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Hyperbolic Ricci-Bourguignon-Harmonic Flow

Shahroud Azami ⋆

Abstract

In this paper, we consider hyperbolic Ricci-Bourguignon flow on a com-
pact Riemannian manifold M coupled with the harmonic map flow between
M and a fixed manifold N . At the first, we prove the unique short-time
existence to solution of this system. Then, we find the second variational of
some geometric structure of M along this system such as, curvature tensors.
In addition, for emphasize the importance of hyperbolic Ricci-Bourguignon
flow, we give some examples of this flow on Riemannian manifolds.
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1. Introduction

Let (Mm, g) be a smooth compact Riemannian manifold. Geometric flows on
M are evolution of a geometric structures under differential equations with some
functionals on M . Geometric flows play important role in mathematics, because
in differential geometry by some geometric flows we can obtain canonical metrics
on Riemannian manifolds. A fundamental study of geometric flows began when
Hamilton [8] introduced the Ricci flow on compact m-dimensional Riemannain
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manifold (M, g0) as follows

∂

∂t
g = −2Ric, g(0) = g0, (1)

and normalized Ricci flow as follows

∂

∂t
g = −2Ric+

2r

m
g, g(0) = g0.

Here Ric is the Ricci curvature tensor of g(t), r =
∫
M

Rdµ∫
M

dµ
, R denotes the scalar

curvature of g(t) and dµ denotes the volume form of g(t). The short-time existence
and uniqueness for solution of (1) was first shown by R. S. Hamilton (see [8]), using
the Nash-Moser theorem and harmonic maps and then by D. DeTurck (see [6]) on
a compact Riemannian manifold. The Ricci flow played a techniqual role in the
study of topology and geometry of a manifold, for instance the Ricci flow is used
in the proof of the Poincaré conjecture [13] and the sphere theorem [3]. Also, the
harmonic map between Riemannian manifolds introduced for first time by Eells
and Sampson [7].

A generalization of the Ricci flow is as follows

∂

∂t
g = −2Ric+ 2ρRg = −2(Ric− ρRg), g(0) = g0, (2)

for some real constant ρ where R denotes the scalar curvature. This flow is called
Ricci-Bourguignon flow. Catino et’al [4] shown that if ρ < 1

2(m−1) then the flow
(2) has a unique short-time solution.

Another, generalization of the Ricci flow is the harmonic-Ricci flow, is defined
as follows {

∂
∂tg(t) = −2Ric+ 2η(t)∇ϕ⊗∇ϕ, g(0) = g0,
∂
∂tϕ = τgϕ, ϕ(0) = ϕ0,

where η(t) > 0 only dependent to t and m, ϕ(t) : (M, g(t)) → (N,h) is a smooth
maps from (M, g(t)) to a target compact Riemannian manifold (N,h), and τgϕ is
the tension field of the map ϕ given by the evolving metric g(t). The harmonic-
Ricci flow studied by Müller [11] and when (N,h) = (R, dr2), this flow become the
Bernhard List’s flow [10],{

∂
∂tg(t) = −2Ric+ 2η(t)∇ϕ⊗∇ϕ, g(0) = g0,
∂
∂tϕ = ∆gϕ, ϕ(0) = ϕ0.

Then author [1], extended harmonic-Ricci flow as follows{
∂
∂tg(t) = −2Ric+ 2ρRg + 2η∇ϕ⊗∇ϕ, g(0) = g0,
∂
∂tϕ = τgϕ, ϕ(0) = ϕ0,
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and provn that if ρ < 1
2(m−1) then this flow has a unique short-time solution for

a positive time interval on any smooth compact Riemannian manifold (Mm, g0)
with intial condition (g0, ϕ0).

The geometric flows which introduced in above, were of the first variation
of metric and similar to heat equation. Now, we introduce some of geometric
flows which are family of the second order nonlinear partial differential equations
analogous to wave equation flow metrics. Hyperbolic geometric flow is similar to
Einstein equation

∂2

∂t2
gij = −2Rij −

1

2
gpq

∂gij
∂t

∂gpq
∂t

+ gpq
∂gip
∂t

∂gjq
∂t

,

and is defined as
∂2

∂t2
g = −2Ric, g(0) = g0,

∂g

∂t
(0) = k0, (3)

where k0 is a symmetric tensor on M . The unique short-time existences of (3)
investigated in [5] on compact Riemannian manifold. Author [2] extended hyper-
bolic geometric flow to harmonic-hyperbolic geometric flow which is defined as
follows {

∂2g
∂t2 = −2Ric+ 2η∇ϕ⊗∇ϕ, g(0) = g0(x),

∂g
∂t (0) = k0,

∂
∂tϕ = τgϕ, ϕ(0) = ϕ0,

(4)

and shown that system (4) has a unique short-time solution and funded evolution
equations of curvature tensors of manifold under flow (4).

