is not dominated by any of the points inside the filter.
When a point is accepted, all of the points dominated by the new point are deleted
from the filter. Fatemi and Madavi-Amiri [10] introduced a filter that can control
the size of the filter with special acceptance condition. Arzani and Peyghami
[3] employed the finite filter in Barzilai-Borwein gradient method to suggest a
modiyed version of Barzilai-Borwein algorithm using a relaxed nonmonotone line
search techniques.

In this paper, we introduce an effective adaptive nonmonotone trust region
method with a filter technique to solve the unconstrained optimization problems.
Our approach uses a scaled memoryless BFGS relation for updating the approxi-
mation of the Hessian matrix at each iteration. We also develop a modified version
of the adaptive rule in [26] for the proposed algorithm. The global convergence
property is established under some mild assumptions. The new method is ap-
plied on some test problems and the results show the efficiency of the proposed
approach.

The remainder of this paper is as follows: in Section 2, we introduce the struc-
ture of the new nonmonotone adaptive trust region method. Section 3 is discusses
the convergence property, as well as the rate of convergence of the new algorithm.
Finally, we apply the new algorithm on some test problems and we compare the
results in Section 4.

2. The New Algorithm
In this section, we introduce the new method. This algorithm is divided in two
parts, the inner and the outer loops. In the inner loop, using the trust region
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method, we want to find the trial step dk. We then apply an efficient strategy
for updating the matrix Bk to propose an improved trust region method in the
outer loop. As we know, the BFGS formula is more efficient than some other
quasi Newton approaches. But in the case of nonconvex functions, BFGS method
cannot guarantee that the Hessian matrix Bk holds the positive definite condition.
In order to solve this difficulty, scaled memoryless BFGS update formula was
proposed as follows [2]

Bk+1 = θkI − θk
dkd

T
k

dTk dk
+

yky
T
k

dTk yk
,

yk = gk+1 − gk, θk =
dTk yk
∥dk∥2

.

The numerical experiments show that the algorithm proposed by [2] is not
efficient. This is because in Formula (8) if dTk yk > 0, then Bk+1, is a positive
defenite matrix; otherwise, we set Bk+1 = Bk. Overcoming this problem, Li and
Fukushima [20] suggested a modified version of BFGS formula

Bk+1 = Bk − Bkdkd
T
kBk

dTk dk
+

y∗k(y
∗
k)

T

dTk y
∗
k

, (8)

y∗k = yk + ∥gk∥
(
1− dTk yk

∥dk∥2

)
dk.

Based on this discussion, Xue et al., [30] proposed the following relation to update
the Bk+1 matrix:

Bk+1 =


θkI − θk

dkd
T
k

dT
k
dk

+
yky

T
k

dT
k
yk

, if dTk yk > 0;

Bk − BkdkdTk Bk

dT
k
dk

+
y∗
k(y∗

k)T

dT
k
y∗
k

, Otherwise.
(9)

We here introduce the inner loop of our algorithm to achieve the set of points in
each iteration. The nonmonotone ratio is calculated by [4]:

ρk =
(1 + ωk)Rk − f(xk + dk)

Predk
, (10)

where Rk is defined by (3) and Predk = qk(0) − qk(dk). The trial step dk is
accepted whenever ρk ≥ µ where µ ∈ (0, 1). The radius is updated by:

∆k = min

{
ϖk

∥gk∥
∥Bk∥

,∆max

}
,

where ∆max > 0 is a threshold value for the radii and ϖk+1 is updated by:

ϖk+1 =

 σ0ϖk, ρk < µ1,
ϖk, µ1 ≤ ρk ≤ µ2,
min{σ1ϖk, ϖmax}, ρk > µ2,

(11)



50 Z. Saeidian and F. Arzani

where 0 < σ0 < 1 < σ1, 0 < µ1 < µ2 ≤ 1 and ϖmax > 0 are given numbers. The
new point is defined by xk+1 = xk + dk if ρk ≥ µ; otherwise, we set xk+1 = xk.
The inner loop algorithm is given as bellow:

The Inner Loop Algorithm.

