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Abstract

A non-empty set S ⊆ V is a dominating set, if every vertex not in S is
adjacent to at least one vertex in S, and S is a total dominating set, if every
vertex of V is adjacent to some vertices of S. We enumerate dominating
sets, non-split dominating sets and total dominating sets in several classes
of cactus chains.
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1. Introduction
Let G = (V,E) be a simple graph. A non-empty set S ⊆ V is a dominating
set, if every vertex not in S is adjacent to at least one vertex in S, and S is
a total dominating set, if every vertex of V is adjacent to some vertices of S.
The domination number (total domination number) of the graph G, denoted by
γ(G) (γt(G)), is the minimum cardinality of all dominating sets (total dominating
sets) of G. For a detailed treatment of domination theory, the reader is referred
to [14]. Graph polynomials are the generating function for the number of subsets
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of vertices such S (or edges) such that S has a particular graph property. The
concepts of enumeration of dominating sets in graphs were described about ten
years ago, by introducing the domination polynomial of a graph. The domination
polynomial D(G, x) of G is defined as

D(G, x) =
∑
i≥0

d(G, i)xi,

where d(G, i) is the number of dominating sets of G of cardinality i. This graph
polynomial was introduced in the paper [3] that appeared in 2014 but numerous
other papers on the polynomial appeared earlier.

Most of graph polynomials satisfies a linear recurrence relation, where graphs
in the terms of recurrence are subgraphs which obtain from the graph using various
vertex and edge elimination operations. For example almost all graph polynomi-
als in the literature satisfy recurrence relations with respect to vertex and edge
elimination operations, among them the matching polynomial, the independence
polynomial, the chromatic polynomial and the vertex-cover polynomial, see e.g.
[6]. Kotek et.al in [17] shown that the domination polynomial, D(G, x) does not
satisfy any linear recurrence relation which applies only the commonly used ver-
tex operations of deletion, extraction, contraction and neighborhood-contraction.
Nor does D(G, x) satisfy any linear recurrence relation using only edge deletion,
contraction and extraction. In [11] it is shown that computing the domination
polynomial of a graph is NP-hard. So study of graphs whose domination poly-
nomials satisfies simple recurrence relation has worth. Because of these reasons,
in this paper we consider graphs with specific structures and study the number
of dominating sets. The roots of graph polynomials reflect some important infor-
mation about the structure of graphs. There are many papers on the location of
the roots of graph polynomials such as chromatic polynomial, matching polyno-
mial, independence polynomial, characteristic polynomial, domination polynomial
and total domination polynomial. For example, in [1], there is a conjecture which
states that every integer root of D(G, x) is −2 or 0. Another natural question
to ask is to what extent can a graph polynomial describe the underlying graph.
Two graphs G and H are dominating equivalent or simply D-equivalent (written
G ∼ H), if they have the same domination polynomial. As in [1], let [G] denote the
D-equivalence class determined by G, that is [G] = {H|H ∼ G}. A main problem
arise: Can we determine the D-equivalence class of a graph? To answer this main
question, finding generating function and recurrence relation for the domination
polynomial is necessary. For more information, refer to [1, 4, 5].

After counting dominating sets, the number of other kinds of dominating sets
has studied [2, 7], especially the number of total dominating sets and independent
dominating sets has studied well, see e.g. [9, 10]. The concept of nonsplit domina-
tion was introduced by Kulli and Janakiram [19]. In [19], authors obtained some
bounds on the nonsplit domination number of a graph. A dominating set D of a
graph G is called a nonsplit dominating set if the induced graph ⟨V ∖D⟩ is con-
nected. The nonsplit domination number γns(G) of the graph G is the minimum
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cardinality of a nonsplit domination set.
Since counting the number of dominating sets is # P-complete, even in re-

stricted graph classes such as, e.g., split graphs and bipartite chordal graphs [18],
so it is natural to consider the classes with specific constructions to obtain the
number of their dominating sets. In this paper we consider graphs with simple
connectivity patterns, for example cacti.

Cactus graphs were first known as Husimi trees; they appeared in the scientific
literature some sixty years ago in papers by Husimi and Riddell concerned with
cluster integrals in the theory of condensation in statistical mechanics [13, 16, 20].
In the meantime, they also found applications in chemistry [15, 22] and in the
theory of electrical and communication networks [21], when it turned out that
some computationally difficult problems can be solved on cacti in polynomial time.
We refer the reader to papers [8] for some aspects of domination in cactus graphs
and to [12] for some enumerative results on matchings and independent sets in
chain cacti [7].

A cactus graph is a connected graph in which no edge lies in more than one
cycle. Consequently, each block of a cactus graph is either an edge or a cycle. If
all blocks of a cactus G are cycles of the same size m, the cactus is m-uniform.

