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Abstract
In this paper, we discuss the properties of reversed aging intensity (RAI)

function for discrete random variable and study its nature for some distri-
butions. Further, using this function we characterize some discrete related
distributions. The closure properties of the aging classes defined in terms of
RAI function are also presented and study its closure properties under dif-
ferent reliability operations, viz., formation of k-out-of-n system. Moreover,
we define an ordering, called reversed aging intensity ordering and study its
relationship with some usual stochastic orderings. Also a numerical example
is given to explain the theoretical results.
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1. Introduction
An important phenomenon in reliability theory is aging which is an inherent prop-
erty of a unit that may be a living organism or a system of components. By aging
we generally mean positive aging. In the vast literature (see, among others, [4],
[6], [9], [12] and [2]) failure rate, aging intensity, reversed failure rate and reversed
aging intensity properties are analyzed for characterization of non-negative con-
tinuous random variables. In the reliability theory these continuous variables are
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mainly used to describe the elements and systems life. However, quiet often we
come across with situations where the product life can be described through non-
negative integer valued random variable (see, [8] and [10]). Alzaatreh et al. [1]
proposed a method for generating discrete distribution and Chakraborty in [3] also
gave a comprehensive survey of the different methods of generating discrete proba-
bility distributions as analogues of continuous probability distributions along with
their applications in construction of new discrete distributions. Dewan et al. [5]
proposed a proportional hazards model for discrete data analogous to the version
for continuous data and then studied its properties. They discussed, some ageing
properties of the model and also introduced a new definition for reversed hazard
rate. Now, motiviated by [7] and [11], we characterize a class of distriburions using
two discrete reversed aging intensities.

Let T be a discrete random variable with support {1, 2, . . . , b}, cumulative
density function F (k) = P (T ≤ k) and probability mass function (pmf), p(k) =
P (T = k). Moreover, let us recall the definition of the mean inactivity time (MIT)
function and the variance inactivity time (VIT) function of X, respectively as
follows:

m(t) = E(k −X|X < k) =
1

F (k − 1)

k∑
i=1

F (i− 1),

and

σ2(k) = (2k + 1)m(k)−m2(k)− 2

F (k)

k∑
i=1

iF (i− 1).

The discrete reversed failure rate and the discrete reversed failure rate average of
T are defined as,

r∗(k) = ln
F (k)

F (k − 1)
, (1)

H(k) =
1

b− k

b∑
i=k+1

r∗(i).

By analogy with continuous distribution, the reversed aging intensity for the dis-
crete random variable is defined as,

L(k) =
r∗(k)

H(k)
= (b− k)

[
lnF (k − 1)

lnF (k)
− 1

]
, for k = 2, 3, . . . , b. (2)

By analogy with continuous distributions, we can define the following discrete
alternative reversed aging intensity of T as

L
∗
(k) =

ln lnF (k)
lnF (k−1)

ln b−k
b−k+1

. (3)
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We can simply show that

L
∗
(k) =

ln b−k
b−k−L(k)

ln b−k
b−k+1

, for k = 2, 3, . . . , b.

Although, characterization of distributions considered in the paper can be simulta-
neously performed through both discrete reversed aging intensity functions, in the
same cases characterization through one of them seems to be easier than through
the other one.

2. Characterization Through Discrete Reversed
Aging Intensity and Discrete Reversed
Alternative Aging Intensity

In reliability theory some functions characterize the associated distribution func-
tion. For example, Szymkowiak et al. [11] uniquely determined the discrete dis-
tribution function in terms of discrete failure rate. Discrete distribution can be
characterized through its discrete reversed failure rate r∗ determined by (1).

Lemma 2.1. Given discrete reversed failure rate r∗(k), for k = 1, 2, . . . , b, the
distribution function is defined as

F (k) = exp

{
−

b∑
i=k+1

r∗(i)

}
. (4)

Proof. Using (1), we have

r∗(t) = lnF (t)− lnF (t− 1),

and thus
b∑

i=k+1

r∗(i) =

b∑
i=k+1

{
lnF (i)− lnF (i− 1)

}
= lnF (b)− lnF (k) = − lnF (k),

and consequently the Equation (4) is obtained.

Moreover, let us present a theorem characterizing discrete random variable
through discrete reversed aging intensity function.

Theorem 2.2. Discrete aging intensity L of discrete random variable T with
support {1, 2, . . . , b} determines distribution function F through the following re-
lationship:

F (k) = exp


[

k∏
i=2

(
1 +

L(i)

b− i

)]−1

ln q

 , for k = 2, 3, . . . , b,
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where q = F (1), 0 < q < 1.