Input x0 ∈ Rn, 0 < µ < µ1 < µ2 ≤ 1, 0 < σ0 < 1 < σ1, 0 < ϵmin < ϵmax < 1,
π,A,ϖmax,∆max > 0, 0 < β and 0 < υ.

Step 0 Set k = 0, B0 := B(x0) = 1, g0 = g(x0), ϖ0 = 1 and
∆0 = min

{
ϖ0

∥g0∥
∥B0∥ ,∆max

}
.

Step 1 If ∥gk∥ ≤ π, then Stop.

Step 2 Solve (approximately) the subproblem (2) to determine the trial step dk
and compute ρk using (10).

Step 3 If ρk < µ, then set ∆k = σ0∆k and go to Step 2.

Step 4 Set xk+1 = xk + dk.

Step 5 Calculate Bk+1 from (9).
If ∥Bk+1∥ ≤ β, or ∥Bk+1∥ ≥ 1

β , then set ∥Bk+1∥ = υ.

Step 6 Update ϖk+1 from (11) and set ∆k+1 = min
{
ϖk+1

∥gk+1∥
∥Bk+1∥ ,∆max

}
. Set

k =: k + 1 and go to Step 1.

We assume that the search direction dk is satisfied in the conditions proposed
by [16] at kth iteration of the outer loop algorithm. That is, there exist c1 and c2,
such that for all k we have:

∥dk∥ ≤ c1 ∥gk∥ , −dTk gk
∥gk∥

≥ c2 ∥gk∥ . (12)

It is worth mentioning that the relations (12) hold for the Barzilai-Borwein di-
rection (6) and dk = −gk. For given N , tentative points yik, i = 0, . . . , N are
computed as bellow: 

y0k = xk,
p0k = dk,

yi+1
k = yik + pik, i = 1, . . . ,m,
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where m ≤ N and pik is obtained from the following relation:

pik = − 1

αk
∇f(yik), i = 1, 2, . . . ,m,

in which, considering sk = yik − yi−1
k and yk = ∇f(yik)−∇f(yi−1

k ), αk is achieved
from (7). At first, the obtained points are considered. If these points do not justify
the filter condition, then we check the nonmonotone method. When the point yik
is accepted by the filter condition, we set xk+1 = yik and we add this point to
the filter. Also, if the nonmonotone condition is satisfied we consider xk+1 = yik.
This procedure is continued at most N times. Otherwise, when none of the above
conditions are established, we execute a nonmonotone line search in the direction
of dk, and the new point is xk+1 = xk + λkdk.

The Adaptive Nonmonotone Trust Region with Filter Technique (Orig-
inal Algorithm).

Step 0 Given x0 ∈ Rn, fsup > 0 and the integer number N ≥ 1 and A ≥ 0,
σ > 0, ρ1 > 0, ρ2 > 0, ϵ > 0, 0 < θ1 < θ2, δ > 0 and 0 ≤ τ1 < τ2 < 1√

n
. Set

F0 = ∅, i = 0 and k = 0.

Step 1 If ∥gk∥ ≤ ϵ then stop.

Step 2 If i ≤ N , then compute the point yik, using the inner loop algorithm.
Otherwise, go to Step 4.

Step 3 If yik is accepted by filter and f(yik) ≤ fsup, then set xk+1 = yik and add
yik to the filter Fk. Update the filter by Fk+1 and set k = k + 1 and go to
Step 1.
Else if

f(yik) ≤ (1 + ωk)Rk − max
1≤h≤i

{σ
∥∥yhk − xk

∥∥}, (13)

then set xk+1 = yik, Fk+1 = Fk and k = k + 1 and go to Step 1.
Otherwise, set i = i+ 1 and go to Step 2.

Step 4 Imply the line search method in the direction of dk and compute the step
size λk. Set xk+1 = xk + λkdk, k = k + 1 and go to Step 1.

Remark 1. It is worth to mention that ϵ > π > 0. Also, in the algorithm we use
the nonmonotone line search scheme.
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3. Convergence Analysis

First of all, we divide the set of iterations into two sets C and Ć as follows:

C = {k|xk ∈ Fk}.