The paper is ordered as follows: In the next section, the number of total
dominating sets of triangular cactus and the number of total dominating sets
of chain of squares were considered and in Section 3, the number of nonsplit
dominating sets of chain of cacti graphs was investigated. In the last section, we
study the number of dominating sets of chain of hexagonal cacti.

2. Counting Total Dominating Sets in Cactus
Chains

In this section, the triangular cactus and chain of squares were considered and we
investigate the number of total dominating sets in these graphs.

2.1. Triangular Chain Tn

Let us consider the way of labeling Tn in Figure 1, and symbolize the number of
total dominating sets in Tn by tn. Each total dominating set in Tn either does or
does not contain vertex un. If the number of total dominating sets that contain
un be represented by t′n, and by t′′n the number of total dominating sets that do
not contain un, we will have tn = t′n + t′′n.

Now we find recurrences for t′n and t′′n.
It is clear that each total dominating set in Tn counted by t′′n can be extended

to a total dominating set in Tn+1 counted by t′n+1. Moreover, a total dominat-
ing set in Tn counted by t′n can be extended to a total dominating set in Tn+1

counted by t′n+1 in only two ways. In addition, there are the number of sets that
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Figure 1: The chain triangular cactus.

are dominating and not total dominating in Tn, but can be extended to a total
dominating set in Tn+1. Clearly, such sets must include a single vertex un, and
they are counted by t′′n−1, and can be extended to a total dominating set in Tn+1

counted by t′n+1 in only two ways. Hence, we have t′n+1 = t′′n + 2t′n + 2t′′n−1.
Each total dominating set in Tn counted by t′n can be extended to a total domi-
nating set in Tn+1 counted by t′′n+1 in only two ways. Further, a total dominating
set in Tn−1 counted by t′′n−1 can be extended to a total dominating set in Tn+1

counted by t′′n+1 in only one way, by including un and vn+1. Hence,

t′′n+1 = 2t′n + t′′n−1.

The following system is obtained:

t′n+1 = t′′n + 2t′n + 2t′′n−1,

t′′n+1 = 2t′n + t′′n−1.

with the initial conditions t′1 = 3 and t′′1 = 1.
Now we introduce two generating functions, T ′(x) =

∑
n≥0 t

′
n+1x

n and T ′′(x) =∑
n≥0 t

′′
n+1x

n. By multiplying both equations in the above system through by xn

and then summing over n ≥ 0, the system can be translated into a linear system
for two unknown generating functions. Considering t′0 = 1, we have the following;

(1− 2x)T ′(x) − (x+ 2x2)T ′′(x) = 2
(1− x2)T ′′(x) − 2xT ′(x) = 2.

We obtain

T ′(x) =
2(1 + x+ x2)

1− 2x− 3x2 − 2x3
, T ′′(x) =

2

1− 2x− 3x2 − 2x3
.

At last, by adding T ′(x) and T ′′(x) and multiplying the sum by x we obtain the
generating function for the sequence tn. So we have the following theorem:

Theorem 2.1. The generating function for the number of total dominating sets
of Tn is yield by

T (x) =
1 + 2x− x2

1− 2x− 3x2 − 2x3
.
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Because T (x) is a rational function, it can be concluded that the numbers
tn satisfy a second order linear recurrence with constant coefficients. The initial
conditions can be verified by direct computations. The following corollary gives
the recurrence relation of tn. The following corollary gives the recurrence relation
of tn.

Corollary 2.2. For every n ≥ 4, the number of total dominating sets in Tn, i.e.,
tn is given by

tn = 2tn−1 + 3tn−2 + 2tn−3,

with the initial conditions t1 = 4, t2 = 16 and t3 = 46.

2.2. Para-Chain Qn

We consider a para-chain of length n, labeled as shown in Figure 2. We investigate
the generating function for the number of total dominating sets of Qn. Let state
and prove the following theorem:

Theorem 2.3. The generating function for the number of total dominating sets
of Qn is yield by

Q(x) =
1 + 3x+ 6x2

1− 3x− 18x2 − 9x3 + 9x4
.

Proof. Consider the way of labeling Qn in Figure 2 and symbolize the number of
total dominating sets in Qn by qn. Each total dominating set in Qn either does
or does not contain vertex vn. If the number of total dominating sets that contain
vn be represented by q′n, and by q′′n the number of total dominating sets that do
not contain vn, we will have qn = q′n + q′′n.

vn
vn−1vn−2

unun−1

wnwn−1

v0

u1

w1

v1

Figure 2: Labeled para-chain square cactus graphs.

