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Abstract

This article addresses the following biharmonic type of the Kirchhoff-
Schrödinger-Maxwell system;

∆2w − (a1 + b1
∫

RN

|∇w|2)∆w + ηψw = q(w) in RN ,

−∆ψ = ηw2 in RN ,
(bKSM)

in which a1, b1 and η are fixed positive numbers and q is a continuous real
valued function in R. We are going to prove the existence solution for this sys-
tem via variational methods, delicate cut-off technique and Pohozaev iden-
tity.
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1. Introduction
This note deals with the following system of nonlinear Kirchhoff-Schrödinger-
Maxwell equations of biharmonic type∆2w − (a1 + b1

∫
RN

|∇w|2)∆w + ηψw = q(w) in RN ,

−∆ψ = ηw2 in RN ,
(bKSM)

where a1, b1 and η are fixed positive real numbers, N ≥ 5 and the operator ∆2w =
∆(∆w) is biharmonic operator. We take that into account the nonlinear term q
has the following properties:

(q1) q is a real valued continuous map on R.

(q2) −∞ < lim
s→0+

inf q(s)
s ≤ lim

s→0+
sup q(s)

s = −m < 0.

(q3) But at infinity −∞ ≤ lim
s→+∞

sup q(s)

s2∗−1 ≤ 0.

(q4) For a suitable ξ > 0, Q(ξ) :=
∫ ξ

· q(s)ds > 0.

Note that this type of properties for data q during the study of a nonlinear scalar
field was first introduced by Berestyci and Lions [9]. using these properties and
minimizing arguments, they showed the existence of a ground state solution w ∈
H1(RN ) for

−∆w = q(w),

where N ≥ 3.
Regardless of the first term and when η = 0 and if RN is changes to a smooth

bounded domain Ω, then the system of equations (bKSM) would reduced to the
following equation of Kirchhoff type

−(a1 + b1

∫
Ω

|∇w|2)∆w = q(w), x ∈ Ω.

This equation is relevant to the changeless analogue of

ρ
∂2w

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣∂w∂x
∣∣∣∣2 dx

)
∂2w

∂x2
= 0,

which was studied by Kirchhoff in [17], for the case that ρ, ρ0, h, E and L are
real constants, which it expands the classical D’Alembert’s wave equation for free
vibrations of elastic strings. In this model, it is considered the changes in length of
the string, where h is area of cross-section, E is the Young modules of the material,
ρ and ρ0 are represented the mass density and the primary traction respectively.
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For example, from the application of Kirchhoff law, we can refer to the celebrated
paper by C. Tunç and e.al [14] which represented the discrete nonlinear transmis-
sion is given through the modified Zakharov-Kuznetsov equation that is expressed
by Duan when he implemented the Kirchhoff law. Biharmonic equations have nu-
merous applications in solid and fluid mechanics, but they are hard to solve due to
the presence of fourth-order derivative terms, especially in complicated geometries.
Generally biharmonic equations are some kind of fourth-order partial differential
equations which arises in several branches of sciences for example in the study of
travelling wave, Stokes flows, static deflection of an elastic plate in a fluid, vertical
wavy wall, in suspension bridge and electrical engineering. Moreover, it is a math-
ematical model of some thin structures that react elastically to external forces(see
[1, 3]). C. Tunç and et al. [13] studied about flow features and heat transport
inside enclosure which its principal objective is to examine the impacts of Grashof
number, aspect ratio, waviness on the thermal variation, and flow stream of free
convection inside a wavy compartment covered with Newtonian fluid. F. Wang
and et al. [20] studied the following biharmonic elliptic equations:∆2w − λ(a+ b

∫
Ω

|∇w|2)∆w = f(x,w) in Ω,

w = 0, ∆w = 0, on ∂Ω,

where λ is a positive parameter, a, b are positive constants, Ω ⊂ RN is a bounded
smooth domain and the function f has the properties of a locally Lipschitz con-
tinuous. They showed existence of a non-trivial solution for this system via the
mountain pass techniques and trunction method.

Regardless of the first sentence and the case that a1 = 1, b1 = 0 and N = 3,
(bKSM) reduced to the following known as the nonlinear electrostatic Schrödinger-
Poisson system {

−∆u+ qψw = g(u) in R3,

−∆ψ = qu2 in R3,
(SM)

where
g(u) = −u+ |u|p−1u.

(see [2, 5, 7]). Moreover, the linear case and asymptotic linear form of (SM) have
been investigated in [11, 12] but for a bounded domain and Neumann conditions.

A. Azzollini and e.al studied (SM) but for the same general hypothesis intro-
duced by Berestycki and Lions [6]. Under motivated by Azzollini celebrated article
we would show the existence of at least a nontrivial solution for (bKSM) by ap-
plying Pohozaev manifold combined with the monotone trick of L. Jeanjean [15]
(see Section 4).

Main result of this article under review and writing is as follows:

Theorem 1.1. If the typotheses (q1) − (q4) are correct, then there is a constant
η0 > 0 such that for any 0 < η < η0, (bKSM) possesses a non-trivial positive
radial solution (w,ψ) in H2(RN )×D2,2(RN ).
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In order to reach our conclusion, we have to overcome two important prob-
lems. First one is that we do not propose some usual conditions, namely q(s)

s2∗−1

is increasing in (0,+∞) and existence of ν > 2 such that 0 < νQ(s) ≤ q(s)s
for all s ∈ R (Ambrosetti-Rabinowitz type condition) which would lead us in
the discussion of geometric assumptions to standard mountain pass arguments for
its corresponding energy functional and improving the boundedness of its Palais-
Smale sequence ((PS) for short). Second one is that the effect of the competition
of the two nonlocal terms with the nonlinear item q makes some difficulties, for
instance, nonlocal expressions (

∫
RN

|∇w|2)2 and
∫
RN

ψww
2 are too obstacles for us-

ing variational method, so by using the cut-off function we can achieve the goal,
where cut-off function is a technique inspired by L. Jeanjean [15] for controlling
the nonlocal nonlinear term

∫
RN

ψww
2.

