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Hyperbolic Ricci-Bourguignon-Harmonic Flow
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Abstract

In this paper, we consider hyperbolic Ricci-Bourguignon flow on a com-
pact Riemannian manifold M coupled with the harmonic map flow between
M and a fixed manifold N. At the first, we prove the unique short-time
existence to solution of this system. Then, we find the second variational of
some geometric structure of M along this system such as, curvature tensors.
In addition, for emphasize the importance of hyperbolic Ricci-Bourguignon
flow, we give some examples of this flow on Riemannian manifolds.
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1. Introduction

Let (M™,g) be a smooth compact Riemannian manifold. Geometric flows on
M are evolution of a geometric structures under differential equations with some
functionals on M. Geometric flows play important role in mathematics, because
in differential geometry by some geometric flows we can obtain canonical metrics
on Riemannian manifolds. A fundamental study of geometric flows began when
Hamilton [8] introduced the Ricci flow on compact m-dimensional Riemannain
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manifold (M, go) as follows

0 .
59 = 2R, 9(0) = go, (1)

and normalized Ricci flow as follows

0 . 2r
59 = ~2Ric+ —g, 9(0) = go-

Rd

Here Ric is the Ricci curvature tensor of g(t), r = %, R denotes the scalar
M

curvature of g(t) and du denotes the volume form of g(t). The short-time existence
and uniqueness for solution of (1) was first shown by R. S. Hamilton (see [8]), using
the Nash-Moser theorem and harmonic maps and then by D. DeTurck (see [6]) on
a compact Riemannian manifold. The Ricci flow played a techniqual role in the
study of topology and geometry of a manifold, for instance the Ricci flow is used
in the proof of the Poincaré conjecture [13] and the sphere theorem [3]. Also, the
harmonic map between Riemannian manifolds introduced for first time by Eells
and Sampson [7].
A generalization of the Ricci flow is as follows

0 . .
5;9 = ~2Ric+2pRg = —2(Ric — pRy), 9(0) = go, (2)
for some real constant p where R denotes the scalar curvature. This flow is called
Ricci-Bourguignon flow. Catino et’al [4] shown that if p < m then the flow
(2) has a unique short-time solution.

Another, generalization of the Ricci flow is the harmonic-Ricci flow, is defined

as follows
{iﬂﬂ=—ﬂ%HJMﬂV¢®V¢ 9(0) = g0,
519 =Te%, 9(0) = v,
where n(t) > 0 only dependent to ¢ and m, ¢(t) : (M, g(t)) — (N, h) is a smooth
maps from (M, g(t)) to a target compact Riemannian manifold (N, k), and 7,¢ is
the tension field of the map ¢ given by the evolving metric g(¢). The harmonic-

Ricci flow studied by Miiller [11] and when (N, h) = (R, dr?), this flow become the
Bernhard List’s flow [10],

2.g(t) = —2Ric+2n(t)Vé @ Vo, g(0) = go,
50 =1049, $(0) = ¢o.

Then author [1], extended harmonic-Ricci flow as follows

2g(t) = —2Ric+2pRg + 2nVé @ V¢,  g(0) = go,
o =140, $(0) = ¢o,
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and provn that if p < m then this flow has a unique short-time solution for
a positive time interval on any smooth compact Riemannian manifold (M™, go)
with intial condition (g, ¢o).

The geometric flows which introduced in above, were of the first variation
of metric and similar to heat equation. Now, we introduce some of geometric
flows which are family of the second order nonlinear partial differential equations
analogous to wave equation flow metrics. Hyperbolic geometric flow is similar to
Einstein equation

2 1 ,,0g:; Og 0gip 09;
— ;s = —2R.; — —gP1 24 IPd pq ZIW 2914
12 9% Ry 29 "ot "ot +yg ot ot
and is defined as
0? . dg
ﬁg = —2Ric, 9(0) = go, a(()) = ko, (3)

where ko is a symmetric tensor on M. The unique short-time existences of (3)
investigated in [5] on compact Riemannian manifold. Author [2] extended hyper-
bolic geometric flow to harmonic-hyperbolic geometric flow which is defined as
follows

{gtg = _QRiC =+ 27]v¢ ® v¢7 g(O) = g(](l'), %(0) - k(]v (4)

20 =199, $(0) = ¢o,

and shown that system (4) has a unique short-time solution and funded evolution
equations of curvature tensors of manifold under flow (4).