Now we find recurrences for q′n, q′′n. Each total dominating set in Qn counted
by q′n and q′′n can be extended to a total dominating set in Qn+1 counted by q′n+1 in
exactly three ways. In addition, there are the number of sets that are dominating
and not total dominating in Qn, but can be extended to a total dominating set in
Qn+1. Clearly, such sets must include a single vertex vn, and they are counted by
q′′n−1 and q′n−1, and can be extended to a total dominating set in Qn+1 counted by
q′n+1 in only three ways. Further, there are the number of sets that are not total
dominating in Qn, but can be extended to a total dominating set in Qn+1. Clearly,
such sets do not dominate vn, and they must include vn−1, since the existence of
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this vertex is necessary to dominate un and wn. Hence, they are counted by q′n−1

and can be extended to a total dominating set in Qn+1 counted by q′n+1 in only
three ways. We have the recurrence for q′n,

q′n+1 = 3q′n + 3q′′n + 3q′′n−1 + 6q′n−1.

Now we need a recurrence for q′′n. Each total dominating set in Qn counted by
q′n can be extended to a total dominating set in Qn+1 counted by q′′n+1 in exactly
three ways. Each total dominating set in Qn counted by q′′n−1 can be extended to
a total dominating set in Qn+1 counted by q′′n+1 in exactly three ways, and the
same is valid for the sets counted by q′n−1 which contain a single vertex vn. Hence,

q′′n+1 = 3q′n + 3q′′n−1 + 3q′n−1.

Finally, we have obtained the system

q′n+1 = 3q′′n + q′′n+1 + 3q′n−1,

q′′n+1 = 3q′n + 3q′′n−1 + 3q′n−1.

with the initial conditions q′1 = 6 and q′′1 = 3.
Again, we introduce three generating functions, Q′(x) =

∑
n≥0 q

′
n+1x

n and
Q′′(x) =

∑
n≥0 q

′′
n+1x

n. By multiplying all equations in the above system through
by xn and then summing over n ≥ 0, the system can be translated into a linear
system for two unknown generating functions. Considering q′0 = 1, we have the
following;

(1− 3x2)Q′(x) − (1 + 3x)Q′′(x) = 3x,

(1− 3x2)Q′′(x) − (3x+ 3x2)Q′(x) = 3 + 3x.

We obtain

Q′(x) =
3 + 15x+ 9x2 − 9x3

1− 3x− 18x2 − 9x3 + 9x4
, Q′′(x) =

3 + 3x

1− 3x− 18x2 − 9x3 + 9x4
.

Finally, by adding Q′(x) and Q′′(x) and multiplying the sum by x we obtain the
generating function for the sequence qn.

The following corollary gives the recurrence relation of qn.

Corollary 2.4. For every n ≥ 5, the number of total dominating sets in Qn, i.e.,
qn is given by

qn = 3qn−1 + 18qn−2 + 9qn−3 − 9qn−4,

with the initial conditions q1 = 9, q2 = 45, q3 = 288 and q4 = 1755.
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Figure 3: Labeled ortho-chain square Sn.

2.3. Ortho-Chain Sn

Consider the way of labeling Sn in Figure 3 and symbolize the number of total
dominating sets in Sn by sn. If the number of total dominating sets that contain
un be represented by s′n, and by s′′n the number of total dominating sets that do
not contain sn, we will have sn = s′n + s′′n.

Analogously, before we obtain the system of recurrences for s′n, s′′n; have the
system

s′n+1 = 4s′n + 2s′′n,

s′′n+1 = 2s′n + s′′n.

with the initial conditions s′1 = 5 and s′′1 = 3. Again, we introduce the corre-
sponding generating functions, S′(x) =

∑
n≥0 s

′
n+1x

n, S′′(x) =
∑

n≥0 s
′′
n+1x

n and
obtain a linear system for them;

S′(x) − 2S′′(x) = 0
(1− x)S′′(x) − 2xS′(x) = 2.

We obtain
S′(x) =

4

1− 5x
, S′′(x) =

2

1− 5x
.

Finally, by adding S′(x) and S′′(x) and multiplying the sum by x we obtain the
generating function for the sequence sn and S(x) =

∑
n≥0 snx

n. So we have the
following result:

Theorem 2.5. The generating function for the number of total dominating sets
of Sn is yield by

S(x) =
1 + x

1− 5x
.

The following corollary gives the recurrence relation of sn.

Corollary 2.6. For every n ≥ 2, the number of total dominating sets in Sn, i.e.,
sn is given by

sn = 5sn−1,

with the initial conditions s1 = 9.
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The sequence of the numbers s1, s2, . . . in the ortho-chain graphs, Sn, satisfies
the conditions

sn+1 = 5sn, (n ≥ 1, s1 = 9).

So for each natural number n ≥ 1 have sn = 9 · 5n−1.

3. Counting Nonsplit Dominating Sets in Cacti
Chains

In this section, we investigate the number of nonsplit dominating sets in some
classes of chain cacti graphs in the pervious part.

3.1. Triangular Chain Tn

Let us consider the way of labeling Tn in Figure 1, and we shall obtain a recurrence
relation for the number of nonsplit dominating sets in Tn. For this purpose we
symbolize the number of nonsplit dominating sets in Tn by tn. Each nonsplit
dominating set in Tn either does or does not contain vertex un. If the number
of nonsplit dominating sets that contain un be represented by t′n, and by t′′n the
number of nonsplit dominating sets that do not contain un, we will have tn =
t′n + t′′n.