The organization of the contents of this article is as follows. In Section 3.1,
we mention some of the concepts that are used to prove the main result. In
Section , some functional frameworks by a variational approach are given. Section 2
deal with a sequence the modified functional that provide us situation to use
the mountain pass theorem. In Section 3 we will prove the existence of radial
solutions for problem (bKSM). Section 4 contains proof of Pohozaev identity as a
powerful and fundamental tool in our arguments. In Section 5 we will prove main
Theorem 1.1. Finally, Section 6 is devoted to the conclusion.

2. Preliminaries
We briefly describe the natural framework to treat solution for the problem. In the
paper it is understood that all functions, unless otherwise stated, are real-valued,
but for simplicity we write Ls(RN ), H2(RN ), . . . , and for

• Given any 1 ≤ s ≤ +∞, ∥·∥s is notation of norm for the Lebesgue space
Ls(RN );

• H2(RN ) is stand for usual Sobolev space endowed with the following norm:

∥w∥2 :=

∫
RN

|∆w|2 + a1

∫
RN

|∇w|2 +
∫
RN

w2.

• D2,2(RN ) is completion of C∞
0 (RN ) by the following norm

∥w∥2D2,2(RN ) :=

∫
RN

|∆w|2 + a1

∫
RN

|∇w|2.

It is easy to understand that system (bKSM) can be changed to a single
equation. In fact, for all w in H2(RN ), considering on D2,2(RN ) by

Lw(υ) :=

∫
RN

w2υ.
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Then by applying the well- known Hölder inequality and the applied theorem
of Sobolev embedding, we deduce the following relation

|Lw(υ)| ≤

 ∫
RN

(w2)
2∗

2∗−1


2∗−1
2∗
 ∫

RN

|υ|2
∗

 1
2∗

≤ C|w|222∗
2∗−1

∥υ∥D,

for all υ ∈ D2,2(RN).

Thanks to the Lax-Milgram theorem, there is only one ψw in D2,2(RN ) such
that ∫

RN

∇ψw∇υ = η

∫
RN

w2υ, for any υ in D2,2(RN ).

In fact, ψw satisfies as a solution in the Maxwell equation

−∆ψ = ηw2 in RN , (1)

in a weak sense. On the other hand, (1) has the following form:

ψw(x) =
η

4π

∫
RN

w2(y)

|x− y|
dy.

• Throught this note we introduced BR as the open ball with radius R and
centered at origin and also ∂BR denotes it’s boundary,

• For simplicity, we set α := 22∗

2∗−1 .

3. Functional Setting
Before starting the details about proving the Theorem 1.1, we state the following
famous facts that will be essential later to achieve the main result (see, for instance
[7, 8, 4, 18]).

Lemma 3.1. Given any w belongs to H2(RN ), The following relationships are
hold:

(i) ψw ≥ 0 and ∥ψw∥2D2,2(RN ) = η
∫
RN

ψww
2.

(ii) For any θ > 0, ψwθ(x) = θ2ψw(
x
θ ), where wθ(x) = w(xθ ).

(iii) There exist c, c′ > 0 independent of any choice w ∈ H2(RN ) such that

∥ψw∥D2,2(RN ) ≤ cη∥w∥2α,
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and

∫
RN

ψww
2 ≤ c′η∥w∥4α.

(iv) ψw is a radial function if w is radial.

(v) Converging weakly a sequence (wn) to w in H2
r (RN ) implies that converging

of ψwn to ψw in D2,2(RN ) and converging of
∫
RN

ψwnw
2
n to

∫
RN

ψww
2.

Inspired by [9], for given ξ, set s0 := +∞ if q(s) ̸= 0 and if s ≥ ξ then
s0 := min {s ∈ [ξ,+∞)|q(s) = 0}. Considering q̃ : R → R in which

q̃(s) =


q(s) [0, s0],

0 R+\[0, s0],
(q(−s)−ms)+ − q(−s) R−,

where m is a constant given by hypothesis (q2). It is direct to verify that q̃ holds
too in conditions mentioned for q.
Remark 1. Consider non-trivial solution w ∈ H2(RN ) of (bKSM) but with q̃
instead of q. From the maximum principle and Lemma 3.1(i) we may assume that
w > 0 and so is an upper bound for w, which means precisely that w is in fact a
solution for (bKSM) but for q.

As already observed in Remark 1, we may assume q̃ instead of q but for sim-
plicity we denote again by q. This substitution implies that q satisfies the stronger
condition

lim
s−→±∞

q(s)

s2∗−1
= 0. (2)

Furthermore, for s ≥ 0, define

q1(s) :=

{
0 if s < 0,

(q(s) +ms)
+ if s ≥ 0.

q2(s) := q1(s)− q(s), if s ∈ R.

From the following limits

lim
s−→0

q1(s)

s
= 0,

lim
s−→±∞

q1(s)

s2∗−1
= 0, (3)

and since

q2(s) ≥ ms, ∀ s ≥ 0, (4)
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for any ϵ > 0 one can find cϵ > 0 in which

q1(s) ≤ cϵs
2∗−1 + ϵq2(s), ∀ s ≥ 0. (5)

Set

Qi(t) :=

∫ t

0

qi(s)ds, i = 1, 2 ,

then by (4) and (5),

Q2(s) ≥
m

2
s2, ∀ s ∈ R, (6)

and

Q1(s) ≤
cϵ
2∗
s2

∗
+ ϵQ2(s), ∀ s ∈ R. (7)

It is clear that the solutions (w,ψ) ∈ H2(RN ) × D2,2(RN ) of (bKSM) are the
critical points for the following functional εη : H2(RN )×D2,2(RN ) → R, defined
as

εη(w,ψ) :=
1

2

∫
RN

|∆w|2 + a1
2

∫
RN

|∇w|2

+
b1
4
(

∫
RN

|∇w|2)2 − 1

4

∫
RN

|∇ψ|2 + η

2

∫
RN

ψw2 −
∫
RN

Q(w).