In present paper, we introduce a generalized of the harmonic-hyperbolic geo-
metric flow on smooth compact Riemannian manifold (Mm, g0) which we call it
HRBH flow and we investigate the short-time existence and uniqueness for solution
to the HRBH flow. We obtain the evolution equation of some geometric structures
of M under the HRBH flow. Finally, we present some examples of the HRBH flow.

2. Preliminaries
Assume that (Mm, g) and (Nn, h) are smooth closed Riemannian manifolds. By
Nash’s embedding theorem [12], let N be isometrically embedded into Euclidean
space by eN : (Nn, γ) ↪→ Rd for d large enough. As in [11], we identify map
ϕ :M → N with the map eN◦ϕ :M ↪→ Rd, then we can write ϕ = (ϕλ), 1 ≤ λ ≤ d.
We often delete the summation indices for ϕ when there is no ambiguity and we
denote the tension field of the map ϕ by τgϕ = ∇p∇pϕ for the covariant derivative
∇ on T ∗M ⊗ ϕ∗TN .

Let Mm be a soomth compact Riemannian manifold. In present work, we
assume that the metric of M evolves as{

∂2g
∂t2 = −2Ric+ 2ρRg + 2η∇ϕ⊗∇ϕ, g(0) = g0(x),

∂g
∂t (0) = k0,

∂
∂tϕ = τgϕ, ϕ(0) = ϕ0,

(5)
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where Ric denotes the Ricci curvature tensor of M , ρ denotes a real constant, R
denotes the scalar curvature, η denotes a positive coupling constant, k0 denotes
a symmetric tensor on M , and ϕ : M → N is a map beteween of M and a fixed
compact Riemannian manifold N . The flow (5) reduce to the hyperbolic geometric
flow when ρ = η = 0 and it reduce to the harmonic-hyperbolic geometric flow when
ρ = 0. We say that this flow is hyperbolic Ricci-Bourguignon-harmonic flow or
shortly the HRBH flow.

3. Existence and Uniqueness for the HRBH Flow

In the following, similar to process of reviewing the existence and uniqueness of geo-
metric flows such as Ricci-Bourguignon flow, hyperbolic geometric flow, harmonic-
Ricci flow, we prove the existence and uniqueness for the solution to th HRBH
flow in short time on a compact Riemannian manifold (Mm, g0).

Theorem 3.1. Let (Mm, g0) and (Nn, h) be two compact Riemannian manifolds,
k0 be a symmetric tensor on M and ρ < 1

2(m−1) . Then there is a constant T > 0

such that the HRBH flow (5) has a unique smooth solution (g(t), ϕ(t)) on [0, T ).

Proof. The HRBH flow is a family of nonlinear weakly hyperbolic second order
partial differential equations. Therefore our method of proof will be applying the
gauge fixing idea and the push-forward of a solution of (5) we can obtain a family of
nonlinear strictly-hyperbolic second order partial differential equations and then
the short-time existence and uniqueness for solution on a compact Riemannain
manifold, implies that the existence and uniqueness forthe solution of this system
and in finally the pull-back of this solution complete the proof of theorem. For
this end, suppose that (g(t), ϕ(t))t∈[0,T ) is a solution to the HRBH flow with initial
condition (g(0), ϕ(0)) = (g0, ϕ0),

∂gij
∂t (0) = kij(0). Let ψt : (M, ĝ(t)) → (M, g0) be

solution of ∂
∂tψ = τgψ, with ψ(0) = idM . Let

ĝij(t) = ψ∗gij , ϕ̂(t) = ψ∗ϕ(t),

be the push-forward of gij and ϕ respectively. We now begin by calculating the
evolution of (ĝij(t), ϕ̂(t)). We suppose in local coordinate ψt is given by y(x, t) =
ψt(x) = (y1(x, t), . . . , yn(x, t)). Then we have

ĝij(x, t) =
∂yα

∂xi
∂yβ

∂xj
gαβ(y, t), (6)
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therefore, we arrive at the following:

∂2ĝij
∂t2

(x, t) =
∂yα

∂xi
∂yβ

∂xj
d2gαβ
dt2

(y(x, t), t) +
∂

∂xi
(
∂2yα

∂t2
)
∂yβ

∂xj
gαβ

+
∂

∂xj
(
∂2yβ

∂t2
)
∂yα

∂xi
gαβ + 2

∂

∂xi
(
∂yα

∂t
)
∂yβ

∂xj
dgαβ
dt

+ 2
∂

∂xi
(
∂yα

∂t
)
∂

∂xj
(
∂yβ

∂t
)gαβ + 2

∂

∂xj
(
∂yβ

∂t
)
∂yα

∂xi
dgαβ
dt

.