Proof. From Equation (2), we have

L(i) = (b− i)

[
lnF (i− 1)

lnF (i)
− 1

]
,

so, for i = 1, 2, . . . , b,
lnF (i− 1)

lnF (i)
= 1 +

L(i)

b− i
,

and
k∏

i=2

lnF (i− 1)

lnF (i)
=

k∏
i=2

(
1 +

L(i)

b− i

)
.

Therefore
lnF (1)

lnF (k)
=

k∏
i=2

(
1 +

L(i)

b− i

)
,

and consequently

F (k) = exp


[

k∏
i=2

(
1 +

L(i)

b− i

)]−1

lnF (1)

 .

Hence the result.

Remark 1. Note that discrete reversed aging intensity L determines the family of
distribution functions depending on parameter q ∈ (0, 1).

Secondly, we state that discrete alternative reversed aging intensity L
∗
, deter-

mined by formula (1) of discrete random variable T , characterizes its distribution
function.

Theorem 2.3. Discrete alternative reversed aging intensity L
∗

of discrete random
variable T determines distribution function F through the following relationship:

F (k) = exp

{[
k∏

i=2

(
b− i

b− i+ 1

)L
∗
(i)

lnF (1)

]}
.

Proof. From Equation (3), we have

L
∗
(i) =

ln lnF (i)
lnF (i−1)

ln b−i
b−i+1

,

so

lnF (i)

lnF (i− 1)
= exp

[
L
∗
(i) ln

b− i

b− i+ 1

]
=

(
b− i

b− i+ 1

)L
∗
(i)

, for i = 2, 3, . . . , b.
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Therefore
k∏

i=2

lnF (i)

lnF (i− 1)
=

k∏
i=2

(
b− i

b− i+ 1

)L
∗
(i)

,

and

lnF (k) = lnF (1)
k∏

i=2

(
b− i

b− i+ 1

)L
∗
(i)

,

consequently

F (k) = exp

{[
k∏

i=2

(
b− i

b− i+ 1

)L
∗
(i)

lnF (1)

]}
.

Corollary 2.4. If for discrete random variable T , the discrete alternative reversed
intensity L

∗
(k) = α, for k = 2, 3, . . . and α > 0, then T follows

F (k) = q(
b−k
b−1 )

α
, k = 1, 2, . . . , b, (5)

where 0 < q < 1.

We can generalize the given distribution in (5) as:

F (k) = q(
b−k
b−1 )

α
ck−1

, k = 1, 2, . . . , b, 0 < c ≤ 1, α > 0.

It’s the discrete reversed aging intensity is given by

L(k) =
(b− k + 1)

α − c(b− k)
α

c(b− k)
α−1 ,

and the discrete alternative reversed aging intensity is given by

L
∗
(k) = α+

ln c

ln b−k
b−k+1

, for k = 1, 2, . . . , b− 1.

In the next theorem, we characterize a distribution in which the discrete re-
versed failure rate is proportional to 1.

Theorem 2.5. Let T be a discrete random variable with support {1, 2, . . . , b},
E( 1

r∗(T ) ) < ∞ and E(r∗(T )) < ∞. Then

E

(
1

r∗(T )

)
≥ 1

E(r∗(T ))
, (6)

The equality holds if and only if T follows the distribution

F (x) = q
b−k
b−1 , k = 1, . . . , b. (7)
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Proof. The inequality (6) follows from the Cauchy-Schwarz inequality and equality
holds if and only if there exists a constant A > 0 such that

p(k)

r∗(k)
= Ar∗(k)p(k),

which is equivalent to the fact that r∗(k) = c, where c is constant. Now applying
(4), we have F (k) = exp{−(b − k)c}. On the other hand, taking into account
F (1) = q, we have c = − ln q

b−1 and thus F (k) = exp{ (b−k) ln q
b−1 } = q

b−k
b−1 .

It is to be noted that L(k) = 1 for all k = 1, 2, . . . if and only if the reversed
failure rate function r∗(k) is constant. Thus L(k) = 1 characterizes the distribution
given in Equation (7). Further, L(k) < 1 if r∗(k) is decreasing in k (i.e., T is
DRHR). On the basis of the monotonicity of the RAI function, we define the
following nonparametric family of distribution.

Definition 2.6. A random variable T is said to be increasing in reversed aging in-
tensity (IRAI) if the corresponding RAI function L(k) is increasing in k = 1, 2, . . ..
We call the random variable T as decreasing in reversed aging intensity (DRAI) if
L(k) decreasing in k = 1, 2, . . ..

Further, it is seen that the monotonic behavior of the reversed failure rate
function is not, in general, transmitted to the monotonicity of the RAI function
as is evident from the following two counterexamples.

Counterexample 2.7. Let T be a discrete random variable with distribution
function F (k) = q(

b−k
b−1 )

2

, for k = 1, 2, . . . , b, where q = F (1). Then, r∗(k) =

− 2(b−k)+1
(b−1)2 ln q is decreasing in k. So, T is DRHR. Here L(k) = 1

b−k + 2, which
increases in k = 1, 2, . . . , b.