It is clear to see that εη is both from below and from above unbounded on infinite
dimensional subspace. We can change this indefiniteness behavior by using the
reduction method [7, 8] which it lead us to one variable functional.

Multiplying equation −∆ψw = ηw2 by ψw and using integration by parts we
deduce ∫

RN

|∇ψw|2dx = η

∫
RN

ψww
2dx.

Then, changes to the following reduced form

Iη(w) =
1

2

∫
RN

|∆w|2 + a1
2

∫
RN

|∇w|2 + b1
4
(

∫
RN

|∇w|2)2 + η

4

∫
RN

ψww
2 −

∫
RN

Q(w).

Therefore, it suffices to show that w is a solution of the desired function Iη on
H2

r (RN ), that is a critical point that leads us to the intended destination.

4. The Perturbed Functional
As previously mentioned in the beginning, because of the existence of two ex-
pressions (

∫
RN

|∇w|2)2 and
∫
RN

ψww
2 in Iη, in order to employ the mountain-pass
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geometry and the boundedness of (PS) sequences for the functional Iη, following
[16] we consider the cut-off function χ in C∞(R+,R) which satisfies in the following
conditions: 

χ(s) = 1, for s ∈ [0, 1],

0 ≤ χ(s) ≤ 1, for s ∈ (1, 2),

χ(s) = 0, for s ∈ [2,+∞),

∥χ′∥∞ ≤ 2.

(8)

Define
KT (w) := χ

(
∥w∥αα
Tα

)
,

where T > 0 and α was introduced in previous section. Here, we consider the
following modified form of Iη as functional ITη : H2

r (RN ) → R defined by

ITη (w) =
1

2

∫
RN

|∆w|2+ a1
2

∫
RN

|∇w|2+ b1
4
(

∫
RN

|∇w|2)2+ η

4
KT (w)

∫
RN

ψww
2−
∫
RN

Q(w).

It is direct to see that any critical point w of ITη in which ∥w∥α ≤ T is a critical
point of Iη too. Since, q does not satisfy in the (AR) type condition, so we may
not able to obtain directly that the (PS) sequences are bounded. To preponderate
of this difficultly, we recall and use the following result [15] of L. Jeanjean.

Theorem 4.1. Assume that X is a Banach space equipped with a norm ∥·∥X and
J ⊂ R+ is an given interval. And {Iτ}τ∈J is a family of C1-functionals on X of
the form

Iτ (w) = A(w)− τB(w), ∀ τ ∈ J,

in which B(w) is nonnegative for all w in X, Iτ (0) = 0 and either A(w) → +∞
or B(w) → +∞ when ∥w∥X → ∞. For any τ ∈ J , set

Στ := {σ ∈ C([0, 1], X)|Iτ (σ(1)) < 0, σ(0) = 0} . (9)

If for any τ belongs to J, Στ is a nonempty set and

cτ := inf
σ∈Στ

max
t∈[0,1]

Iτ (σ(t)),

is positive, then for almost every τ ∈ J there exists {υn}n ⊂ X satisfying in the
following:

(i) {υn} is a bounded sequence;

(ii) Iτ (υn) approaches to cτ as n→ ∞;

(iii) I ′τ (υn) approaches to 0 in X ′ the dual of X as n→ ∞.
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For space X := H2
r (RN ), we consider the following functionals:

A(w) :=
1

2

∫
RN

|∆w|2 + a1
2

∫
RN

|∇w|2 + b1
4
(

∫
RN

|∇w|2)2 + η

4
KT (w)

∫
RN

ψww
2 +

∫
RN

Q2(w),

B(w) :=

∫
RN

Q1(w).

One can directly see that, A(w) approaches to +∞ as ∥w∥ → +∞ and B(w) ≥
0, for any w ∈ H2

r (RN ).
The perturbed functional is defined as follows

ITη,τ (w) =
1

2

∫
RN

|∆w|2 + a1
2

∫
RN

|∇w|2 + b1
4
(

∫
RN

|∇w|2)2

+
η

4
KT (w)

∫
RN

ψww
2 +

∫
RN

Q2(w)− τ

∫
RN

Q1(w).

It can be seen easily and without difficulty ITη,τ ∈ C1(H2(RN ),R) and for any
w, υ ∈ H2(RN ), by the above functional and using Gateaux derivative, i.e., by
replacing w + tυ instead of w and by taking the derivative of t and putting t = 0,
we obtain

⟨(ITη,τ )′(w), υ⟩ =
∫
RN

∆w.∆υ + a1

∫
RN

∇w.∇υ + b1

∫
RN

|∇w|2
∫
RN

∇w.∇υ

+ ηKT (w)

∫
RN

ψwwυ +
ηα

4Tα
χ′
(
∥w∥αα
Tα

) ∫
RN

ψww
2

∫
RN

|w|α−2wυ

+

∫
RN

q2(w)υ − τ

∫
RN

q1(w)υ.

In order to exploit Theorem 1.1, we require an appropriate interval J , in fact
Στ ̸= ψ, for any τ ∈ J and (9) holds.

Based on [9], and (q4), there exists a function z in H2
r (RN ) such that the

following relation ∫
RN

Q1(z)−
∫
RN

Q2(z) =

∫
RN

Q(z) > 0,

holds.
Then there is 0 < δ̄ < 1 in which

δ̄

∫
RN

Q1(z)−
∫
RN

Q2(z) > 0. (10)
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We consider the interval J := [δ̄, 1].
The following Lemma ensures that ITη,τ satisfies in conditions of the mountain-

pass geometry.