In present paper, we introduce a generalized of the harmonic-hyperbolic geo-
metric flow on smooth compact Riemannian manifold (M™, gg) which we call it
HRBH flow and we investigate the short-time existence and uniqueness for solution
to the HRBH flow. We obtain the evolution equation of some geometric structures
of M under the HRBH flow. Finally, we present some examples of the HRBH flow.

2. Preliminaries

Assume that (M™,g) and (N™, k) are smooth closed Riemannian manifolds. By
Nash’s embedding theorem [12], let N be isometrically embedded into Euclidean
space by ey : (N", ) — R? for d large enough. As in [11], we identify map
¢ : M — N with the map eyo¢ : M — R¢, then we can write ¢ = (¢*), 1 < X < d.
We often delete the summation indices for ¢ when there is no ambiguity and we
denote the tension field of the map ¢ by 7,¢ = V,V,,¢ for the covariant derivative
VonT*M ® ¢*TN.

Let M™ be a soomth compact Riemannian manifold. In present work, we
assume that the metric of M evolves as

{gjg — —2Ric+2pRg+29V¢ @ Ve, g(0) = go(x),  22(0) = ko,

5
%¢ = Tg¢a ¢(0) = oo, ( )
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where Ric denotes the Ricci curvature tensor of M, p denotes a real constant, R
denotes the scalar curvature, 1 denotes a positive coupling constant, ky denotes
a symmetric tensor on M, and ¢ : M — N is a map beteween of M and a fixed
compact Riemannian manifold N. The flow (5) reduce to the hyperbolic geometric
flow when p = = 0 and it reduce to the harmonic-hyperbolic geometric flow when
p = 0. We say that this flow is hyperbolic Ricci-Bourguignon-harmonic flow or
shortly the HRBH flow.

3. Existence and Uniqueness for the HRBH Flow

In the following, similar to process of reviewing the existence and uniqueness of geo-
metric flows such as Ricci-Bourguignon flow, hyperbolic geometric flow, harmonic-
Ricci flow, we prove the existence and uniqueness for the solution to th HRBH
flow in short time on a compact Riemannian manifold (M™, go).

Theorem 3.1. Let (M™,go) and (N™, h) be two compact Riemannian manifolds,
ko be a symmetric tensor on M and p < m Then there is a constant T > 0

such that the HRBH flow (5) has a unique smooth solution (g(t), ¢(t)) on [0,T).

Proof. The HRBH flow is a family of nonlinear weakly hyperbolic second order
partial differential equations. Therefore our method of proof will be applying the
gauge fixing idea and the push-forward of a solution of (5) we can obtain a family of
nonlinear strictly-hyperbolic second order partial differential equations and then
the short-time existence and uniqueness for solution on a compact Riemannain
manifold, implies that the existence and uniqueness forthe solution of this system
and in finally the pull-back of this solution complete the proof of theorem. For
this end, suppose that (g(t), ¢(t)):e[o,r) is a solution to the HRBH flow with initial
condition (g(0), #(0)) = (go, ¢0), af;;'j (0) = k;;(0). Let ¢y : (M, §(t)) = (M, go) be
solution of %l/f = T4, with ¥(0) = idpr. Let

Gii(t) = Vuegisy O(t) = uo(t),

be the push-forward of g;; and ¢ respectively. We now begin by calculating the

evolution of (§;;(t), #(t)). We suppose in local coordinate 9, is given by y(z,t) =
Yy(x) = (y'(x,t),...,y"(x,t)). Then we have