Also,

dgαβ
dt

(y(x, t), t) =
∂gαβ
∂t

+
∂gαβ
∂yγ

∂yγ

∂t
,

and

d2gαβ
dt2

(y(x, t), t) =
∂2gαβ
∂yγ∂yλ

∂yγ

∂t

∂yλ

∂t
+ 2

∂2gαβ
∂yγ∂t

∂yγ

∂t
+
∂2gαβ
∂t2

+
∂gαβ
∂yγ

∂2yγ

∂t2
.

Hence

∂2ĝij
∂t2

(x, t) =
∂2gαβ
∂t2

∂yα

∂xi
∂yβ

∂xj
+

∂2gαβ
∂yγ∂yλ

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂t

∂yλ

∂t

+ 2
∂2gαβ
∂yγ∂t

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂t
+

∂

∂xj
(gαβ

∂yβ

∂xi
∂2yα

∂t2
)

+
∂

∂xi
(gαβ

∂yβ

∂xj
∂2yα

∂t2
)

+

[
∂gαβ
∂yγ

∂yα

∂xi
∂yβ

∂xj
− ∂

∂xi
(gβγ

∂yβ

∂xj
)− ∂

∂xj
(gβγ

∂yβ

∂xi
)

]
∂2yγ

∂t2

+ 2
∂

∂xi
(
∂yα

∂t
)
∂yβ

∂xj
(
∂gαβ
∂t

+
∂gαβ
∂yγ

∂yγ

∂t
)

+ 2gαβ
∂

∂xi
(
∂yα

∂t
)
∂

∂xj
(
∂yβ

∂t
)

+ 2
∂yα

∂xi
∂

∂xj
(
∂yβ

∂t
)(
∂gαβ
∂t

+
∂gαβ
∂yγ

∂yγ

∂t
).

We consider a fixed point p ∈ M . Using the normal coordinates {xi} around p,
we get ∂gij

∂xk (p) = 0 and

∂gαβ
∂yγ

∂yα

∂xi
∂yβ

∂xj
− ∂

∂xi
(gβγ

∂yβ

∂xj
)− ∂

∂xj
(gβγ

∂yβ

∂xi
) = 0, ∀i, j, γ = 1, 2, . . . , n.
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Thus we get

∂2ĝij
∂t2

(x, t) =
∂2gαβ
∂t2

∂yα

∂xi
∂yβ

∂xj
+

∂2gαβ
∂yγ∂yλ

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂t

∂yλ

∂t

+ 2
∂2gαβ
∂yγ∂t

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂t
+

∂

∂xi
(gαβ

∂yβ

∂xj
∂2yα

∂t2
)

+
∂

∂xj
(gαβ

∂yβ

∂xi
∂2yα

∂t2
) + 2gαβ

∂

∂xi
(
∂yα

∂t
)
∂

∂xj
(
∂yβ

∂t
) (7)

+ 2
∂

∂xi
(
∂yα

∂t
)
∂yβ

∂xj
(
∂gαβ
∂t

+
∂gαβ
∂yγ

∂yγ

∂t
)

+ 2
∂yα

∂xi
∂

∂xj
(
∂yβ

∂t
)(
∂gαβ
∂t

+
∂gαβ
∂yγ

∂yγ

∂t
).

Now we assume that y(x, t) is a solution to the following problem{
∂2yα

∂t2 = ∂yα

∂xk g
il(Γ̂k

jl − Γ̊k
jl),

yα(x, 0) = xα, ∂
∂ty

α(x, 0) = yα1 (x).
(8)

We consider the vector field

Vi = gikg
jl(Γ̂k

jl − Γ̊k
jl),

here Γ̂k
jl and Γ̊k

jl are the Christoffel symboles of the metrics ĝij(t) and gij(0),
respectively, yα1 (x) ∈ C∞(M) for 1 ≤ α ≤ m. Since

∂2

∂t2
gij = −2Rij + 2ρRgij + 2η∇iϕ∇jϕ,

therefore plugging last equation into (7) we obtain the evolution equation for ĝij
as follows

∂2

∂t2
ĝij = −2R̂ij + 2ρR̂ĝij + 2η∇iϕ̂∇j ϕ̂+ ∇̂iVj + ∇̂jVi + F (Dy,DtDxy),

where

Dy = (
∂yα

∂t
,
∂yα

∂xi
), DtDxy = (

∂2yα

∂xi∂t
), α, i = 1, 2, . . . , n.

The relation

Γ̂k
jl =

∂yα

∂xj
∂yβ

∂xi
∂xk

∂yγ
Γγ
αβ +

∂xk

∂yα
∂2yα

∂xj∂xi
,

results that
∂2yα

∂t2
= gjl

( ∂2yα

∂xj∂xi
− Γ̊k

jl

∂yα

∂xj
+ Γγ

αβ

∂yβ

∂xj
∂yγ

∂xi
)
,
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and

∂2ĝij
∂t2

(x, t) = ĝkl
∂2ĝij
∂xk∂xl

(x, t)− 2ρĝij ĝ
pq ĝkl

∂2ĝkl
∂xp∂xq

(x, t)

+ 2ρĝij ĝ
pq ĝkl

∂2ĝql
∂xp∂xk

(x, t) + 2η∇iϕ̂∇j ϕ̂ (9)

+G(ĝ, Dxĝ) + F (Dy,DtDxy).