Lemma 4.2. Suppose that conditions (q1)− (q4) hold. Then for any τ ∈
[
δ̄, 1
]
,

(i) There are two constants ρ, c̃ > 0 in which ITη,τ (w) ≥ c̃ > 0 for all w in H2
r (RN )

with ∥w∥ = ρ;

(ii) There is e in H2
r (RN )\{0} such that ITη,τ (e) < 0;

(iii) There is a positive constant c̃ > 0 in which

cτ ≥ c̃ ≥ max
{
ITη,τ (0), I

T
η,τ (e)

}
,

where
cτ := inf

σ∈Σ
max
t∈[0,1]

ITη,τ (σ(t)),

and
Σ :=

{
σ ∈ C

(
[0, 1],H2

r (RN )
)
: σ(1) = e, σ(0) = 0

}
.

Proof. (i) For any w ∈ H2
r (RN ) and τ ∈ [δ̄, 1], using (6) and (7) for ϵ < 1,

ITη,τ (w) ≥ITη,1(w)

=
1

2

∫
RN

|∆w|2 + a1
2

∫
RN

|∇w|2 + b1
4
(

∫
RN

|∇w|2)2 + η

4
KT (w)

∫
RN

ψww
2

+

∫
RN

Q2(w)−
∫
RN

Q1(w)

≥1

2
(

∫
RN

|∆w|2 + a1

∫
RN

|∇w|2) + (1− ϵ)η

∫
RN

w2 − cϵ
2∗

|w|2
∗

2∗

≥β0∥w∥2 − β1∥w∥2
∗
.

This is positive for ∥w∥ small enough.
Moreover, thanks to Sobolev embedding, one can find ρ, c̃ > 0 such that
ITη,τ (w) ≥ c̃ > 0 for ∥w∥ = ρ and for small enough τ ∈ [δ̄, 1].

(ii) Fix τ ∈ J and θ̄ > 0 and z̄ := z( .
θ̄
). We define σ : [0, 1] → H2

r (RN ) as the
following

σ(t) :=

{
0, if t = 0,

z̄( .t ), if 0 < t ≤ 1.
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This map is a continuous pass from 0 to z̄. Since τ > δ̄, by simple computa-
tion we have

ITη,τ (σ(1)) ≤ ITη,δ̄(σ(1))

=
θ̄N−4

2

∫
RN

|∆z|2 + a1θ̄
N−2

2

∫
RN

|∇z|2 + b1θ̄
2N−4

4
(

∫
RN

|∇z|2)2

+
η

4
θ̄N+2χ

(
θ̄N∥z∥αα
Tα

) ∫
RN

ψzz
2 + θ̄N (

∫
RN

Q2(z)− δ̄

∫
RN

Q1(z)).

(8) and (10) imply that ITη,τ (σ(1)) < 0, provided we choose θ̄ sufficiently
large. Therefore, (ii) can be deduced for e = σ(1).

(iii) Fix τ ∈ [δ̄, 1] and σ ∈ Σ. Then ITη,τ (σ(1)) < 0 and σ(0) = 0, so ∥σ(1)∥ > ρ.
Set q(t) := ∥σ(t)∥ : [0, 1] → R, then q is a continuous map and

q(0) =∥σ(0)∥ = 0,

q(1) =∥σ(1)∥ > ρ.

Mean value theorem implies that the existence of a constant tσ ∈ (0, 1) in
which q(tσ) = ρ. It follows that ∥σ(tσ)∥ = ρ. Therefore, by (ii)

cτ ≥ inf
σ∈Σ

ITη,τ (σ(tσ)) ≥ c̃ > 0 = max
{
ITη,τ (0), I

T
η,τ (σ(1))

}
,

for any τ ∈ [δ̄, 1].

Remark 2. proof of (ii) in Lemma 4.2 implies the existence σ ∈ C
(
[0, 1],H2

r (RN )
)

in which σ(0) = 0 and ITη,τ (σ(1)) < 0, i.e., σ ∈ Σ and so Σ ̸= ψ.

It is remarkable that Theorem 4.1 and Lemma 4.2 for almost any τ ∈ [δ̄, 1]
imply the existence of boundedness a (PS)cη,τ -sequences for ITη,τ , i.e., there exists
a sequence {uτn} ⊂ H2

r (RN ) such that, ITη,τ (wτ
n) → cη,τ and

(
ITη,τ

)′
(wτ

n) → 0.
In what follows, we recall a compactness result due to Strauss which will be

apply Lemma 5.1.

Lemma 4.3. [19] Suppose two continuous function P , P ′ : R → R satisfying

lim
t→∞

P (t)

P ′(t)
= 0,

(υn)n, υ and w1 measurable functions from RN to R in which

sup
n

∫
RN

|P ′(υn(x))w1|dx < +∞,
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and P (υn(x)) → υ(x) a.e. in RN . Then (P (υn(x))− υ)w1 → 0 in L1(B), for any
bounded Borel set B.
Moreover, if

lim
s→0

P (s)

P ′(s)
= 0,

and
lim
x→∞

sup
n

|υn(x)| = 0,

then (P (υn)− υ)w1 → 0, in L1(RN ).

5. Existence Radial Solution
In this section we are going to prove that problem (bKSM) has a radial solution
with asymptotic behavior with respect to the parameter τ .

Lemma 5.1. Assume that (q1) − (q4) hold. Let {wn} ⊂ H2
r (RN ) is a bounded

sequence in which

ITη,τ (wn) ≤ c and
(
ITη,τ

)′
(wn) → 0. (11)

Then for any τ ∈ [δ̄, 1], {wn} has a convergent subsequence(strongly).