. dy* 0y°
9ij (xﬂt) = O @gaﬁ(y;t)a (6)
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therefore, we arrive at the following:

029, 0y 0yP dPgap 9 0%y~ oy’
2 (z,t) = D0 Ond  di2 (y(z,t),t) + 83:1(W)@g“ﬁ
0 0%y" oy” 5 0 (0y* 9y" dgag

8xj( ot2 )ﬁgaﬁ * axi( ot )8xj dt
o oy~ 0 ,0y° 0 ,0y? Oy dgap
0ot Vo (ot 190 Y 20 o o T

Also,
_ agaﬁ agaﬁ %
ot oy o’

dgaﬁ

and

d290¢ﬂ( (2,1),t) = 829043 %@ 2829003@ 8290(,3 + 99ap Py
dt? e Oy oyr ot Ot Oyrot ot ot? oyy ot

Hence

9gi (1) = 8gap Oy~ 0y®  0Pgap Oy* 0y° Oy Oy
otz ot2 9x' 9xi Oy oy Ozt dxd Ot Ot
%gap Oy OyP Oy 0 oyP 92y
9910t 007 027 ot T 907 9P o o
0 oyP 0%y~
5wt 908 507
Dgas Oy* Oy 0 oyP 0 oyP 7 9%y
Dy 0 907 00 I gu7) T 579 57| a2
9 0y* 0y’ Dgap | Ogas Y
00 ot V97 o oy o)
o ,0y*. 9 oy
+ 2908 G (ﬁ)%(ﬁ)
Q> 0 0y’ Ogas | 9gap Oy’
o0 97 ot ) o oy o)

+2

+2

We consider a fixed point p € M. Using the normal coordinates {x'} around p,

we get 224 (p) =0 and

dxk

09ap Oy* OyP 0 oyP 0 oyP B S
Dyr 007 007 9t I i) T ggi 9 ggr) =0 VG =12 on.
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Thus we get
9%9;; (@,1) oy* Oy~ oy oy
otz Y7 otz Oxt 9xd T Oy oy Oxt Oxd Ot Ot
20%900 0y Oy" Oy | O Oy Oy
0yr0t Ozt 0xi 0t | Ozt P 9xi oF

D905 0y® 0y D%gap Oy* Oy° Oy Oy

0 oyP 9%y~ 9 ,0y*. 9 ,0y°
T 0ur e g ) T 2000 5 o Vg o) (D)
o Oy~ oyP dg, 0gas Oy
42 i(i)i( Jop 4 G908 9Y
Ox** Ot "0xd " Ot dy" Ot
oy™ 0 0y’ 0gap | Ogap Oy
2 () (R 2.
Oxt OxJ * Ot ot oyY Ot

Now we assume that y(z,t) is a solution to the following problem

8524 Iy il o

oz = g (L — 1),

ya(ZC,O) =2z, %ya(l’,O) :y?(x)'
We consider the vector field

Vi = gikgjl(f?z - f?z),
here f‘fl and Ffl are the Christoffel symboles of the metrics g;;(t) and g;;(0),
respectively, y¢(xz) € C*°(M) for 1 < a < m. Since
2

2% = —2R;; + 2pRygi; + 2nVipV ¢,

therefore plugging last equation into (7) we obtain the evolution equation for g;;
as follows

9 . . o .
2% = —2R;j 4+ 2pRgi; + 2nVidV ¢ + V;V; + V;Vi + F(Dy, Dy D,y),

where

9y* Oy~
ot~ Oxt

a2ya

Dy:( )7 DtDzy:(M), a,i:1,2,...,n.

The relation
0 0rt ok oy
LT 9xd dxt Ay P Py Dxidat’

results that
82ya 7 a2ya e aya N ayﬁ ayw

— Il ; I
a7 =9 (Guige ~Lige T a5 a7)
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and
9 Gij K 0°3ij k. 0%gni
— & 906 PR 2 IR
BT (z,t) Sk o] (z,t) — 2p9:59" g awpaxq(x, )
824, .
5. 4Pa 5kl q ) )
+209i59"19" 55 (@:8) + 20VidV 56 (9)

+ G(g, D2g) + F(Dy, D¢ D.y).