Now we find recurrences for t′n and t′′n.
It is clear that each nonsplit dominating set in Tn counted by t′′n can be extended

to a nonsplit dominating set in Tn+1 counted by t′n+1 in only two ways. Moreover,
a nonsplit dominating set in Tn counted by t′n can be extended to a nonsplit
dominating set in Tn+1 counted by t′n+1 in only one way, by including un and vn.
Also, there is one possibility of a nonsplit dominating set in Tn counted by t′n can
be extended to a nonsplit dominating set in Tn+1 counted by t′n+1 by including
un, and such set must include all vertices of Tn. Hence, we have

t′n+1 = 2t′′n + t′n + 1.

Now we need a recurrence for t′′n+1. There are two possibility cases of a nonsplit
dominating set in Tn counted by t′n can be extended to a nonsplit dominating set
in Tn+1 counted by t′′n+1, and such sets must include all vertices of Tn. Further,
a nonsplit dominating set in Tn counted by t′′n can be extended to a nonsplit
dominating set in Tn+1 counted by t′′n+1 in only one way, by including vn. Hence,

t′′n+1 = 2 + t′′n.

The following system is obtained:

t′n+1 = 2t′′n + t′n + 1,

t′′n+1 = 2 + t′′n,
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with the initial conditions t′1 = 4 and t′′1 = 3.
Now we introduce two generating functions, T ′(x) =

∑
n≥0 t

′
n+1x

n and T ′′(x) =∑
n≥0 t

′′
n+1x

n. By multiplying both equations in the above system through by xn

and then summing over n ≥ 0, the system can be translated into a linear system
for two unknown generating functions. Considering t′0 = 1, we have the following:

(1− x)T ′(x) − 2xT ′′(x) = 2−x
1−x

(1− x)T ′′(x) = 2
1−x

We obtain

T ′(x) =
2 + x+ x2

1− 3x+ 3x2 − x3
, T ′′(x) =

2

1− 2x+ x2
.

At last, by adding T ′(x) and T ′′(x) and multiplying the sum by x we obtain the
generating function for the sequence tn. So we have the following theorem:

Theorem 3.1. The generating function for the number of nonsplit dominating
sets of Tn is yield by

T (x) =
1 + x+ 2x2

1− 3x+ 3x2 − x3
.

Because T (x) is a rational function, it can be concluded that the numbers
tn satisfy a third order linear recurrence with constant coefficients. The initial
conditions can be verified by direct computations. The following corollary gives
the recurrence relation of tn.

Corollary 3.2. For every n ≥ 4, the number of nonsplit dominating sets in Tn,
i.e., tn is given by

tn = 3tn−1 − 3tn−2 + tn−3,

with the initial conditions t1 = 7, t2 = 16 and t3 = 29.

3.2. Para-Chain Qn

Here, we investigate the generating function for the number of nonsplit dominating
sets of Qn. Consider the way of labeling Qn in Figure 2 and symbolize the number
of nonsplit dominating sets in Qn by qn. Each nonsplit dominating set in Qn either
does or does not contain vertex vn. If the number of nonsplit dominating sets that
contain vn be represented by q′n, and by q′′n the number of nonsplit dominating
sets that do not contain vn, we will have qn = q′n + q′′n.

Now we find recurrences for q′n, q′′n. Each nonsplit dominating set in Qn counted
by q′′n can be extended to a nonsplit dominating set in Qn+1 counted by q′n+1 in
exactly four ways. Further, a nonsplit dominating set, D, with cardinality |V (Qn)|
in Qn counted by q′n can be extended to a nonsplit dominating set in Qn+1 counted
by q′n+1 in only three ways; if this D has cardinality less than |V (Qn)| in Qn
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counted by q′n can be extended to a nonsplit dominating set in Qn+1 counted
by q′n+1 in only one way. These sets counted by q′n. Therefore, the nonsplit
dominating set V (Qn+1) is double counted. In addition, there are the number of
sets that are not dominating in Qn, but can be extended to a nonsplit dominating
set in Qn+1. Clearly, such sets must include the vertex vn−1, and do not dominate
vn. They can be extended to a nonsplit dominating set in Qn+1 counted by q′n+1

in only three ways. We have the recurrence for q′n,

q′n+1 = q′n + 4q′′n + 5.

Now we need a recurrence for q′′n. Each nonsplit dominating set in Qn counted
by q′n with cardinality |V (Qn)| in Qn can be extended to a nonsplit dominating
set in Qn+1 counted by q′′n+1 in only three ways. Hence,

q′′n+1 = 3.