Here ĝ = (ĝij) and Dxĝ = (
∂ĝij
∂xk ) for i, j, k = 1, 2, . . . ,m. Now we show that the

system (9) is strictly hyperbolic partial differential equation. Upon doing this, we
consider only the highest order terms of (9), then we compute its principal symbol
and we show that is elliptic. Let the linear differential operator Lĝ defined as

Lĝ(hij) = ĝkl
∂2hij
∂xk∂xl

− 2ρĝij ĝ
pq ĝkl

∂2hkl
∂xp∂xq

+ 2ρĝij ĝ
pq ĝkl

∂2hql
∂xp∂xk

.

The principal symbol of differential operator Lĝ in direction ζ = (ζ1, . . . , ζn) is

σLĝ(ζ)hij = ĝklζkζlhij − 2ρĝij ĝ
pq ĝklζpζqhkl + 2ρĝij ĝ

pq ĝklζpζkhql, (10)

where in last equation we replace ∂
∂xi by the Fourier transform variable ζi. Since

the principal symbol is homogeneous, then we can always assume ζ has length 1
and we perform all the computing in an orthonormal basis {ei}ni=1 of TpM such
that ζ = g(e1, .) that is ζi = 0 for i ̸= 1, then{

ĝij = δij ,

ζ = (1, 0, . . . , 0).

Let O be zero matrix and A[n− 1] be the (n− 1)× (n− 1) matrix as

A[n− 1] =


1− 2ρ −2ρ · · · −2ρ
−2ρ 1− 2ρ · · · −2ρ

...
...

. . .
...

−2ρ −2ρ · · · 1− 2ρ

 .

Thus (10) becomes

σLĝ(ζ)hij = hij − 2ρδijδklhkl + 2ρδijh11,

which for any h ∈ Γ(S2M), in the coordinate system

(h11, h22, . . . , hnn, h12, . . . , h1n, h23, h24, . . . , hn−1,n)
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the operator σLĝ can be represented as

σLĝ =



1 −2ρ · · · −2ρ
... A[n− 1]
0

O O

O I(n−1) O

O O I (n−1)(n−2)
2


.

Because, the matrix σLg has 1 eigenvalue equal to 1−2(n−1)ρ and 1
2n(n+1)−1

eigenvalues equal to 1 (see [4]), hence the operator Lĝ is elliptic for ρ < 1
2(n−1)

and then the Equations (9) are strictly hyperbolic partial differential equation for
ρ < 1

2(n−1) . Also, we have

∂ϕ̂

∂t
= ψ∗(

∂ϕ

∂t
) + LV ϕ̂ = τĝϕ̂+ < ∇ϕ̂, V >= τĝϕ̂+ dϕ̂(V ).

Via normal coordinates on (N, γ) at the base point we get NΓλ
µν = 0. Hence

τĝϕ̂ = ∆ĝϕ̂ which this implies that

∂ϕ̂

∂t
= ∆ĝϕ̂+ dϕ̂(V ) = ĝkl(

∂2

∂xk∂xl
ϕ̂λ − Γ̂j

kl∇j ϕ̂
λ) +∇j ϕ̂

λĝkl(Γ̂j
kl − Γ̊k

jl)

= ĝkl(∂k∂lϕ̂
λ − Γ̊k

jl∇j ϕ̂
λ), (11)

and it is strictly hyperbolic equation. Using the standard theory of hyperbolic
equations [9] on compact manifold M we conclude the system (9) has a unique
short-time smooth solution. The solution to (9) yields to a solution of the HRBH
flow (5) from (6) and (8). Hence the proof of existence to solution of (5) complete.
Using the fact that

Γ̂k
jl =

∂yα

∂xj
∂yβ

∂xi
∂xk

∂yγ
Γγ
αβ +

∂xk

∂yα
∂2yα

∂xj∂xi
,

we can rewritten the initial value problem (8) as follows:{
∂2yα

∂t2 = gjl
(

∂2yα

∂xj∂xl − Γ̊k
jl

∂yα

∂xk + Γα
βγ

∂yβ

∂xj
∂yγ

∂xi

)
,

yα(x, 0) = xα, ∂
∂ty

α(x, 0) = yα1 (x).
(12)

Manifold M is compact and the Equations (12) strictly hyperbolic PDE, therefore
(12) has a unique smooth solution ψt(x) = (y1(x, t), . . . , yn(x, t)) for short time.
Suppose that (g(1)ij (t), ϕ1(t)) and (g