Here ¢ = (gi;) and D,g = (ag“) for i,j,k = 1,2,...,m. Now we show that the

oxk
system (9) is strictly hyperbolic partial differential equation. Upon doing this, we
consider only the highest order terms of (9), then we compute its principal symbol
and we show that is elliptic. Let the linear differential operator Lg defined as

La(h::) = ~kl 82hij 9 ~ ~pg Akl azhkl ) ~  apq skl
a(hij) = §% 5527 = 200i39719" 5 250 + 209:9™19

hy
OxPOxk’

The principal symbol of differential operator L in direction ¢ = (¢1,...,(y) is

o Lg(Q)hij = 9" CCihis — 20056 9" CoCahrt + 209:3579" CpCihgr,  (10)
where in last equation we replace % by the Fourier transform variable (;. Since
the principal symbol is homogeneous, then we can always assume ¢ has length 1

and we perform all the computing in an orthonormal basis {e;}?_; of T, M such
that ¢ = g(eq,.) that is ; = 0 for i # 1, then

Gij = 0ij,
¢ =(1,0,...,0).

Let O be zero matrix and A[n — 1] be the (n — 1) x (n — 1) matrix as

1-2p —-2p - —2p
Aln—1] = . : , :

Thus (10) becomes
oLg(Qhij = hij — 2pdij0kihwr + 2p0ijh11,
which for any h € T'(S2M), in the coordinate system

(hlla h227 ey hnnv h127 ey h1n7 h237 h247 B hnfl,n)
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the operator oL; can be represented as

1 -2 . —2p
: Aln —1] 0 0
0
oLy =
J O I(n—l) 0]
O O I(n—l)z(n—Q)

Because, the matrix oL, has 1 eigenvalue equal to 1 —2(n—1)p and gn(n+1) —1
eigenvalues equal to 1 (see [4]), hence the operator L; is elliptic for p < 2(+_1)
and then the Equations (9) are strictly hyperbolic partial differential equation for
p < 2(n i) . Also, we have

3¢ 9¢

= ul5p) + Lvo =130+ <V, V >= 156 + dp(V).

Via normal coordinates on (N,«) at the base point we get Nl“f;l, = 0. Hence
quAS = Ag(;AS which this implies that

9%
ot

=836 +d(V) = §M (550" = DL V0% + V0% (T, — T5)
= §"(0r010™ — T%V;6%), (11)

and it is strictly hyperbolic equation. Using the standard theory of hyperbolic
equations [9] on compact manifold M we conclude the system (9) has a unique
short-time smooth solution. The solution to (9) yields to a solution of the HRBH
flow (5) from (6) and (8). Hence the proof of existence to solution of (5) complete.
Using the fact that

OO, ok oy
T 9xd dxt Ay P Py DxI Dt

we can rewritten the initial value problem (8) as follows:

%y” it ( 9%y oy~ ay” oy”
{at% :ggl< Y I\k y_ 4 o 9y 9y ,

Oz dxl jl dxk B~y 0z Ox'
ya(x70):moc7 3@ (CL‘ O) _yl( )

Manifold M is compact and the Equations (12) strictly hyperbolic PDE, therefore
(12) has a unique smooth solution 1 (z) = (y'(x,t),...,y"(x,t)) for short time.