Finally, we have obtained the system

q′n+1 = q′n + 4q′′n + 5,

q′′n+1 = 3

with the initial conditions q′1 = 5 and q′′1 = 3.
Again, we introduce three generating functions, Q′(x) =

∑
n≥0 q

′
n+1x

n and
Q′′(x) =

∑
n≥0 q

′′
n+1x

n. By multiplying all equations in the above system through
by xn and then summing over n ≥ 0, the system can be translated into a linear
system for two unknown generating functions. Considering q′0 = 1, we have the
following:

(1− x)Q′(x) =
18− x

1− x
,

Q′′(x) =
3

1− x
.

We obtain
Q′(x) =

18− x

1− 2x+ x2
, Q′′(x) =

3

1− x
.

Finally, by adding Q′(x) and Q′′(x) and multiplying the sum by x we obtain the
generating function for the sequence qn.

Theorem 3.3. The generating function for the number of nonsplit dominating
sets of Qn is yield by

Q(x) =
1 + 19x− 3x2

1− 2x+ x2
.

The following corollary gives the recurrence relation of qn.

Corollary 3.4. For every n ≥ 3, the number of nonsplit dominating sets in Qn,
i.e., qn is given by

qn = 2qn−1 − qn−2,

with the initial conditions q1 = 9 and q2 = 26.
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3.3. Ortho-Chain Sn

Consider the way of labeling Sn in Figure 3 and symbolize the number of nonsplit
dominating sets in Sn by sn. If the number of nonsplit dominating sets that
contain un be represented by s′n, and by s′′n the number of nonsplit dominating
sets that do not contain sn, we will have sn = s′n + s′′n. In addition, we denote by
s′′′n the number of sets that are not dominating set in Sn, but can be extended to
a nonsplit dominating set in Sn+1. Clearly, un is not dominated, then un−1 and
bn are not contained in the nonsplit dominating sets. Such sets must include the
vertex an to dominate bn.

Analogously before, we obtain recurrences for s′n, s′′n and s′′′n .
Each nonsplit dominating set in Sn counted by s′′n can be extended to a nonsplit

dominating set in Sn+1 counted by s′n+1 in exactly two ways. Further, a nonsplit
dominating set, D, with cardinality |V (Sn)| in Sn counted by s′n can be extended
to a nonsplit dominating set in Sn+1 counted by s′n+1 in exactly four ways; if
this D has cardinality less than |V (Sn)| in Sn counted by s′n can be extended to
a nonsplit dominating set in Sn+1 counted by s′n+1 in only one way. These sets
counted by s′n. Therefore, the nonsplit dominating set V (Sn+1) is double counted.
Each set in Sn counted by s′′′n can be extended to a nonsplit dominating set in
Sn+1 counted by s′n+1 in only two ways.

Finally, we have the following recurrence for s′n,

s′n+1 = s′n + 2s′′n + 4− 1 + 2s′′′n

= s′n + 2s′′n + 3 + 2s′′′n .

Now we need a recurrence for s′′n. Each nonsplit dominating set in Sn counted by
s′′n can be extended to a nonsplit dominating set in Sn+1 counted by s′′n+1 in only
two ways. Further, a nonsplit dominating set, D, with cardinality |V (Sn)| in Sn

can be extended to a nonsplit dominating set in Sn+1 counted by s′′n+1 in only
two ways. Further, Each set in Sn counted by s′′′n can be extended to a nonsplit
dominating set in Sn+1 counted by s′′n+1 in only one way by including an+1 and
bn+1. Finally, we have the following recurrence for s′′,

s′′n+1 = 2s′′n + 2 + s′′′n .

Now we need a recurrence for s′′′n . Each nonsplit dominating set in Sn counted
by s′′n can be extended to a nonsplit dominating set in Sn+1 counted by s′′′n+1 in
only ony way by including an+1. Further, the same is valid for the sets counted
by s′′′n . Hence

s′′′n+1 = s′′n + s′′′n .

We have obtained the system of recurrences for s′n, s′′n and s′′′n ;

s′n+1 = s′n + 2s′′n + 3 + 2s′′′n ,

s′′n+1 = 2s′′n + 2 + s′′′n ,

s′′′n+1 = s′′n + s′′′n ,
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with the initial conditions s′1 = 6 and s′′1 = 3. Again, we introduce the corre-
sponding generating functions, S′(x) =

∑
n≥0 s

′
n+1x

n, S′′(x) =
∑

n≥0 s
′′
n+1x

n and
S′′′(x) =

∑
n≥0 s

′′′
n+1x

n, we obtain a linear system for them;

(1− x)S′(x) − 2S′′′(x) = 4−x
1−x ,

(1− x)S′′(x) − S′′′(x) = 2
1−x ,

(1− x)S′′′(x) − xS′′(x) = 1.

We obtain

S′′′(x) =
1 + x2

1− 4x+ 4x2 − x3
, S′′(x) =

3

1− 3x+ x2
,

S′(x) =
6− 13x+ 9x2 − x3

1− 5x+ 8x2 − 5x3 + x4
.