(2)
ij (t), ϕ2(t)) are two solutions to the HRBH flow
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(5) with the same initial data. Let ψ(1)
t and ψ

(2)
t be two solutions of the initial

value problem (12) corresponding to g(1) and g(2), respectively. Then the metrics
ĝ
(1)
ij (t) = (ψ

(1)
t )∗g

(1)
ij (t) and ĝ

(2)
ij (t) = (ψ

(2)
t )∗g

(2)
ij (x, t) are two solutions to the

modified evolution Equation (9) wich share the same initial data. Also, ϕ̂(1)(t) =
(ψ

(1)
t )∗ϕ

(1)(t) and ϕ̂(2)(t) = (ψ
(2)
t )∗ϕ

(2)(x, t) are two solutions to the modified
evolution Equation (11) which share the same initial data. Since the Equation (9)
only have one solution with the same initial data, we get that ĝ(1)ij (x, t) = ĝ

(2)
ij (x, t).

Thus using the standard uniqueness result of PDE system for system (12) we
deduce the corresponding solutions ψ(1)

t and ψ
(2)
t of (6) must agree. Therefore,

the metrics g(1)ij (x, t) and g(2)ij (x, t) must agree. Since Equation (11) only have one
solution with the same initial value then ϕ̂

(1)
t = ϕ̂

(1)
t , then ϕ

(1)
t = ϕ

(1)
t . Then we

complete the proof of the uniqueness for solution to the HRBH flow (5).

4. Evolution Formulas for Curvature Tensor

under the HRBH Flow

The evolution for the metric implies some the nonlinear evolution of geometric
quantities and the HRBH flow shows that the metric deforms by an evolution
equation. In the following, we apply the method used to obtain the evolution
formulas of geometric quantities along the harmonic-Ricic flow and the hyperbolic
geometric flow (see [5], [11]). We compute the evolution formulas for curvature
tensors of (M, g) along the HRBH flow.

Lemma 4.1. Along the HRBH flow the quantities gij evolves as follows:

∂2

∂t2
gij = 2Rij − 2ρRgij − 2η∇iϕ∇jϕ+ 2gipgrqgsj

∂gpq
∂t

∂grs
∂t

. (13)

Proof. Since gijgjk = δik, we get ∂
∂tg

ij = −gipgjq ∂gpq
∂t . Therefore by direct compu-

tation we can obtain

∂2

∂t2
gij = −gipgjq ∂

2gpq
∂t2

+ 2gipgrqgsj
∂gpq
∂t

∂grs
∂t

. (14)

Plugging (5) into (14) completes the proof.
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Theorem 4.2. Along the HRBH flow the tensor Rijkl of M satisfies

∂2

∂t2
Rijkl = ∆Rijkl + 2(Bijkl −Biljk −Bijlk +Bikjl)

− gpq(RipklRqj +RpjklRqi +RijkpRql +RijplRqk)

+ 2gpq

( ∂
∂t

Γp
il.
∂

∂t
Γq
jk − ∂

∂t
Γp
jl.
∂

∂t
Γq
ik

)
(15)

− ρ [∇i∇kRgjl −∇i∇lRgjk −∇j∇kRgil +∇j∇lRgik] + 2ρRRijkl

+ η

[
∂2(∇kϕ∇jϕ)

∂xi∂xl
− ∂2(∇jϕ∇lϕ)

∂xi∂xk
− ∂2(∇kϕ∇iϕ)

∂xj∂xl
− ∂2(∇iϕ∇lϕ)

∂xj∂xk

]
,

where ∆ is the Beltrami-Laplace operator with respect to the metric g and Bijkl =
gprgqsRpiqjRrksl.

Proof. By direct computations the Christoffel symbol of metric g, Γh
jl =

1
2g

hm
(∂gmj

∂xl +
∂gml

∂xj − ∂gjl
∂xm

)
, satisfies the evolution equation

∂2

∂t2
Γh
jl =

1

2

∂2ghm

∂t2

(∂gmj

∂xl
+
∂gml

∂xj
− ∂gjl
∂xm

)
+
∂ghm

∂t

(∂2gmj

∂xl∂t
+
∂2gml

∂xj∂t
− ∂2gjl
∂xm∂t

)
+

1

2
ghm

[
∂

∂xl
(
∂2gmj

∂t2
) +

∂

∂xj
(
∂2gml

∂t2
)− ∂

∂xm
(
∂2gjl
∂t2

)

]
.

