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Abstract

For an important nonlinear acoustic model, the (2-+1)-dimensional Zabolot-
skaya —Khokhlov(ZK), a symmetry group and the optimal systems of the
symmetry subalgebra have been introduced. Then related symmetry reduc-
tions and similarity solutions have been presented via two-stage using of the
symmetry group method.
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1. Introduction

In fluid mechanics, the NavierStokes equations are nonlinear partial differential
equations which describe the motion of fluid substances, and they arise from ap-
plying Newton’s second law to fluid motion, together with the assumption that the
stress in the fluid is the sum of a diffusing viscous term and a pressure term, hence
describing viscous flow. A solution of the NavierStokes equations is a description
of the velocity of the fluid at a given point in space and time. The incompressible
NavierStokes equation have the inconvenient feature that there is no explicit mech-
anism for advancing the pressure in time. The Zabolotskaya—Khokhlov equation
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is a special type of the incompressible NavierStokes equation, and it is the math-
ematical model of the propagation phenomena in nonlinear acoustic beams. This
equation has been found from focus of russian mathematicians Lyubov Sergeyevna
Zabolotskaya and Rem Khokhlov, on developments in fluid mechanics and the cor-
responding models of nonlinear acoustic beams (ref to [4]). Indeed, the propagation
of a bounded two-dimensional acoustic beam in nonlinear medias is described by
the three dimensional Zabolotskaya—Khokhlov equation (ZK), with the following
form:

A(t7$7y7u’) = Ugt — (uﬁf)Q = Ulggy — Uyy = 07

where t,z > 0 and —00 < y < 4oo. In addition, the value of u = u(t, z,y)
is proportional to the deviation of the media density from the balanced density,
while the dimensionless variables ¢, z, y are expressed via the temporal t and spatial
variables r, y, as follows (ref to [1, 3]):

L
‘o 07 xr = s = —10),
mvﬂo 0 Hr Yy \l COU

where c¢q is the sound velocity in the media,y is the isentropic exponent, r is the
coordinate in the direction of beam propagation, u is a small parameter, and pq is
the balanced density.

1.1 Applying Symmetries to Solving Partial Differential
Equations

The idea of studying the differential equations by applying the symmetries implied
a new theory: the symmetry group theory, which is due to Sophus Lie!.

Figure 1: Marius Sophus Lie (1842-1899), Elie Cartan (1869-1951), Emmy Noether
(1882 -1935).

L Applying symmetries to solving differential equations was originally introduced by Sophus
Lie, Emmy Noether, and Elie Cartan, in 19th century.
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The symmetry group of a PDE is the largest Lie group of point transformations
acting on the space of the independent and dependent variables of the PDE, with a
principal property of conserving the set of solutions, namely, it leaves the equation
invariant. A symmetry group of a PDE leads to an algorithm to determine the
infinitesimal generators of the Lie group of point transformations admitted by the
PDE. Let A = 0 be a PDE of order k. Moreover, suppose that A has a Lie
symmetry group G. A vector field X on G is known as an infinitesimal symmetry,
if and only if it satisfys the condition of invariance of the equation under the
infinitesimal prolonged infinitesimal generators, namely:

pr® X (A) |azo = 0. (1)

The relation (1) results the characteristic system of ODEs, that by integrating of
this system, the corresponding ordinary invariants are followed.

Simpler forms of a differential equation are called its reductions. A reduction
has lower order, or involves fewer independent variables, than the original equa-
tion. Indeed, the order of a partial differential equation, or the number of its inde-
pendent variables can be reduced by one if it is invariant under a one-parameter
symmetry group. The symmetry method shows how to construct solutions of par-
tial differential equations (PDEs) by their symmetry groups. Similarity solutions
of a PDE are the solutions which are invariant under the symmetries. These solu-
tions are obtained by solving the reduction ODEs that are given from the PDE. In
this work, the nonlinear Zabolotskaya—Khokhlov equation is reduced to PDEs with
lesser number of independent variables, by the use of the symmetry group of the
ZK. Then, the obtained reductions are reduced to ordinary differential equations
reductions of same order, which their solutions are similarity solutions of the ZK
equation.

2. Symmetry Reductions of the ZK Equation

Recall that the associated Lie algebra to a Lie symmetry group is named a sym-
metry algebra, and the generators of a symmetry algebra are the same related
infinitesimal symmetries. We mention that the ZK is of order 2, the infinitesimal
symmetries of the ZK equation are gotten (ref to [2]):

1
v = —§(y +1%)0, — 0y + O,

Vg = —t0p — Oy + O, (2)
U3 = a;va
Vg = 815.