Finally, by adding S′(x) and S′′(x) and multiplying the sum by x we obtain
the generating function for the sequence sn and S(x) =

∑
n≥0 snx

n. So we have
the following result:

Theorem 3.5. The generating function for the number of nonsplit dominating
sets of Sn is yield by

S(x) =
1 + 4x− 11x2 + 7x3

1− 5x+ 8x2 − 5x3 + x4
.

The following corollary gives the recurrence relation of sn.

Corollary 3.6. For every n ≥ 5, the number of nonsplit dominating sets in Sn,
i.e., sn is given by

sn = 5sn−1 − 8sn−2 + 5sn−3 − sn−4,

with the initial conditions s1 = 9, s2 = 26, s3 = 70 and s4 = 186.

4. Counting Dominating Sets in the Chain
Hexagonal Cacti

Counting the dominating sets of some cactus chains has studied in [7], but there
is no result for the number of dominating sets in the chain hexagonal cacti. In
this section we investigate the number of dominating sets in three classes of chain
hexagonal cacti. The ortho-chain of length n is denoted by On, and the meta-chain
and the para-chain of length n are denoted by Mn and Ln, respectively.

Approach for enumeration of dominating sets of these three families are similar
but we think should prove and state all details.
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Figure 4: An ortho-, meta-, and para-chain hexagonal cacti of length n.

4.1. Ortho-Chain

We consider an ortho-chain hexagonal cacti of length n, labeled as shown in Figure
4. The number of dominating sets in On denoted by on, and the number of
dominating set in On containing and not containing vertex vn are denoted by o′n
and o′′n. Again, on = o′n + o′′n. In addition, we denote by o′′′n the number of sets
that are not dominating set in On, but can be extended to a dominating set in
On+1. Clearly, such sets do not dominate vn, but dominate other vertices of the
last hexagon.

Now we find three recurrences for o′n, o′′n and o′′′n .
Each dominating set in On counted by o′n can be extended to a dominating set

in On+1 counted by o′n+1 in exactly thirteen ways. These are the dominating set
D ⊂ V (On) containing vn together with the following cases;

• cn+1, vn+1,

• bn+1, vn+1,

• vn+1 together with at least two vertices of {an+1, bn+1, cn+1, dn+1}.

Further, a subset of vertices in On counted by o′′n and o′′′n can be extended to
a dominating set in On+1 counted by o′n+1 in exactly eleven ways. These are the
following cases;

• Choose bn+1, vn+1,
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• Choose vn+1 together with at least two vertices of {an+1, bn+1, cn+1, dn+1}
except cn+1, dn+1.

By adding all contributions we obtain the recurrence for o′n ,

o′n+1 = 13o′n + 11o′′n + 11o′′′n .

Now we need a recurrence for o′′n. Each dominating set in On counted by o′n
can be extended to a dominating set in On+1 counted by o′′n+1 in exactly eleven
ways. These are the dominating set D ⊂ V (On) containing vn together with the
following

• cn+1,

• Choose at least two vertices of {an+1, bn+1, cn+1, dn+1} except an+1, bn+1.

Further, a dominating set in On counted by o′′n can be extended to a dominating
set in On+1 counted by o′′n+1 in exactly six ways. These are the dominating set
D ⊂ V (On) containing the following;

• an+1, dn+1,

• bn+1, dn+1,

• Choose at least three vertices of {an+1, bn+1, cn+1, dn+1} except an+1, bn+1, cn+1.

Further, a subset of vertices in On counted by o′′′n can be extended to a domi-
nating set in On+1 counted by o′′n+1 in exactly four ways. These are the following
cases;

• an+1, dn+1,

• Choose at least three vertices of {an+1, bn+1, cn+1, dn+1} except
an+1, bn+1, cn+1 and bn+1, cn+1, dn+1.

By adding all contributions we obtain the recurrence for o′′n ,

o′′n+1 = 11o′n + 6o′′n + 4o′′′n .

Finally, a dominating set in On counted by o′′n can be extended to a set in On+1

counted by o′′′n+1 in exactly three ways. These are the following cases;

• Choose an+1, cn+1,

• Choose bn+1, cn+1,

• Choose an+1, bn+1, cn+1.
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Further, the same except bn+1, cn+1 is valid for the sets counted by o′′′n . Hence

o′′′n+1 = 3o′′n + 2o′′′n .

We have obtained the system

o′n+1 = 13o′n + 11o′′n + 11o′′′n ,

o′′n+1 = 11o′n + 6o′′n + 4o′′′n ,

o′′′n+1 = 3o′′n + 2o′′′n ,

with the initial conditions o′1 = 24 and o′′1 = 15.
As before, we introduce the corresponding generating functions, O′(x) =∑

n≥0 o
′
n+1x

n, O′′(x) =
∑

n≥0 o
′′
n+1x

n and O′′′(x) =
∑

n≥0 o
′′′
n+1x

n and obtain
a linear system for them;

(1− 13x)O′(x) − 11xO′′(x) − 11xO′′′(x) = 24
(1− 6x)O′′(x) − 11xO′(x) − 4xO′′′(x) = 15
(1− 2x)O′′′(x) − 3xO′′(x) = 2.