The set Ć is the set of iterations that satisfy the relation (13) or are achieved from
Step 4 of the original algorithm. It is clear that C ∩ Ć = ∅.

Also, the following assumptions are necessary to be considered:

A1 The objective function f(x) is a continuously differentiable function on Rn.

A2 The level set L̂ = {x ∈ Rn|f(x) ≤ eωf(x0)} is a closed bounded set, in which
ω, satisfiies (5).

A3 The generated sequence {xk} by the proposed algorithm, remains in a closed
bounded set Ω ⊂ Rn.

In order to analyze the global convergence property, we should intend the
behavior of the generated points {xk} and the sequence {yik} produced by the
inner loop procedure. If the original Algorithm stops at a finite iteration such as
k0, then we get the stationary point. Otherwise, the infinite sequence of points are
produced by the algorithm. So, for the cardinality of C and Ć, we have |C| = ∞
or

∣∣∣Ć∣∣∣ = ∞.
In the following lemma, what happens to the convergence after adding many

iterates to the filter infinitely.

Lemma 2.1. Let assumptions A1−A3 hold and |C| = ∞. Then, [3, 25]

lim
k∈C

∥gk+1∥ = 0.

Proof. [11, Lemma 5.4].

Lemma 2.2. If |Ć| = ∞, then for the infinite sequence {xk}k∈Ć there exists a
limit point that

lim
k→∞

inf ∥gk∥ = 0.

Proof. In order to prove this lemma, we should consider some other notes that is
similar to [3].

Theorem 2.3. Let assumptions A1, A2 and A3. Then, the original algorithm
either stops at a stationary point of (1) or for the sequence {xk}k∈Ć1

, we have
[1, 3]:

lim inf
k−→∞

∥gk∥ = 0.
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Proof. By contradiction, assume that the original algorithm does not stop at a
stationary point. Assume that the sequence {xk}k∈Ć1

, achieved from the original
algorithm, considering the following items [3],

1 {xk} ⊆ L0.

2 If {xk}k∈Ć1
is an infinite sequence, then for a given A > 0(integer), Ć1 can be

written as below:

Ć1 = {LA+ b | L ∈ N
∪

{0}, 0 ≤ b ≤ A− 1}.

3 For some σ > 0, we have

fk+1 ≤ |f0|
k∏

i=0

(1 + ωi)− max
1≤h≤ik

{σ
∥∥yhk − xk

∥∥},
such that ik > 0 is the largest integer number such that xk+1 = yikk .

4 Consider A from (4). Then

∀k ∈ Ć1, ∃L > 0 & 0 ≤ b ≤ A− 1 : k = LA+ b,

and

fk+1 = fLA+b+1 ≤ |f0|
∏LA+b

i=0 (1 + ωi)

−
∑L

i=0 min
iA≤j≤(i+1)A−1

max
1≤h≤ik

{σ
∥∥yhk − xk

∥∥}, L = 0, 1, 2, . . . .

The above items are discussed in detail in [3]. For every k = LA + b ∈ Ć1, we
have:

L∑
i=0

min
iA≤j≤(i+1)A−1

max
1≤h≤ik

{σ
∥∥yhk − xk

∥∥}
≤ |f0|

LA+b−1∏
i=0

(1 + ωi)− fLA+b

≤ eη|f0| − fLA+b.

To summarize, we set

ω̃i = min
iA≤j≤(i+1)A−1

max
1≤h≤ik

{σ
∥∥yhk − xk

∥∥}.
Then, from assumptions A1 and A2 we have:

lim
L−→∞

L∑
i=0

ω̃i < ∞

=⇒ lim
i−→∞

ω̃i = 0.
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Based on the description of ω̃i,

∃0 ≤ b̃ ≤ A− 1 : ω̃i = ωiA+b̃.

Suppose that βi = iA+ b̃, then

lim
i−→∞

ωβi = 0.

From the definition of ωi, we have:

0 ≤ σ
∥∥yhβi

− xβi

∥∥ ≤ ωβi , ∀0 ≤ h ≤ iβi .