Proof. Since {wn} is a bounded sequence, we may assume that, up to subsequence,
it is a weak convergence sequence w in H2

r (RN ) such that
wn ⇀ w in H2

r (RN ), (12)
wn → w a.e in RN , (13)
wn → w in Lp(RN ), 2 < p < 2∗. (14)

It is direct to see that
∫
∆wn . ∆w1 →

∫
∆w . ∆w1 for any w1 ∈ C∞

0 (RN ).
Applying Lemma 4.3 for P (s) := qi(s), i = 1, 2 and P ′(s) := |s|2∗−1,

υn = wn, υ := qi(w), i = 1, 2 and from (2), (3), (14) yields∫
RN

qi(wn)w1 →
∫
RN

qi(w)w1. i = 1, 2 as n→ +∞

(13) and [[18], Lemma 2.1] imply that

KT (wn)

∫
RN

ψwn .wnw1 → KT (w)

∫
RN

ψw.ww1,

and

χ′
(
∥wn∥αα
Tα

) ∫
RN

ψwnw
2
n

∫
RN

|wn|
2

2∗−1wnw1 → χ′
(
∥w∥αα
Tα

) ∫
RN

ψww
2

∫
RN

|w|
2

2∗−1ww1,
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as n→ +∞.
From (11) and (12), we have (

ITη,τ
)′
(w) = 0,

Hence, ∫
RN

|∆w|2 + a1

∫
RN

|∇w|2 + b1(

∫
RN

|∇w|2)2 + ηKT (w)

∫
RN

ψww
2

+
ηα

4Tα
χ′
(
∥w∥αα
Tα

)
∥w∥αα

∫
RN

ψww
2 +

∫
RN

wq2(w) = τ

∫
RN

wq1(w). (15)

Weak lower semicontinuity of norms imply that∫
RN

|∆w|2 + a1

∫
RN

|∇w|2 + b1(

∫
RN

|∇w|2)2

≤ lim
n

inf

 ∫
RN

|∆wn|2 + a1

∫
RN

|∇wn|2 + b1(

∫
RN

|∇wn|2)2
 . (16)

Thanks to (13) and Lemma 3.1(v), we get that

KT (wn)

∫
RN

ψwnw
2
n → KT (w)

∫
RN

ψww
2, (17)

and

χ′
(
∥wn∥αα
Tα

)
∥wn∥αα

∫
RN

ψwnw
2
n → χ′

(
∥w∥αα
Tα

)
∥w∥αα

∫
RN

ψww
2. (18)

If we applying Lemma 4.3 to P (s) = q1(s)s, P ′(s) = s2 + s2
∗

(where s ≥ 0),
υn = wn, υ = wq1(w), and w1 ≡ 1, then according to (2), (3) and (14), we deduce
that ∫

RN

wnq1(wn) →
∫
RN

wq1(w). (19)

By applying Fatou’s Lemma and (14) we deduce the following relation∫
RN

wq2(w) ≤ lim
n→∞

inf

∫
RN

wnq2(wn). (20)
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On the other hand however, the fact that ⟨I ′τ (wn), wn⟩ converges to zero as n →
+∞ together with (15), (17), (18), (19) and (20) imply that

lim sup
n

 ∫
RN

|∆wn|2 + a1

∫
RN

|∇wn|2 + b1(

∫
RN

|∇wn|2)2


= lim sup
n

τ ∫
RN

q1(wn)wn −
∫
RN

wnq2(wn) − ηKT (wn)

∫
RN

ψwnw
2
n

− ηα

4Tα
χ′
(
∥wn∥αα
Tα

)
∥wn∥αα

∫
RN

ψwnw
2
n


≤ τ

∫
RN

wq1(w)−
∫
RN

wq2(w)− ηKT (w)

∫
RN

ψww
2

− ηα

4Tα
χ′
(
∥w∥αα
Tα

)
∥w∥αα

∫
RN

ψww
2

=

∫
RN

|∆w|2 + a1

∫
RN

|∇w|2 + b1(

∫
RN

|∇w|2)2. (21)

From (16) and (21)

lim
n

 ∫
RN

|∆wn|2 + a1

∫
RN

|∇wn|2 + b1(

∫
RN

|∇wn|2)2
 =

∫
RN

|∆w|2 + a1

∫
RN

|∇w|2

+b1(

∫
RN

|∇w|2)2. (22)

Hence,

lim
n

∫
RN

wnq2(wn) =

∫
RN

wq2(w). (23)

Since q2(s)s = ms2+h(s), where h is a continuous and positive function, so Fatou’s
Lemma implies that ∫

RN

h(w) ≤ lim inf
n

∫
RN

h(wn),
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and ∫
RN

w2 ≤ lim inf
n

∫
RN

w2
n.

These two inequalities and (23) imply that going if necessary to a subsequence,
we may assume that ∫

RN

w2 = lim
n

∫
RN

w2
n,

and by (22), strong convergence of wn → w in H2
r (RN ) is concluded.

Lemma 5.2. Assume that (q1)− (q4) hold. Then for almost every τ ∈ [δ̄, 1], there
exists wτ in H2

r (RN )\{0} such that

ITη,τ (w
τ ) = cτ ,

(
ITη,τ

)′
(wτ ) = 0. (24)

Proof. By the Theorem 4.1, for almost every τ ∈ [δ̄, 1], there is a bounded sequence
(wτ

n)n in H2
r (RN ) such that

ITη,τ (w
τ
n) →cτ ; (25)(

ITη,τ
)′
(wτ

n) →0 in
(
H2

r (RN )
)′
. (26)

From Lemma 5.1, up to a subsequence, we may assume that there exists wτ

in H2
r (RN ) such that wτ

n converges to wτ in H2
r (RN ). Due to the continuity

and uniquness of the limits ITη,τ and
(
ITη,τ

)′ and from (25) and (26) we conclude
(24).