It is obvious that the vector fields (2) satisfy pr®v;(A) a0 =0 (i = 1,2,3,4).
On the other, the ZK equation involves three independent variables and one de-
pendent variable, thus it can be accounted as the total space E ~ R3*! with
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coordinates t, x,y,u. The below theorem illustrates the behavior of the symmetry
group on the space F.

Theorem 2.1. The symmetry group of the ZK equation, contains the following
transformations

(t,x,y,u) —(t + c16, @ + (ca + cst + cat® + csy)e + (6 + crt)e? + cge®, y+
(c7 + cot)e + c10e® + (c11 + ciat)e — cre?,u),
where €, ¢; (1 =1,2,...,12) are arbitrary numbers.

Proof. The one- parameter Lie point symmetry transformations can be obtained
as (ref to [2]):

exp(evy) : (t,x,y,u) — (t,x + (e — &)t — ey, y — et,u + &t),
exp(evs) : (t,x,y,u) — (t,x —et,y — e, u+¢),

exp(evs) : (8, @,y,u) — (L, x +€,y,u),

exp(evy) : (L, x,y,u) — (t +&,2,y,u).

Also, combining of the above transformations produces G ’s elements, and this
completes the proof. O

On the other, two s-dimensional symmetry subalgebras h; and hy corresponded
to H; and Hy symmetry subgrous are conjugate, if for an element g of the sym-
metry group, the relation Hy = gH;¢ ' is existing. The equivalence categories
of this relation are the optimal systems of symmetry subalgebras. Finding the
optimal systems of the ZK’s subalgebras gives:

Theorem 2.2. The optimal systems of the ZK’s symmetry subalgebras are ac-
cording to (ref to [2]):

1
01 = {(v3), (v1 + v3), (V2 + v3), (V3 + va), (V1 + V2 + v3), (V1 + V3 + Zv4),

) >
1 1
(va + v3 4+ v4), (V1 +v2 + 47]3+ 5 >}7

O = {{v1 + vo +v4,v3)},
O3 = {v1 + v4,v2,0v3) }.

Here, firstly the invariants associated with the members of the ZK’s optimal
systems are computed by integrating of the characteristic equations. Then with
the use of invariants the reduction formulas are obtained, which with substitution
of them the ZK’s reductions are deduced.

The results for (vs) = (9,) are gathered as Table 1.We explain a little about

dt de _ dy

Table 1: By integrating of the characteristic equation ¢ = G = ¢/ = %“, the

corresponding ordinary invariants t,y,u are followed. This invariants results the
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reduction formulas u(t,z,y) = s(w,2),t = w,y = z, that substituting of them

results Aj.

The results related to the rest members of the low dimensional optimal systems

are listed in Tables 2-9 (ref to [2]):

Table 1: Reductions and similarity solutions based on (vs).

159

Ordinary invariants of (v3) : ¢, y, u
Stage 1: | Reduction formulas: u(t,z,y) = s(w,z), t=w, y==z2
by (vs) | Reduced equation: Ay :s.. =0
Similarity solution: s = Fi(w)z + Fa(w),
where I, Fy are arbitrary C'°° functions
Table 2: Reductions and similarity solutions based on<113 + v4>.
Ordinary invariants of (vs +v4) : . —t,y,u
Stage 1: Reduction formulas: u(t, z,y) = s(w,z), t=z—w, y=2=2
by <U3 + v4> Reduced equation: Ay : (54 1)Syw + 82, + 5., =0
Symmetries of Ay : 81 = w0, + %z@z + (14 5)0s,
ﬁ2 = 8,27 53 = 8w
Ordinary invariants of <ﬁ1 — Bo + %ﬂ3> : \/%, ijfl
Stage 2-I: Reduction formulas: s(w, z) = v(f)(1 + 2w) — 1,

z=fVv1+2w+2

Agq: (f2v+vss — 5fovy + fQ’UJZc + 402 =0
Similarity solution: very huge and abnormal

by (B1 — B2 + 5P3) | Reduced equation:

Ordinary invariants of <62> Dow, s

Stage 2-1I: Reduction formulas: s(w, z) = v(f), w=f
by (f2) Reduced equation: Ays : (v 4 1vss +v7 =0
Similarity solution: v = —v/e1 f +¢c2 — 1
Ordinary invariants of <63> D 2,8
Stage 2-III: Reduction formulas: s(w, z) = v(f), 2= f
by <B3> Reduced equation: Ayz:vpr =0

Similarity solution: v =c1 f + ¢
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Table 3: Reductions and similarity solutions based on <111 + vg + 123>.