Since Rijkl = ghkR
h
ijl where Rh

ijl =
∂Γh

jl

∂xi − ∂Γh
il

∂xj + Γh
ipΓ

p
jl − Γh

jpΓ
p
il, with a double

differentiation of the above equation respect to time, we have

∂2

∂t2
Rh

ijl =
∂

∂xi
(
∂2

∂t2
Γh
jl)−

∂

∂xj
(
∂2

∂t2
Γh
il) +

∂2

∂t2
(Γh

ipΓ
p
jl − Γh

jpΓ
p
il),

and

∂2

∂t2
Rijkl = ghk

[
∂

∂xi
(
∂2Γh

jl

∂t2
)− ∂

∂xj
(
∂2Γh

il

∂t2
) +

∂2

∂t2
(Γh

ipΓ
p
jl − Γh

jpΓ
p
il)

]

+ 2
∂ghk
∂t

[
∂

∂xi
(
∂Γh

jl

∂t
)− ∂

∂xj
(
∂Γh

il

∂t
) +

∂

∂t
(Γh

ipΓ
p
jl − Γh

jpΓ
p
il)

]

+Rh
ijl

∂2ghk
∂t2

. (16)

We consider a fixed point p ∈ M and assume that {x1, . . . , xn} is the normal
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coordinates around p. Then in point p we have ∂gij
∂xk (p) = 0, Γk

ij(p) = 0, and

∂2

∂t2
Rijkl =

1

2

[
∂2

∂xi∂xj
(
∂2gkl
∂t2

) +
∂2

∂xi∂xl
(
∂2gkj
∂t2

)− ∂2

∂xi∂xk
(
∂2gjl
∂t2

)

]
− 1

2

[
∂2

∂xj∂xi
(
∂2gkl
∂t2

) +
∂2

∂xj∂xl
(
∂2gkj
∂t2

)− ∂2

∂xj∂xk
(
∂2gil
∂t2

)

]
− gpm

∂2gkp
∂xi∂t

(∂2gml

∂xj∂t
+
∂2gmj

∂xl∂t
− ∂2gjl
∂xm∂t

)
+ gpm

∂2gkp
∂xj∂t

(∂2gml

∂xi∂t
+
∂2gmi

∂xl∂t
− ∂2gil
∂xm∂t

)
+ 2ghk

( ∂
∂t

Γh
ip.

∂

∂t
Γp
jl −

∂

∂t
Γh
jp.

∂

∂t
Γp
il

)
.

Since ∂2

∂t2 g = −2Ric+ 2ρRg + 2η∇ϕ⊗∇ϕ, then (16) yields

∂2

∂t2
Rijkl =

1

2

∂2

∂xi∂xl
(
− 2Rkj + 2ρRgkj + 2η∇kϕ∇jϕ

)
− 1

2

∂2

∂xi∂xk
(
− 2Rjl + 2ρRgjl + 2η∇jϕ∇lϕ

)
− 1

2

∂2

∂xj∂xl
(
− 2Rki + 2ρRgki + 2η∇kϕ∇iϕ

)
+

1

2

∂2

∂xj∂xk
(
− 2Ril + 2ρRgil + 2η∇iϕ∇lϕ

)
+

+
1

2

∂2

∂xi∂xj
(
− 2Rkl + 2ρRgkl + 2η∇kϕ∇lϕ

)
− 1

2

∂2

∂xj∂xi
(
− 2Rkl + 2ρRgkl + 2η∇kϕ∇lϕ

)
− gpm

∂2gkp
∂xi∂t

(∂2gml

∂xj∂t
+
∂2gmj

∂xl∂t
− ∂2gjl
∂xm∂t

)
+ gpm

∂2gkp
∂xj∂t

(∂2gml

∂xi∂t
+
∂2gmi

∂xl∂t
− ∂2gil
∂xm∂t

)
+ 2ghk

( ∂
∂t

Γh
ip.

∂

∂t
Γp
jl −

∂

∂t
Γh
jp.

∂

∂t
Γp
il

)
. (17)

The following identities hold

∂2

∂xi∂xl
Rjk = ∇i∇lRjk −Rjp∇iΓ

p
lk −Rkp∇iΓ

p
lj , (18)

and

−gpm ∂2gkp

∂xi∂t

(
∂2gml

∂xj∂t +
∂2gmj

∂xl∂t
− ∂2gjl

∂xm∂t

)
+gpm

∂2gkp

∂xj∂t

(
∂2gml

∂xi∂t + ∂2gmi

∂xl∂t
− ∂2gil

∂xm∂t

)
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+ 2ghk

(
∂
∂tΓ

h
ip.

∂
∂tΓ

p
jl −

∂
∂tΓ

h
jp.

∂
∂tΓ

p
il

)
= 2gpq

(
∂
∂tΓ

p
il.

∂
∂tΓ

q
jk − ∂

∂tΓ
p
jl.