In order to prove non-triviality of wτ , on the contrary, suppose that wτ = 0.
Then wτ

n → 0 in H2
r (RN ), implies that ITη,τ (wτ

n) → 0 which contradicts ITη,τ (wτ
n) →

cτ ≥ c̃ > 0 (by Lemma 4.2 (iii)). Therefore, wτ ̸= 0.
Given (τn)n ⊂ J , there exists (wn)n ⊂ H2

r (RN ) such that

ITη,τn(wn) = cτn ,
(
ITη,τn

)′
(wn) = 0. (27)

6. Application of Pohozaev Type Identity

This section is intended to show that sup
n
∥wn∥ ≤ T . To reach this goal, we need

the following result called Pohozaev identity which as a catalyst it plays a vital
role in proving the main theorem.
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Lemma 6.1. Fix τ ∈ [δ̄, 1]. If w,ψ ∈ H2
loc(RN ) solve

∆2w − (a1 + b1
∫
RN

|∇w|2)∆w

+ηKT (w)ψw + η α
Tαχ

′
(

∥w∥α
α

Tα

)
|w|

2
2∗−1w

∫
RN

ψw2 = q(w) in RN ,

−∆ψ = ηw2 in RN ,

(28)

then the following Pohozaev type identity hold.

N − 4

2

∫
RN

|∆w|2 + a1(N − 2)

2

∫
RN

|∇w|2 + b1(N − 2)

2
(

∫
RN

|∇w|2)2

+
(N + 2)η

4
KT (w)

∫
RN

ψw2 +
Nk

Tα
χ′
(
∥w∥αα
Tα

)
∥w∥αα

∫
RN

ψw2 = N

∫
RN

Q(w). (29)

Proof. According to the proof of [10], by multiplying the first equation of (28) by
x.∇w and doing integral by using integral parts by means of the Green’s formula
and simplifying it, we get∫

BR

(∆2w)(x.∇w)dx =−
(
N − 4

2

) ∫
BR

|∆w|2dx− 1

2

∫
∂BR

|∆w|2(x.υ)dσ

=−
(
N − 4

2

) ∫
BR

|∆w|2dx− R

2

∫
∂BR

|∆w|2dσ. (30)

Again, multiplying the second equation of (28) by x.∇w, and integrating by parts
by means of the Green’s formula, we have∫
BR

(a1 + b1

∫
BR

|∇w|2)∆w(x.∇w) =a1(N − 2)

2

∫
BR

|∇w|2 + b1(N − 2)

2
(

∫
BR

|∇w|2)2

+
a1
R

∫
∂BR

|x.∇w|2 − a1R

2

∫
∂BR

|∇w|2

+
b1
R

∫
BR

|∇w|2
∫

∂BR

|x.∇w|2

−b1R
2

∫
BR

|∇w|2
∫

∂BR

|∇w|2 . (31)

And also for third sentence of equation (28), as in the previous method with
multiply by x.∇w and integrating by parts by means of the Green’s formula, we
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have ∫
BR

ψw(x.∇w) =1

2

∫
BR

ψ∇(w2).x

=
1

2

∫
BR

∇(w2).ψx

=
1

2

∫
BR

∇(w2).ψ∇(
1

2
|x|2)

=− 1

2

∫
BR

w2∇(ψ∇(
1

2
|x|2)) + 1

2

∫
∂BR

w2ψx.υdσ

=− 1

2

∫
BR

w2(∇ψ · x)− N

2

∫
BR

w2ψ +
R

2

∫
∂BR

w2ψ. (32)

In the same way as before the treatment of the following sentence is much easier,
indeed we have∫

BR

q(w)(x.∇w) =
∫
BR

∇ (Q(w)) .x

=

∫
BR

∇ (Q(w)) .∇
(
1

2
|x|2
)

=−
∫
BR

NQ(w) +

∫
∂BR

Q(w)
∂

∂υ

(
1

2
|x|2
)
dσ

=−
∫
BR

NQ(w) +

∫
∂BR

Q(w)(x.υ)dσ

=−N

∫
BR

Q(w) +R

∫
∂BR

Q(w). (33)

And finally for the last sentence, we have∫
BR

|w|
2

2∗−1 w (x · ∇w) =2∗ − 1

2(2∗)

∫
BR

∇
(
|w|2(

2∗
2∗−1 )

)
· x

=
1

α

∫
BR

∇ (|w|α) · ∇
(
1

2
|x|2
)

=− N

α

∫
BR

|w|α +
1

α

∫
∂BR

|w|α(υ · x)dσ
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=− N

α

∫
BR

|w|α +
R

α

∫
∂BR

|w|α (34)

where as usual BR = {x ∈ RN , |x| < R} denotes the open ball in RN with radius
R, centered at origin . According to (30), (31), (32), (33) and (34)

−
(
N − 4

2

) ∫
BR

|∆w|2 − R

2

∫
∂BR

|∆w|2 −
(
a1(N − 2)

2

) ∫
BR

|∇w|2

−
(
b1(N − 2)

2

)
(

∫
BR

|∇w|2)2 − a1
R

∫
∂BR

|x · ∇w|2

+
a1R

2

∫
∂BR

|∇w|2 − b1
R

∫
BR

|∇w|2
∫

∂BR

|x.∇w|2 + b1R

2

∫
BR

|∇w|2
∫

∂BR

|∇w|2

− η

2
KT (w)

∫
BR

w2 (x · ∇ψ)− Nη

2
KT (w)

∫
BR

ψw2 +
Rη

2
KT (w)

∫
∂BR

ψw2

− Nη

Tα
χ′
(
∥w∥αα
Tα

) ∫
BR

ψw2

∫
BR

|w|α +
Rη

Tα
χ′
(
∥w∥αα
Tα

) ∫
BR

ψw2

∫
∂BR

|w|α

= −N
∫
BR

Q(w) +R

∫
∂BR

Q(w). (35)