Suppose that (913 (t), ¢*(t)) and (gg)( ), $2(t)) are two solutions to the HRBH flow

(12)
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(5) with the same initial data. Let 1/)51) and 7/%(2) be two solutions of the initial
value problem (12) corresponding to g™ and ¢, respectively. Then the metrics

g,fj)(t) = ( t(l))*gg)(t) and Qg)(t) = ( t(Q))*gg)(a:,t) are two solutions to the

modified evolution Equation (9) wich share the same initial data. Also, ¢(1) () =
(L/Jt(l))*d)(l)(t) and ¢ (t) = (1/J§2))*¢5(2)(9c,t) are two solutions to the modified
evolution Equation (11) which share the same initial data. Since the Equation (9)
only have one solution with the same initial data, we get that gﬁj) (x,t) = ggf) (z,1).
Thus using the standard uniqueness result of PDE system for system (12) we
deduce the corresponding solutions 1/)51) and 111t(2) of (6) must agree. Therefore,

the metrics gg)

solution with the same initial value then q§§” = égl), then ¢§” = §1). Then we
complete the proof of the uniqueness for solution to the HRBH flow (5). O

(z,t) and gg)(x, t) must agree. Since Equation (11) only have one

4. Evolution Formulas for Curvature Tensor

under the HRBH Flow

The evolution for the metric implies some the nonlinear evolution of geometric
quantities and the HRBH flow shows that the metric deforms by an evolution
equation. In the following, we apply the method used to obtain the evolution
formulas of geometric quantities along the harmonic-Ricic flow and the hyperbolic
geometric flow (see [5], [11]). We compute the evolution formulas for curvature
tensors of (M, g) along the HRBH flow.

Lemma 4.1. Along the HRBH flow the quantities g" evolves as follows:

9% . 5 g o . gpe g
C gl = 2R — 2pRg'I — VgV + 2gPgrage TIpa TIrs. 13
529 pRg IV VI + 2909 g™ =5 F = (13)
Proof. Since g¥g;i, = 0}, we get &g = —gi”gjq%. Therefore by direct compu-
tation we can obtain
872 ij _— _ P janqu 4 2¢Pg"? sjagpq 0grs (14)
o T 9 T TR ey T

Plugging (5) into (14) completes the proof. O
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Theorem 4.2. Along the HRBH flow the tensor R, of M satisfies

82
wRijkl = AR;jri + 2(Bijr — Bijk — Bijir + Bikji)
= 9" (RipiRgj + RpjriRgi + RijipRq + Rijpi Rar)
9 p 9y 9.p 9.y
+ 295 (aril‘arﬂc - arjl-arm)
— p[ViViRgj — ViViRgr — V;ViRga + V;ViRgi,| + 2pRR; i
+n P(VigV;p)  0P(VioVig)  *(VigpVig)  8*(VigVig)
Oxtox! Oxtork 0z 0! Oxi0zk ’

(15)

where A is the Beltrami-Laplace operator with respect to the metric g and Byji =
gprgqupiqurksl-

Proof. By direct computations the Christoffel symbol of metric g, 1";»‘[ = % ghm (%—i—

9gmi1 9g,i

Oz ox™

), satisfies the evolution equation

9% 182ghm(8gmj Agmi 8gjz) dg"™ (32gmj g Pgn )
otz it 2 g2 \ ogl dzi  dzm ot \ozlot = oxidot Ozt

+ 1 hm i(QQng) i(aQle) _ 0 (82gﬂ)
2 oxt" Ot? Oxi * Ot? dxm > o2 7|°
Since Riju = gniRl, where R, = 25— 9Dl Phpe TR DB ith o doubl
ince Rijri = gniltyy where Ry = 55 — F0 + T 1, — T 1%, with a double

differentiation of the above equation respect to time, we have

2 8 R, 9 R, P, .
a2 it = 3 (@ i)~ %(@Fu) + @(Fipfﬁz = T5,T0),

and

2 b o 0Tk 9 h
wRijkl = ghk l(‘)x’<6t;) - %( 8t2l) + @(Fiprﬁl — I‘jprfl)

dgni | @ OT. 9 ork. 9 N
2% [axi(atj) BTl R A A ety
0 gnr;
h
+ Rly k. (16)