So, as i −→ ∞, ωβi −→ 0 can be concluded that∥∥yhβi
− xβi

∥∥ −→ 0, ∀0 ≤ h ≤ iβi ,

in which σ > 0 is a constant. Specially, if h = 1 we have ∥dβi∥ =
∥∥∥y1βi

− xβi

∥∥∥ −→ 0.
Since dβi fulfills (12), ∥dβi∥ −→ 0 results in

lim
i−→∞

∥ gβi ∥= 0.

It implies that {xβi}βi∈Ć1
of {xk}k∈Ć1

converges to a stationary point of f . Thus,

lim inf
k→∞,k∈Ć1

∥∇f(xk)∥ = 0.

Considering the above disscutions, one can achieve the following theorem:

Theorem 2.4. Let assumptions A1, A2 and A3. Then, the original algorithm
either stops at a stationary point of (1) or

lim inf
k−→∞

∥gk∥ = 0.

4. Numerical Experiments

Now, we compare the performance profile of the new algorithm, FTRB algorithm,
with the other algorithms as bellow:

AINART Algorithm 1.1 in [30].

TRFBB Algorithm 2.1 in [24].

FATRA Algorithm 3.1 in [25].
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MATLAB software has been used for implementation of all the considered
algorithms (MATLAB v9.9.0 R2020b environment on a PC with CPU Intel core
i5 8500, 3.00 GHz and 16GB RAM memory and double precision format). The test
problems are those selected from CUTEr collection [14]. The following parameters
are considered in considered algorithms:

µ = 0.1, µ1 = 0.25, µ2 = 0.75, ϵmin = 10−6, ϵmax = 10+6.

For all the considered algorithms, stop condition is ∥gk∥ ≤ 10−6. The algorithm
is failed when the number of iterations passes 10000 and the number of function
evaluations exceed 50000. In Table 1, we named the test problems and their
dimensions. It is worth to mention that, we applied the benefit of Dolan and

Table 1. Test problems and dimensions [14].

Problem n Problem n
BDQRTIC 1000 BDQRTIC 5000
CRAGGLVY 1000 CRAGGLVY 5000
FMINSURF 1024 FREUROTH 1000
FREUROTH 5000 LIARWHD 1000
LIARWHD 5000 MOREBV 1000
MOREBV 5000 MOREBV 5000
NCB20 1000 NCB20B 1000
NCB20B 2000 NONCVXUN 1000
NONDIA 1000 NONDQUAR 1000
POWELLSG 1000 POWELLSG 5000
POWELLSG 10000 POWER 1000
DIXMAANA 3000 DIXMAANB 3000
DIXMAANC 3000 DIXMAAND 3000
DIXMAANE 3000 DIXMAANF 3000
DIXMAANG 3000 DIXMAANH 3000
DIXMAANI 3000 DIXMAANJ 3000
DIXMAANK 3000 DIXMAANL 3000
ARWHEAD 5000 BRYBND 5000
BRYBND 10000 DQRTIC 1000
DQRTIC 5000 EDENSCH 2000
ENGVAL1 5000

Moré’s perfomance profile [8].
From Figure 1, we found that almost 89% of the test problems is solved success-

fully by the FTRB algorithm, but AINART, TRFBB and FATRA algorithms solve
roughly 85%, 83% and 86% of problems, respectively. Also, the FTRB algorithm
solves about 61% of problems at the lowest value of ni that shows the efficiency
of this algorithm compared to the other one. At a glance to Figure 2, one can
realize that between the FTRB, AINART, TRFBB and FATRA algorithms, the
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FTRB algorithm could solve roughly 57% of the test problems in the lowest value
of nf . Additionally, the results in Figure 3 show that about 67% of the problems
in the minimum value of ng is solved by FTRB algorithm, while this number for
AINART, TRFBB and FATRA algorithms are 66%, 56% and 53%, respectively.

Figure 1: Performance of considered algorithms based on nf .

Figure 2: Performance of considered algorithms based on ni.
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Figure 3: Performance of considered algorithms based on ng.
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