Multiplying by x · ∇ψ the second equation and integrating on BR,

η

∫
BR

(x · ∇ψ)w2 = −N − 2

2

∫
BR

|∇ψ|2 + R

2

∫
∂BR

|∇ψ|2 − 1

R

∫
∂BR

|x · ∇ψ|2 . (36)

By placing the relation (36) in (35)

−
(
N − 4

2

) ∫
BR

|∆w|2

−
(
a1(N − 2)

2

) ∫
BR

|∇w|2 −
(
b1(N − 2)

2

)
(

∫
BR

|∇w|2)2 − Nη

2
KT (w)

∫
BR

ψw2

+
N − 2

4
KT (w)

∫
BR

|∇ψ|2 − Nη

Tα
χ′
(
∥w∥αα
Tα

) ∫
BR

ψw2

∫
BR

|w|α +N

∫
BR

Q(w)

=
R

2

∫
∂BR

|∆w|2 + a1
R

∫
∂BR

|x · ∇w|2 − a1R

2

∫
∂BR

|∇w|2 − 1

2R
KT (w)

∫
∂BR

|x · ∇ψ|2

− R

4
KT (w)

∫
∂BR

|∇ψ|2 − Rη

2
KT (w)

∫
∂BR

ψw2
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+R

∫
∂BR

Q(w)− Rη

Tα
χ′
(
∥w∥αα
Tα

) ∫
∂BR

ψw2

∫
∂BR

|w|α

+
b1
R

∫
BR

|∇w|2
∫

∂BR

|x · ∇w|2 − b1R

2

∫
BR

|∇w|2
∫

∂BR

|∇w|2.

As in [9], the right-hand side tends to zero for at least one suitably chosen
sequence R = Rn → +∞ as n→ ∞ and so

− N − 4

2

∫
RN

|∆w|2 − a1(N − 2)

2

∫
BR

|∇w|2

− b1(N − 2)

2
(

∫
BR

|∇w|2)2 − Nη

2
KT (w)

∫
RN

ψw2

+
N − 2

4
KT (w)

∫
RN

|∇ψ|2 − Nη

Tα
χ′
(
∥w∥αα
Tα

) ∫
RN

ψw2

∫
RN

|w|α

+N

∫
RN

Q(w) = 0.

The standard regularity results show that if (w,ψw) ∈ H2(RN ) × D2,2(RN ) is
a solution of (28) then w,ψw ∈ H2

Loc(RN ) and by (i) of Lemma 3.1, we deduce
(29).

It what follows, we shall show ∥wn∥α ≤ T , which is a critical key in the proof
of existence of solutions to (bKSM).

Lemma 6.2. Suppose that q satisfies (q1)−(q4) and wn is a critical point (for any
n) for ITη,τn at level cτn corresponding to (27). Then for large enough T > 0, there
exists η0 = η0(T ) such that, up to a subsequence, for any 0 < η < η0, ∥wn∥α ≤ T ,
for any n ≥ 1.

Proof. Since
(
ITη,τn

)′
(wn) = 0, so wn satisfies the following Pohozaev type identity

N − 4

2

∫
RN

|∆wn|2 +
a1(N − 2)

2

∫
RN

|∇wn|2 +
b1(N − 2)

2
(

∫
RN

|∇wn|2)2

+
(N + 2)η

4
KT (wn)

∫
RN

ψwnw
2
n +

Nη

Tα
χ′
(
∥wn∥αα
Tα

)
∥wn∥αα

∫
RN

ψwnw
2
n

= Nτn

∫
RN

Q1(wn)−N

∫
RN

Q2(wn). (37)
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Multiplying the first of statement of (27) by N and subtracting from the (37), we
obtain

2

∫
RN

|∆wn|2 + a1

∫
RN

|∇wn|2 +
(4−N)b1

4
(

∫
RN

|∇wn|2)2 −
η

2
KT (wn)

∫
RN

ψwnw
2
n

− Nη

Tα
χ′
(
∥wn∥αα
Tα

)
∥wn∥αα

∫
RN

ψwnw
2
n = Ncτn .

Lemma 3.1(iii) implies that

2

∫
RN

|∆wn|2 + a1

∫
RN

|∇wn|2 +
(4−N)b1

4
(

∫
RN

|∇wn|2)2

=Ncτn +
η

2
KT (wn)

∫
RN

ψwnw
2
n +

Nη

Tα
χ′
(
∥wn∥αα
Tα

)
∥wn∥αα

∫
RN

ψwnw
2
n

≤Ncτn + c1η
2KT (wn)∥wn∥4α + c2

η2

Tα
χ′
(
∥wn∥αα
Tα

)
∥wn∥4+α

α . (38)

We intend to estimate the right-hand side of the inequality (38).
About mountain-pass level, we have

cτn ≤max
θ̄
ITη,τn

(
z(
.

θ̄
)
)

≤max
θ̄

{ θ̄
N−4

2

∫
RN

|∆z|2 + a1θ̄
N−2

2

∫
RN

|∇z|2 + b1θ̄
2N−4

4
(

∫
RN

|∇z|2)2

+θ̄N

 ∫
RN

Q2(z)− δ̄

∫
RN

Q1(z)

}+max
θ̄

η4 θ̄N+2χ

(
θ̄N∥z∥αα
Tα

) ∫
RN

ψzz
2


=A1 +A2(T ). (39)

If θ̄N ≥ 2Tα

∥z∥α
α

then according to the relationship (8), A2(T ) = 0. Otherwise

θ̄N < 2Tα

∥z∥α
α
, so by Lemma 3.1(iii) and notice that α = 22∗

2∗−1 ,

A2(T ) ≤
η

4

(
2Tα

∥z∥αα

)N+2
N
∫
RN

ψzz
2 = c3η

2T 4. (40)

Similarly, we can also obtain that

c1η
2KT (wn)∥wn∥4α ≤c4η2T 4, (41)
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and

c2χ
′
(
∥wn∥αα
Tα

)
η2

Tα
∥wn∥4+α

α ≤c5η2T 4, (42)