We consider a fixed point p € M and assume that {z!,...,2"} is the normal



Hyperbolic Ricci-Bourguignon-Harmonic Flow

99gij

coordinates around p. Then in point p we have 773 (p) = 0, Ffj (p) =0, and
872R" 1 82 (azgkl) 62 (82gkj)_ 82 (a2gjl)
o2 K T o | 9rions Y o2 ' 0xiddl o2 ' dxidak O
R (5 gkl) 0? (529kj) s (3291‘1)
2 | 0zioxt " Ot2 Oxiozxt Ot? Oxidzk " ot?
o Pk (529mz Pgmj  Pgi )
Oriot \oxiot  Ozlot  Ox™mot
Pgrp (%91 | Pgmi  0%gu
pm 7 m mi 7
0 o (55t + aatst ~ 3emsi)
On Orp O 0y
- 2gh’“(atr”’ o ot j”'atril)'

. 2
Since %g =

0? 1

—2Ric+ 2pRg + 2nV¢ @ V¢, then (16) yields

wRijkl 25% ’8 =7 (= 2Rij + 2pRgi; + 20V ¢V 9)

1
3 axzaxk ( 2R + 2pRgj; + 27]Vj¢Vl¢)
1
~3 6x38xl — 2Rpi + 2pRgri + 20V ¢Vig)
1 02

+ gm( —2Ri +2pRgi + 277vi¢vl¢)+
1 92

+ 5@( — 2Rg1 + 2pRgr + 277vk¢vl¢)
1 92

- §m( — 2Rp1 + 2pRgr + 277Vk¢vl¢)

_ gom 0 grp (829ml Pgmj  Pga )

OxiOt \Oxiot ~ Ox'dt  DxmOot
L g grp (029mz Pgmi 9ga )
OxiOt \Oxidt ~ Ortot  Dxmot
0 h 9 P 9 h 9 P
+ Qghk(atrzp ot g1 8t ]pa il)' (17)
The following identities hold
52
WRJk - vaVZRJk - ijvl‘].—‘lk Rka Flj’ (18)
and
_pm 8291611 (329mz 6297n7 8297'1 )
97 bziot \ dziot T Balot  ozmot
m 0° 2gmi | Ogmi 9%gu1
+g° Laz%i(aaﬂatl + Patsr — é)w’gét)
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1o} 1o} d1h 0O
+ 29w (§Th, 518 — 4T%,. 2T
opr 8 0 0
= 29Pq(EFZ'EF?k - §F§1'5F3k>’ (19)
Therefore, replacing (18) and (19) in (17) lead to

82
e Rijpi = —V;ViRj, +V;ViRy +V; Vi Rj — ViV Ry
— gP(—RijaxRq + RijqiRip + 2Ri1q; Rip)
8 P 8 q 8 P 8 q
+ 29pq (arwarﬂc - &Fﬂ'arik)
L[ PR 2R PR PR
Plowioat ™™~ 92i ot ™ T 9riaek Y T frigpk I

0> gr; 0 g 8*gj1 g
'*"_aziaxlfi_'axfaxl}{_'axiazk}g+'azjaxkl4
[0*(VipVi9)  0*(V;oVig)  0*(VigVig) 32(V1¢Vz¢)}

LA 0z 0" 023077 023 O

and equivalently

82
@Rijkl = AR;jii + 2(Bikji — Bijik — Bitji + Bijii)
— 9" (RipsiRyj + RpjiuRgi + Rijip R + RijpiRar + 2Rigj Rip)
a P a q a P a q
+ 29pq (gril-arjk - arjl'&rik)

—p[ViViRg — ViViRgr — V;ViRga + V;ViRgik| + 2pRR;

n P(VidVip)  0*(V;oVig)  0*(VipVig)  0*(VigVig)
T aiog Oz Oz 97 O oridzk |’

where Bjjii = gP"g9° Rpiqj Rrkst, s0 the proof of the theorem is complete. O

Theorem 4.3. Along the HRBH flow Ricci curvature tensor is satisfies

62
@Ri]’ = ARZ'J‘ — (n — 2)pViVjR — ,OARgij + QQprquRpiquTs — QQPququj

o . 0 o . 0 09y ORuni
kl e Zre 2P 2 e\ 9 kp,laZIPe J
+29 gpq(atril'atr’“j atrkl'atrw) 29 ot ot (20)
+ gt P(VepVj¢)  *(VoVig)  9*(VidVig)  0*(VigVig)
Oxt0x! OxtOxk 0xI Ozt 0xIOzk
09pq O9rs
kp rq sl Prq
9 "ot "o