Ordinary invariants of (v1 + va + v3) :
2
t—z+ sy(l+1t)+ ;=25 y+u

1+t
Reduction formulas: u(t,z,y) = s(w,2) —y, t = w,
2
Stage 1: x=-—-z+ %y(l + w) % _?f’;fy
by Reduced equation:
As: (2w +1)%s — (w? + 2w — 2)?)s.,
<v1 +U2+’U3> +2(w+1)swz+2(w+1)s§ +s5.=0

Symmetries of As :
v = (z — i (iw4 +w? — %w2 — 5w) +9In(w + 1)) 0, + s0s,
Y2 = 0.

Ordinary invariants of (y1) : w,

S
—wi—4w3+6w2+144 In(w+1)+20w+162

Stage 2-I: Reduction formulas:
s(w,z) = v(f) (162 — f* — 43+ 62 +20f + 1441In(f + 1)),
by <’71>7 w = f

Reduced equation: As 1 : 16(f + 1)vs + 256(f + 1)v? +8v =0
Similarity solution: v = L

32(f+1)+ec1 VF+I
Stage 2-1I: Ordinary invariants of (y2) : w,s
by (y2) Reduced equation: trivial

Table 4: Reductions and similarity solutions based on<v2 + v3 + v4>.
Ordinary invariants of (vs + vs + vs4) : %tQ —t4z,t+y,u—t
Stage 1: Reduction formulas: u(t,z,y) = s(w,z) +¢, c=w+1t— %tQ,
y=z—1
by <v2 + v3 + v4> Reduced equation: Ag : Swz — S22 — ($ + 1)Sww — 5121, =0
Symmetries of Ag : A1 = (2 + 4w)0w + 220, + (4s + 3)0s,
Ao =0, Az = Oy
2wtz —4s—3
222 ! dwt22
Stage 2-1: Reduction formulas: s(w,z) = —f2*v(f) — 2, w= f2> -1
by </\1> Reduced equation:
Ag.1: (4f° = fPo)vgs + (6% — dfv)vy — f207 —v° =0
Similarity solution: very huge and abnormal
Ordinary invariants of (A2) : w,s
Stage 2-1I: Reduction formulas: s(w, z) = v(f), w=f
by (A2) Reduced equation: Ag.2 : (v+ 1)vgs +v7 =0

Similarity solution: v = —/e1f +c2 — 1
Ordinary invariants of (A\3). : z,s
Stage 2-III: Reduction formulas: s(w, z) = v(f), w ==z

(A3). Reduced equation: Ag.z:vsp =0
Similarity solution: v =ci1 f + c2

Ordinary invariants of (A1) :
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Table 5: Reductions and similarity solutions based on <v1 + vs).

Ordinary invariants of (v1 +vs) : ¢, —x — ¥ + + %ty,y +u
Stage 1: Reduction formulas: u(t,z,y) = s(w z) — y7

t=w, z=—2—-L+1 2+%wy
by (vi +vs) | Reduced equation:
Az i (4w’s + (WP — 2)?)s.2 + 4w’ sw: + 4w?s? + 2ws. = 0
Symmetries of Ag @ w1 = WOy — 1 m@ + 805, wa = 0z,
w3 = wa + 1 (62w+w +12) az

Ordinary invariants of (w1) : 11—2(_“’ +12“’ +12‘21"'*'12), sw

Stage 2-I: Reduction formulas: s(w,z) = =,z = f + 12w —In(w) — £ —w
by (w1) Reduced equation: As : 2vspv — vy + 207 = 0
Similarity solution: v = ¢; (LambertW ( 62°1 (fte 2)) + 1)

Ordinary invariants of
<w1 + (1.)2> . 112(—w4+12w 1nw+12w +12zw+12) sw
Stage 2-1I: | Reduction formulas: s(w,2) = %,z = f + £w® — In(w) —
by (w1 +w2) | Reduced equation: Az :2(v + l)vff — vy + 207 =0

Similarity solution:
11 -
v=c1 (LambertW (iecl (z(f+e2)+D) 1)) +c—1

Ordinary invariants Of <UJ1 =+ UJ3> Lw, m
Stage 2-I11I: | Reduction formulas: s(w,z) = v(f)(f* — 12f% —122f — 12), w = f
by (w1 4+ ws) | Reduced equation: Agz : 123 vf —144f*% +19f%0v =0

Similarity solution: v =

L _w
w

24f2+c1f3/ 2

Table 6: Reductions and similarity solutions based on<v1 + vg + vy, v3>.