By (38)-(42) we would have the following

2

∫
RN

|∆wn|2 + a1

∫
RN

|∇wn|2 +
(4−N)b1

4
(

∫
RN

|∇wn|2)2 ≤ NA1 + c6η
2T 4. (43)

In the other words, since ⟨
(
ITη,τn

)′
(wn), wn⟩ = 0, by (5)∫

RN

|∆wn|2 + a1

∫
RN

|∇wn|2 + b1(

∫
RN

|∇wn|2)2 + ηKT (wn)

∫
RN

ψwnw
2
n

+
ηα

4Tα
χ′
(
∥wn∥αα
Tα

)
∥wn∥αα

∫
RN

ψwnw
2
n +

∫
RN

wnq2(wn) = τn

∫
RN

wnq1(wn)

≤ c3

∫
RN

|wn|2
∗
+ ϵ

∫
RN

wnq2(wn). (44)

From (4), (43) and (44)

m(1− ϵ)

∫
RN

w2
n ≤(1− ϵ)

∫
RN

wnq2(wn)

≤cϵ
∫
RN

|wn|2
∗
− ηα

4Tα
χ′
(
∥wn∥αα
Tα

)
∥wn∥αα

∫
RN

ψwn
w2

n

≤c

 ∫
RN

|∆wn|2 + a1

∫
RN

|∇wn|2 +
(4−N)b1

4
(

∫
RN

|∇wn|2)2
 2∗

2

+c̄η2T 4

≤c
(
NA1 + c6η

2T 4
) 2∗

2 + c̄η2T 4. (45)

Therefore, (wn)n is bounded in L2(RN ). Now we will show that up to a subse-
quence ∥wn∥α ≤ T . If not, there is no subsequence uniformly bounded by T of
(wn)n by the α-norm. Then for a certain n̄

∥wn∥α > T, ∀n ≥ n̄. (46)

Without losing of totality, we may assume that (46) is true for any wn. (43) and
(45) imply that

T 2 < ∥wn∥2α ≤ c7 + c8η
2
(
T 2
)2∗

,
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which is not true for T large enough and η small enough: in fact there are T0 > 0

such that T 2
0 > c7 + 1 and η0 = η0(T0) such that c8η2

(
T 2
0

)2∗
< 1, for any η < η0,

which leads to a antagonism.

7. Proof of Theorem 1.1

By the process of the proof of Lemma 6.2, now it’s time to prove Theorem 1.1.

Proof of Theorem 1.1. Fix T, η0 as in Lemma 6.2 and consider any 0 < η < η0.
By (27) we can take a sequence {τn} ⊂ [δ̄, 1] such that τn ↗ 1 and a sequence
{wn} ⊂ H2

r (RN )\{0} in which

ITη,τn(wn) = cτn and
(
ITη,τn

)′
(wn) = 0.

According to Lemma 6.2 we may assume that ∥wn∥α ≤ T . Then by (8)

ITη,τn(wn) =
1

2

∫
RN

|∆wn|2 +
a1
2

∫
RN

|∇wn|2 +
b1
4
(

∫
RN

|∇wn|2)2 +
η

4

∫
RN

ψww
2

+

∫
RN

Q2(wn)− τn

∫
RN

Q1(wn). (47)

Moreover, according to the arguments of relationship (43) and (45), it shows the
boundedness of {wn} in H2

r (RN ).
As a result, it remains to be seen that {wn} is a (PS) sequence for Iη at the

level cη,1. Indeed, the boundedness of {wn} implies that {Iη(wn)} is bounded. By
(47), τn ↗ 1, then for any ψ ∈ C∞

0 (RN ),

⟨I ′η(wn), ψ⟩ = ⟨
(
ITη,τn

)′
(wn), ψ⟩+ (τn − 1)

∫
RN

q1(wn)ψ → 0 as n→ ∞.

Hence, I ′η(wn) → 0 as n → ∞. Moreover, left continuity of τ → cη,τ and
Lemma 4.2(iii) imply that

lim
n→∞

Iη(wn) = lim
n

ITη,τn(wn) + (τn − 1)

∫
RN

Q1(wn)

 = lim
n→∞

cη,τn = cη,1.

Therefore, {wn} is a bounded (PS) sequence of Iη. Then by using Lemma 5.1,
{wn} has a convergent subsequence, wn → wη strongly in H2

r (RN ). Consequently,
due to the continuity of the functional Iη and I ′η and the uniqueness of the limits
we deduce, I ′η(wη) = 0 and Iη(wη) = cη,1. By Lemma 4.2(iii) cη,1 ≥ c̃ > 0, which
implies that wη ̸= 0. Hence, wη is a non-trivial positive solution by Remark 1.
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8. Conclusion

The current paper introduced a fundamental relation to find nontrivial solution
in such a way that under some condition.Variable and topological methods are
powerful tools in solving nonlinear concrete boundary value problems that appear
in many disciplines where classical methods have failed. The ideas presented here
use inspirational analysis in the geometry of a mountain pass. The ridge theorem
is the result of great intuitive appeal as well as practical importance in determining
functional critical points, especially those occurring in the theory of ordinary dif-
ferential equations. The concept of Palais-Smale is introduced, which is the analog
compression in the variable account. both mountain pass and Palais-Smale use in
order to find critical points. The concept of Pohozaev identity has been proposed
and has many applications in fields such as fractional equations and semi-linear
equations, proving the existence and absence of nontrivial star-shaped solutions
for supercritical nonlinearities and elliptical PDEs. Pohozaev identity surrenders
to uniform formulas, unique continuation features, radial symmetry of solutions,
and unique results. It is also used in other fields such as hyperbolic equations,
harmonic maps, control theory and geometry. In this article, we have examined
all of them. We try to use these results in future studies.
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