+2g Rirji — 219" gV , ¢V 4 Rigeji-
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Proof. We choose a fixed point p € M and the normal coordinates {z!,..., 2"}
around p. At point p, we have
0? 0? o 02 89 OR;ki1 0% ght
AR = 9" Rijt) = g™ 55 Ri —2 "+ Rikji—5 5
FIER gz 9" Bikit) = 9" g ikt + 25—, kil g2
2 kil 2
Since 8gt = —gk”glq% and %fg = —gkpglq% +2gk”g’"q951%%, then we
get
82 32 8g 8Rk-l 5 g
Rz _ R7 _92 kp lg Pq 1Rt qu7 i
oz T = 9" g Rinn = 2079 =5 =5, ez k!
99pq 0grs
+ 2gkPgragel g;"’ g’t Rinji. (21)
Replacing (15) and (5) in (21) we have
9 ki
52 i = ARy + 297 (Bikji = Bagk = Bijik + Bijwa)
- gklgpq(Ripkquj + RpjuiRyi + Rijrp Rt + Rijpi Ry + 2Riiq5 Rip)
a9 8 0 8
kl
8g aR'k'l
—(n—2)pV;V;R — pARg;; — 2g"P gta =222 =53¢
(n =2)pViV;R — pARgi; — 299" —5 = —
99pq 0915
— g™ g"(=2Ryq + 2pRgpq) Rikji + 299" 9" giq gt Rikji

4 gt P(VipV;p)  P(VioVig)  *(VigpVig)  8*(VipVig)
ng 0ztox! Oxtoxk 0z7 0x! OxI Oxk

— 209" 4" 18V (S R,
where
29" (Biji — Bijis — Bujk + Bikjt) = 29" (Binji — 2Biki;) + 26° 9% Rpiqj Ry,
and
9" P (RpjuRyi + RipriRyj + RijmRer + Rijip R + 2Ritgj Rip)
= 29" RpiRgj + 29" g% Rpigj Ry,
but g*(Birji — 2Biri;) = 0, thus the result of theorem obtain by replace above
Equations in (22). O
Since R = g R;; we have
o2 o2 iRy

= 2 (¢Ry) =

R 8gij 8le 829”
ot? o2

2 i
ot2 + ot ot + Ry Ot2

Plugging (13) and (20) in last equation we get the following corollary.
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Corollary 4.4. Along the HRBH flow, the scalar curvature satisfies

R=(1-2(n—1)p)AR+2|Ric|*> — 2pR?

§ o . 0 o . 0 2
+29 Jgklgpq(arﬁ-arzj‘ 8tF£l ot u) — 4ng" g" ¢!V ¢V 1S Rikji

o2

_ 29ijgkpglq 891’4 aRikﬂ + 4gk:pgrqgsl agpq 09rs Ry — 29 ip angpq 8le

ot 0ot ot ot M ot Ot
4 i gHt P (VeoV,p)  P(VoVig)  P(VidVig)  9*(VigVi9)
ng-g 0zi0x! Ozioxk 027 0x! OzI Ox*

5. Examples

In following, we precent some examples of HRBH flow.

Example 5.1. Let (M, g(0)) be a round two-sphere of constant scalar curvature
2. Let (N,h) = (M, g(0)) and ¢(0) be the identity map. Consider the HRBH
flow and suppose g(t ) (t)g(0), ¢(0) =1, ¢(0) = 0 is a solution for it. For all

g(t), the map ¢(t) = ¢(0) will be harmonic map. Therefore the HRBH flow on M
becomes

92c(t)

S5 = —2+ 2pc(t) + 2n. (23)

When p = 0, the Equation (23) has solution ¢(t) = (=1 +7)t? + 1. For n < 1,
¢(t) tends to zero in finite time. For n = 1 we have ¢(t) = 1 and for n > 1, ¢(¢) is
increasing. Now, when p > 0 then the Equation (23) has solution

() = (5 = 5,1 = W) (@ + ) + (1= ).