Ordinary invariants of

(V1 +v2+vg,v8) 0 2Pty ——t+u

Stage 1: Reduction formulas: u(t,z,y) = s(w) + (%t2 + t) ,
_ 1,2

y=w-— 3t -t

by <v1 + v2 + v4, v3> Reduced equation: Ag : Syw =0

Similarity solution: v = ciw + c2
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Table 7: Reductions and similarity solutions based on <v2 + v3>.
Ordinary invariants of (v2 +wv3) : t,y — 755, u + 757

Stage 1: Reduction formulas: u(t,z,y) = s(w, 2) — %5,
y=z+ 3%

t=w,

by <7.12 + v3> Reduced equation:
Az (w—1)swz + (s+ (w—1)?)sz2 + 82 +5. =0

Symmetries of Ag: a1 = (lw — l) Ow + 205 + s0s,

ag = (gwfg)awqt (%w27w+1)8z, a3 =0,
Ordinary invariants of <a1 — g + %0(3> D w, m
Stage 2-I: Reduction formulas: s(w,z) = v(f)(f2 —2f+1—-22), w=f
by <a1 —ag + %a3> Reduced equation: Az 1 : (1 I flvg + 202 —v=0

Similarity solution: v =

ci(f—1)+2
Ordinary invariants of (a2 ) : 7%“}2 —In(w—1)+w—zs
Stage 2-1I: Reduction formulas:
s(w.z) =v(f), z=(—f+ %(w —1)2 +In(w — 1))
by <a2> Reduced equation: Az : (v —1)vss + vj% —vp=0

Similarity solution:

15
v = ¢1 [ LambertW (eq> + 1) +1

L (f+e2)
cie 1
Ordinary invariants of <a3 L ow, s
Stage 2-11I: Reduction formulas: s(w, z) = v(f), w=f
by a3> Reduced equation: trivial

Table 8: Reductions and similarity solutions based on <vl + v3 + %v4>.
Ordinary invariants of (v + vz + %m) sy +t2,
2t +tly+t?) +ax,—t> +u

Stage 1: Reduction formulas: u(t,z,y) = s(w, z) + 2,
r=z+3t—tw, y=w—t2
by <v1 +wv3 + %v4> Reduced equation: A7 : (s —w + 3)s2z + Sww + 5 =
Symmetries of A7 : k1 = Oy + Os,

Ko = (%w — 3) Ow + 205 + (s — %w) Os,

k3 = 0z
Ordinary invariants of (k1) : z,s —w
Stage 2-1: Reduction formulas: s(w,z) =v(f) +w, z=f
by (k1) Reduced equation: A7.1: (v+3)vss + UJ% =0

Similarity solution: v = —+/c1 f + c2 — 3

Ordinary invariants of (k2) : ﬁ, #ﬂji%
Stage 2-1I: Reduction formulas: s(w, z) = v(f)(w? — 12w + 36) +w — 3,
2= fw—6)?
by (k2) Reduced equation:

A7.o: 4(f2 + %v) vrr —i—vj% —Qfo +2v=0
Similarity solution: very huge and abnormal
Ordinary invariants of (k3) : w,s
Stage 2-111: Reduction formulas: w = f, s(w, z) = v(f)

by (k3) Reduced equation: A7.3:vfr =0
Similarity solution: v = c1f + c2
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Table 9: Reductions and similarity solutions based on <111 + vg + %’Ug + %v4>.

Ordinary invariants of
(vi +v2 + Jus+ 30a) 0 2+ 2+,
—tt+t(tP+2t+y) +a,

—t*—2t+u
Stage 1: Reduction formulas: u(t,z,y) = s(w, z) + t* + 2t,
r=z-+ %t — tw,
by<v1+v2+iv3+%v4> y:w—tQ—Qt

Reduced equation:

Ag : %(25 — 2w+ 1)822 — 28w> + Sww + $2=0
Symmetries of Asg :
(1 = aw + 837

G=2w+1)0w + (z+ sw) 9 + (s — Jw) Os,
CS = az
Ordinary invariants of ((1) : z,s —w
Stage 2-I: Reduction formulas: s(w,z) =v(f) +w, z=f
by (¢1) Reduced equation: Ag1: (20 + 1)vsp +v7 =0

2
Similarity solution: v = —%\/clf +co — %

Ordinary invariants of ((2): 71;22(114;;)7 225(;24:'11)721

Stage 2-1I: Reduction formulas:
s(w,z) = v(f)(w® + 2w + 1) +w+ 3,
by (¢2) z=fw’ +2w+1) —w— 3

Reduced equation:

Aga: (v+4f2) vir — 2fvy +vfc +2v=0
Similarity solution: very huge and abnormal
Ordinary invariants of ((3) : w,s
Stage 2-111: Reduction formulas: s(w,z) = v(f), w=f

by ((3) Reduced equation: Ags:vss =0
Similarity solution: v = ¢1 f + c2

3. Conclusion

This research devotes to introducing a well-known nonlinear acoustics model: 3D-
ZK equation, and illustrating its similarity reductions and solutions. The solutions
may be used to clarifying the propagation of a bounded two-dimensional acoustic
beam in nonlinear medias.
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