∂
∂tΓ

q
ik

)
. (19)

Therefore, replacing (18) and (19) in (17) lead to

∂2

∂t2
Rijkl = −∇i∇lRjk +∇j∇lRki +∇i∇kRjl −∇j∇kRil

− gpq(−RijdkRql +RijqlRkp + 2RilqjRkp)

+ 2gpq

( ∂
∂t

Γp
il.
∂

∂t
Γq
jk − ∂

∂t
Γp
jl.
∂

∂t
Γq
ik

)
+ ρ

[
∂2R

∂xi∂xl
gkj −

∂2R

∂xj∂xl
gki −

∂2R

∂xi∂xk
gjl +

∂2R

∂xj∂xk
gil

]
+ ρ

[
∂2gkj
∂xi∂xl

R− ∂2gki
∂xj∂xl

R− ∂2gjl
∂xi∂xk

R+
∂2gil
∂xj∂xk

R

]
+ η

[
∂2(∇kϕ∇jϕ)

∂xi∂xl
− ∂2(∇jϕ∇lϕ)

∂xi∂xk
− ∂2(∇kϕ∇iϕ)

∂xj∂xl
− ∂2(∇iϕ∇lϕ)

∂xj∂xk

]
,

and equivalently

∂2

∂t2
Rijkl = ∆Rijkl + 2(Bikjl −Bijlk −Biljk +Bijkl)

− gpq(RipklRqj +RpjklRqi +RijkpRql +RijplRqk + 2RilqjRkp)

+ 2gpq

( ∂
∂t

Γp
il.
∂

∂t
Γq
jk − ∂

∂t
Γp
jl.
∂

∂t
Γq
ik

)
− ρ [∇i∇kRgjl −∇i∇lRgjk −∇j∇kRgil +∇j∇lRgik] + 2ρRRijkl

+ η

[
∂2(∇kϕ∇jϕ)

∂xi∂xl
− ∂2(∇jϕ∇lϕ)

∂xi∂xk
− ∂2(∇kϕ∇iϕ)

∂xj∂xl
− ∂2(∇iϕ∇lϕ)

∂xj∂xk

]
,

where Bijkl = gprgqsRpiqjRrksl, so the proof of the theorem is complete.

Theorem 4.3. Along the HRBH flow Ricci curvature tensor is satisfies

∂2

∂t2
Rij = ∆Rij − (n− 2)ρ∇i∇jR− ρ∆Rgij + 2gprgqsRpiqjRrs − 2gpqRpiRqj

+ 2gklgpq

( ∂
∂t

Γp
il.
∂

∂t
Γq
kj −

∂

∂t
Γp
kl.

∂

∂t
Γq
ij

)
− 2gkpglq

∂gpq
∂t

∂Rikjl

∂t
(20)

+ ηgkl
[
∂2(∇kϕ∇jϕ)

∂xi∂xl
− ∂2(∇jϕ∇lϕ)

∂xi∂xk
− ∂2(∇kϕ∇iϕ)

∂xj∂xl
− ∂2(∇iϕ∇lϕ)

∂xj∂xk

]
+ 2gkpgrqgsl

∂gpq
∂t

∂grs
∂t

Rikjl − 2ηgkpglq∇pϕ∇qϕRikjl.
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Proof. We choose a fixed point p ∈ M and the normal coordinates {x1, . . . , xn}
around p. At point p, we have

∂2

∂t2
Rij =

∂2

∂t2
(gklRikjl) = gkl

∂2

∂t2
Rikjl + 2

∂gkl

∂t

∂Rikjl

∂t
+Rikjl

∂2gkl

∂t2
.

Since ∂gkl

∂t = −gkpglq ∂gpq
∂t and ∂2gkl

∂t2 = −gkpglq ∂2gpq
∂t2 +2gkpgrqgsl

∂gpq
∂t

∂grs
∂t , then we

get

∂2

∂t2
Rij = gkl

∂2

∂t2
Rikjl − 2gkpglq

∂gpq
∂t

∂Rikjl

∂t
− gkpglq

∂2gpq
∂t2

Rikjl

+ 2gkpgrqgsl
∂gpq
∂t

∂grs
∂t

Rikjl. (21)

Replacing (15) and (5) in (21) we have

∂2

∂t2
Rij = ∆Rij + 2gkl(Bikjl −Biljk −Bijlk +Bijkl)

− gklgpq(RipklRqj +RpjklRqi +RijkpRql +RijplRqk + 2RilqjRkp)

+ 2gklgpq

( ∂
∂t

Γp
il.
∂

∂t
Γq
jk − ∂

∂t
Γp
jl.
∂

∂t
Γq
ik

)
(22)

− (n− 2)ρ∇i∇jR− ρ∆Rgij − 2gkpglq
∂gpq
∂t

∂Rikjl

∂t

− gkpglq(−2Rpq + 2ρRgpq)Rikjl + 2gkpgrqgsl
∂gpq
∂t

∂grs
∂t

Rikjl

+ ηgkl
[
∂2(∇kϕ∇jϕ)