For p < 0 the solution to the Equation (23) is

c(t)=(1- %(1 — 1)) cos\/—2pt + %(1 -

Example 5.2. Suppose that (M, g(0)) is a compact Riemannian manifold, (N, k)
= (M, ¢(0)) and ¢(0) is the identity map. Let the initial metric g;;(z,0) be Ricci
flat, i.e. R;;j(x,0) =0, then g;;(x,t) = (nt> +t + 1)gi;(x,0) will be a solution to
the HRBH flow with %(m, 0) = g(x,0). Thus any Ricci flat metric is a solution of
the HRBH flow.

Example 5.3. Suppose that (M, g(0)) is a compact Einstein Riemannian mani-
fold. Let R;;(0) = ag;;(0) for some constant a, (N,h) = (M, g(0)), and ¢(0) be
the identity map. Consider the HRBH flow and suppose g(t) = ¢(t)g(0), ¢(0) =
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1, ¢(0) = 0 is a solution for it, then ¢(t) = ¢(0) is harmonic map for all g(t).
Definition of the Ricci tensor implies that

ma
Rij(t) = Rij(0) = agi; (0), Rgry = —

Hence, the HRBH flow on (M, ¢(0)) yields

92c(t)gi;(0))

92 = —2ag;;(0) + 2pmag;;(0) + 2ng:;(0),

d?c(t)
ot?

this gives = —2a + 2pma + 2n. The solution of this ODE is as follows
p(t) = (=2X + 2pmA + 2n)t> + vt + 1.
Then the Einstein metrics preserves by the HRBH flow.

Confilcts of Interest. The author declares that there are no conflicts of interest
regarding the publication of this article.

References

[1] S. Azami, Ricci-Bourguignon flow coupled with harmonic map, Int. J. Math.
30 (10) (2019) 1950049.

[2] S. Azami, Harmonic-hyperbolic geometric flow, Flectron. J. Diff. Equ. 2017
(165) (2017) 1 —9.

[3] S. Brendle and R. Schoen, Manifolds with 1/4-pinched curvature are space
forms, J. Amer. Math. Soc. 22 (1) (2009) 287 — 307.

[4] G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri, The
Ricci-Bourguignon flow, Pacific J. Math. 287 (2) (2015) 337 — 370.

[5] W. R. Dai, D. X. Kong and K. Liu, Hyperbolic geometric flow (I): short-time
existence and nonlinear stability, Pure Appl. Math. Q. 6 (2010) 331 — 359.

[6] D. DeTurck, Deforming metrics in direction of their Ricci tensors, J. Diff.
Geom. 18 (1983) 157 — 162.

[7] J. Eells and J. Sampson, Harmonic mapping of Riemannian manifolds, Amer.
J. Math. 86 (1964) 109 — 169.

[8] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom.
17 (1982) 255 — 306.

[9] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure
Appl. Math. 33 (1980) 43 — 101.



76 S. Azami

[10] B. List, Evolution of an extended Ricci flow system, Comm. Anal Geom. 16
(5) (2008) 1007 — 1048.

[11] R. Miiller, Ricci flow coupled with harmonic map flow, Ann. Sci. Ec. Norm.
Supér 45 (2012) 101 — 142.

[12] J. Nash, The embedding problem for Riemannian manifolds, Ann. Math. 63
(2) (1956) 20 — 63.

[13] G. Perelman, The entropy formula for the Ricci flow and its geometric appli-
cations, Arxiv:math/0211159v1 (2002).

Shahroud Azami

Department of Pure Mathematics,
Faculty of Science,

Imam Khomeini International University,
Qazvin, Iran

e-mail: azami@sci.ikiu.ac.ir