We obtain

O′(x) =
24− 5x+ 121x2

1− 21x− 17x2 − 121x3
, O′′(x) =

15 + 47x

1− 21x− 17x2 − 121x3
,

O′′′(x) =
2 + 7x+ 121x2

1− 21x− 17x2 − 121x3
.

Finally, by adding O′(x) and O′′(x) and multiplying the sum by x we obtain the
generating function for the sequence on and O(x) =

∑
n≥0 onx

n.

Theorem 4.1. The generating function for the number of dominating sets of On

is given by

O(x) =
1 + 18x+ 25x2

1− 21x− 17x2 − 121x3
.

The following corollary gives the recurrence relation of on.

Corollary 4.2. For every n ≥ 3, the number of dominating sets in the chain
hexagonal cacti On, i.e., on is given by

on = 21on−1 + 17on−2 + 121on−3,

with the initial conditions o0 = 1, o1 = 39 and o2 = 861.
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4.2. Meta-Chain

Now, we consider a meta-chain hexagonal cacti of length n, labeled as shown in
Figure 4. The number of dominating sets in Mn denoted by mn, and the number
of dominating set in Mn containing and not containing vertex vn are denoted by
m′

n and m′′
n. Finally, we denote by m′′′

n the number of sets that are not dominating
set in Mn, but can be extended to a dominating set in Mn+1. Clearly, such sets
do not dominate vn, and they must include vn−1, since this vertex is necessary to
dominate dn. Hence, they are counted by m′

n−1 in two ways, by including bn, or
an, bn, and we have m′′′

n = 2m′
n−1.

Now we find two recurrences for m′
n and m′′

n.
Each dominating set in Mn counted by m′

n can be extended to a dominating
set in Mn+1 counted by m′

n+1 in exactly fourteen ways. These are the dominating
set D ⊂ V (Mn) containing vn together with the following cases;

• an+1, vn+1,

• bn+1, vn+1,

• cn+1, vn+1,

• vn+1 together with at least two vertices of {an+1, bn+1, cn+1, dn+1}.

Further, a dominating set in Mn counted by m′′
n can be extended to a dominat-

ing set in Mn+1 counted by m′
n+1 in exactly twelve ways. These are the following

cases;

• an+1, vn+1,

• bn+1, vn+1,

• vn+1 together with at least two vertices of {an+1, bn+1, cn+1, dn+1} except
cn+1, dn+1.

The same is valid for m′′′ except bn+1, vn+1 and bn+1, cn+1. By adding all contri-
butions we obtain the recurrence for m′

n ,

m′
n+1 = 14m′

n + 12m′′
n + 10m′′′

n .

Now we need a recurrence for m′′
n. Each dominating set in Mn counted by m′

n

can be extended to a dominating set in Mn+1 counted by m′′
n+1 in exactly ten

ways. These are the dominating set D ⊂ V (Mn) containing vn together with the
following

• cn+1,

• Choose at least two vertices of {an+1, bn+1, cn+1, dn+1} except an+1, bn+1

and an+1, dn+1.
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Further, a dominating set in Mn counted by m′′
n can be extended to a domi-

nating set in Mn+1 counted by m′′
n+1 in exactly five ways. These are the following;

• bn+1, dn+1,

• Choose at least three vertices of {an+1, bn+1, cn+1, dn+1} except
an+1, bn+1, cn+1.

The same is valid for m′′′
n .

By adding all contributions we obtain the recurrence for m′′
n,

m′′
n+1 = 10m′

n + 5m′′
n + 5m′′′

n .

Analogously, before we obtain the system of recurrences for m′
n, m′′

n and m′′′
n ;

have the system

m′
n+1 = 14m′

n + 12m′′
n + 10m′′′

n ,

m′′
n+1 = 10m′

n + 5m′′
n + 5m′′′

n ,

m′′′
n+1 = 2m′

n,

with the initial conditions m′
1 = 24 and m′′

1 = 15.
Again, we introduce the corresponding generating functions,

M ′(x) =
∑

n≥0 m
′
n+1x

n, M ′′(x) =
∑

n≥0 m
′′
n+1x

n and M ′′′(x) =
∑

n≥0 m
′′′
n+1x

n

and obtain a linear system for them;

(1− 14x)M ′(x) − 12xM ′′(x) − 10xM ′′′(x) = 24
(1− 5x)M ′′(x) − 10xM ′(x) − 5xM ′′′(x) = 15
M ′′′(x) − 2xM ′(x) = 2.

We obtain

M ′(x) =
4(6 + 20x+ 5x2)

1− 19x− 70x2 − 20x3
, M ′′(x) =

5(8x+ 3)

1− 19x− 70x2 − 20x3
,

M ′′′(x) =
2(1 + 5x+ 10x2)

1− 19x− 70x2 − 20x3
.