∂xi∂xl
− ∂2(∇jϕ∇lϕ)

∂xi∂xk
− ∂2(∇kϕ∇iϕ)

∂xj∂xl
− ∂2(∇iϕ∇lϕ)

∂xj∂xk

]
− 2ηgkpglq∇pϕ∇qϕRikjl,

where

2gkl(Bijkl −Bijlk −Biljk +Bikjl) = 2gkl(Bikjl − 2Biklj) + 2gprgqsRpiqjRrs,

and

gklgpq(RpjklRqi +RipklRqj +RijplRqk +RijkpRql + 2RilqjRkp)

= 2gpqRpiRqj + 2gprgqsRpiqjRrs,

but gkl(Bikjl − 2Biklj) = 0, thus the result of theorem obtain by replace above
Equations in (22).

Since R = gijRij we have

∂2

∂t2
R =

∂2

∂t2
(gijRij) = gij

∂2Rij

∂t2
+ 2

∂gij

∂t

∂Rij

∂t
+Rij

∂2gij

∂t2
.

Plugging (13) and (20) in last equation we get the following corollary.
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Corollary 4.4. Along the HRBH flow, the scalar curvature satisfies

∂2

∂t2
R = (1− 2(n− 1)ρ)∆R+ 2|Ric|2 − 2ρR2

+ 2gijgklgpq

( ∂
∂t

Γp
il.
∂

∂t
Γq
kj −

∂

∂t
Γp
kl.

∂

∂t
Γq
ij

)
− 4ηgijgkpglq∇pϕ∇qϕRikjl

− 2gijgkpglq
∂gpq
∂t

∂Rikjl

∂t
+ 4gkpgrqgsl

∂gpq
∂t

∂grs
∂t

Rkl − 2gipgjq
∂gpq
∂t

∂Rij

∂t

+ ηgijgkl
[
∂2(∇kϕ∇jϕ)

∂xi∂xl
− ∂2(∇jϕ∇lϕ)

∂xi∂xk
− ∂2(∇kϕ∇iϕ)

∂xj∂xl
− ∂2(∇iϕ∇lϕ)

∂xj∂xk

]
.

5. Examples

In following, we precent some examples of HRBH flow.

Example 5.1. Let (M, g(0)) be a round two-sphere of constant scalar curvature
2. Let (N,h) = (M, g(0)) and ϕ(0) be the identity map. Consider the HRBH
flow and suppose g(t) = c(t)g(0), c(0) = 1, c′(0) = 0 is a solution for it. For all
g(t), the map ϕ(t) = ϕ(0) will be harmonic map. Therefore the HRBH flow on M
becomes

∂2c(t)

∂t2
= −2 + 2ρc(t) + 2η. (23)

When ρ = 0, the Equation (23) has solution c(t) = (−1 + η)t2 + 1. For η < 1,
c(t) tends to zero in finite time. For η = 1 we have c(t) = 1 and for η > 1, c(t) is
increasing. Now, when ρ > 0 then the Equation (23) has solution

c(t) =
(1
2
− 1

2ρ
(1− η)

)(
e
√
2ρt + e−

√
2ρt

)
+

1

ρ
(1− η).

For ρ < 0 the solution to the Equation (23) is

c(t) =
(
1− 1

ρ
(1− η)

)
cos

√
−2ρt+

1

ρ
(1− η).

Example 5.2. Suppose that (M, g(0)) is a compact Riemannian manifold, (N,h)
= (M, g(0)) and ϕ(0) is the identity map. Let the initial metric gij(x, 0) be Ricci
flat, i.e. Rij(x, 0) = 0, then gij(x, t) = (ηt2 + t + 1)gij(x, 0) will be a solution to
the HRBH flow with ∂g

∂t (x, 0) = g(x, 0). Thus any Ricci flat metric is a solution of
the HRBH flow.

Example 5.3. Suppose that (M, g(0)) is a compact Einstein Riemannian mani-
fold. Let Rij(0) = agij(0) for some constant a, (N,h) = (M, g(0)), and ϕ(0) be
the identity map. Consider the HRBH flow and suppose g(t) = c(t)g(0), c(0) =
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1, c′(0) = 0 is a solution for it, then ϕ(t) = ϕ(0) is harmonic map for all g(t).
Definition of the Ricci tensor implies that

Rij(t) = Rij(0) = agij(0), Rg(t) =
ma

c
.

Hence, the HRBH flow on (M, g(0)) yields

∂2c(t)gij(0))

∂t2
= −2agij(0) + 2ρmagij(0) + 2ηgij(0),

this gives d2c(t)
∂t2 = −2a+ 2ρma+ 2η. The solution of this ODE is as follows

ρ(t) = (−2λ+ 2ρmλ+ 2η)t2 + νt+ 1.

Then the Einstein metrics preserves by the HRBH flow.
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