Finally, by adding M ′(x) and M ′′(x) and multiplying the sum by x we obtain the
generating function for the sequence mn and M(x) =

∑
n≥0 mnx

n.

Theorem 4.3. The generating function for the number of dominating sets of Mn

is given by

M(x) =
1 + 20x+ 50x2

1− 19x− 70x2 − 20x3
.

The following corollary gives the recurrence relation of mn.

Corollary 4.4. For every n ≥ 3, the number of dominating sets in the chain
hexagonal cacti Mn, i.e., mn is given by

mn = 19mn−1 + 70mn−2 + 20mn−3,

with the initial conditions m0 = 1, m1 = 39 and m2 = 861.
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4.1 Para-Chain
Now, we consider a para-chain hexagonal cacti of length n, labeled as shown in
Figure 4. The number of dominating sets in Ln denoted by ln, and the number of
dominating set in Ln containing and not containing vertex vn are denoted by l′n
and l′′n. Finally, we denote by l′′′n the number of sets that are not dominating set
in Ln, but can be extended to a dominating set in Ln+1. Clearly, such sets do not
dominate vn, and they must include an and dn, since these vertices are necessary
to dominate bn and cn. Hence, they are counted by l′n−1, l′′n−1 and l′′′n−1, and we
have l′′′n = l′n−1 + l′′n−1 + l′′′n−1.

Now we find three recurrences for l′n and l′′n.
Each dominating set in Ln counted by l′n can be extended to a dominating set

in Ln+1 counted by l′n+1 in exactly twelve ways. These are the dominating set
D ⊂ V (Ln) containing vn together with the following cases;

• vn+1,

• vn+1 together with at least two vertices of {an+1, bn+1, cn+1, dn+1}.

Further, a dominating set in Ln counted by l′′n can be extended to a dominating
set in Ln+1 counted by l′n+1 in exactly nine ways. These are the following cases;

• vn+1 together with at least two vertices of {an+1, bn+1, cn+1, dn+1} except
an+1, bn+1 and cn+1, dn+1.

The same is valid for l′′′ except bn+1, cn+1. By adding all contributions we obtain
the recurrence for l′n ,

l′n+1 = 12l′n + 9l′′n + 8l′′′n .

Now we need a recurrence for l′′n. Each dominating set in Ln counted by l′n
can be extended to a dominating set in Ln+1 counted by l′′n+1 in exactly eight
ways. These are the dominating set D ⊂ V (Ln) containing vn together with the
following

• Choose at least two vertices of {an+1, bn+1, cn+1, dn+1} except {an+1, bn+1},
{cn+1, dn+1} and {an+1, dn+1}.

The same is valid for l′′n. Also the same is valid for l′′′n except bn+1, cn+1.
By adding all contributions we obtain the recurrence for l′′n ,

l′′n+1 = 8l′n + 8l′′n + 7l′′′n .

Analogously, before we obtain the system of recurrences for l′n, l′′n and l′′′n ; have
the system

l′n+1 = 12l′n + 9l′′n + 8l′′′n ,

l′′n+1 = 8l′n + 8l′′n + 7l′′′n ,

l′′′n+1 = l′n + l′′n + l′′′n ,
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with the initial conditions l′1 = 24, l′′1 = 15.
Again, we introduce the corresponding generating functions,

L′(x) =
∑

n≥0 l
′
n+1x

n, L′′(x) =
∑

n≥0 l
′′
n+1x

n and L′′′(x) =
∑

n≥0 l
′′′
n+1x

n and
obtain a linear system for them;

(1− 12x)L′(x) − 9xL′′(x) − 8xL′′′ = 20
(1− 8x)L′′(x) − 8xL′(x) − 7xL′′′ = 15
(1− x)L′′′ − xL′′(x) − xL′(x) = 2.

We obtain

L′(x) =
20− 29x+ 3x2

1− 21x+ 29x2 − 3x3
, L′′(x) =

15− 21x

1− 21x+ 29x2 − 3x3
,

L′′′(x) =
2− 5x+ 3x2

1− 21x+ 29x2 − 3x3
.

Finally, by adding L′(x) and L′′(x) and multiplying the sum by x we obtain the
generating function for the sequence ln and L(x) =

∑
n≥0 lnx

n.

Theorem 4.5. The generating function for the number of dominating sets of Ln

is given by

L(x) =
1 + 14x− 21x2

1− 21x+ 29x2 − 3x3
.

The following corollary gives the recurrence relation of ln.

Corollary 4.6. For every n ≥ 4, the number of dominating sets in the chain
hexagonal cacti Ln, i.e., ln is given by

ln = 21ln−1 − 29ln−2 + 3ln−3,

with the initial conditions l1 = 39, l2 = 861 and l3 = 18997.
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