Counterexample 2.8. Let T be a discrete random variable with distribution func-
tion F (k) = k

b , for k = 1, 2, . . . , b. Then, r∗(k) = ln(1 + 1
k−1 ) is decreasing in

k. So, T is DRHR. Here L(k) = (b − k)
[
ln k−1

b

ln k
b

− 1
]
= (b − k)

[
ln k−1

k

ln k
b

]
, which

decreases in k = 1, 2, . . . , b.

From the foregoing two counterexamples it is observed that an DRHR random
variable can be IRAI or DRAI. For the random variable T with distribution func-
tion F (x) = q(

b−k
b−1 )

3
0.5k−1

for k = 1, 2, . . . , b, r∗(k) = 0.5k−2(0.5(b−k)3−(b−k+1)3)
(b−1)3 and

thus T is DRHR. On the other hand, L(k) = (b−k+1)3−0.5(b−k)3

0.5(b−k)2 is nonmonotone in
k. Thus, for a DRHR random variable, the RAI function could be nonmonotonic
as well.
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3. Analysis of Discrete Reversed Aging Intesity
Function Through Failure Data

Let N units be put to test at t = 0. Further, let the number of units having
survived at ordered times tj be Ns(tj). Then a logical estimate for L

∗
(t), is

ˆ
L
∗
(t) =

ln
ln
(
1−

Ns(tj)

N

)
ln
(
1−

Ns(tj−1)

N

)
ln

b−tj
b−tj+1

, for tj ≤ t < tj + 1.

Example 3.1. Data are generated in R according to the probability distribution
function given (5) for α = 2 and b = 10, sample size N = 1000 and number of
classes k = 10. Estimates of reversed failure rate r̂∗(t) and reversed aging intensity
ˆ
L
∗
(t) are given in Table 1. The estimates of reversed failure rate and reversed aging

intensity function for the data are plotted in Figures 2 and 3. The presented in
Figure 3 function ˆ

L
∗
(t) can be considered to oscillate around the constant 2.

Table 1: Generated grouped data.

Calss t ∈ [tj , tj + 1) Ns(tj) 1− Ns(tj)

N
r̂∗(t) L̂

∗
(t)

1 0-1 1000 1 – –
2 1-2 502 0.498 – –
3 2-3 407 0.593 0.1748 2.447
4 3-4 341 0.659 0.1053 1.691
5 4-5 269 0.731 0.1035 1.855
6 5-6 195 0.805 0.09622 2.016
7 6-7 133 0.867 0.07418 1.877
8 7-8 89 0.911 0.04974 1.48
9 8-9 33 0.967 0.05921 2.521
10 9-10 13 0.987 0.02078 1.359

4. Clousure Properties of IRAI and DRAI Classes
In this section, we study whether IRAI and DRAI classes are closed under different
reliability operations, viz., geometric mean and harmonic mean of distributions and
formation of k-out-of-n system.

The following counterexamples show that IRAI class is not closed under the
aforesaid operations.

Counterexample 4.1. Let T1 and T2 be two random variables having respective
distribution functions F1(k) = 0.5(

b−k
b−1 )

2

and F2(k) = 0.5(
b−k
b−1 )

3

for k = 1, 2, . . . , b.
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Figure 1: Empirical mass function.
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Figure 2: Discrete reversed failure rate estimator r̂∗(t).
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Figure 3: Discrete reversed aging intensity estmator ˆ
L
∗
(t).

Then the reversed hazard function of the random variables T1 and T2, are de-
creasing. Now, if T be a random variable having distribution function F (k) =

(F1(k)F2(k))
1
2 , then, for k = 1, 2, . . . , b,

LT (k) = (b− k)

(
( b−k+1

b−1 )
2
+ ( b−k+1

b−1 )
3

( b−k
b−1 )

2
+ ( b−k

b−1 )
3 − 1

)
.

Although both T1 and T2 are IRAI, the RAI function of T is nonmonotone. Thus,
IRAI is not closed with respect to geometric mean of distributions.

Counterexample 4.2. Let T1 and T2 be two random variables having the distribu-
tion functions given in previous counterexample. Let T have distribution function

F (k) =

(
0.5

(
1

0.5
( b−k
b−1

)
2 + 1

0.5
( b−k
b−1

)
3

))−1

that is harmonic mean of distributions

T1 and T2. We should note that, although T1 and T2 are IRAI, however the re-
versed aging intensity function of T is nonmonotone. Thus, IRAI is not closed
with respect to harmonic mean of distributions.

Next, we cite a counterexample to show that IRAI class is not closed under
the formation of a k-out-of-n.

Counterexample 4.3. Let T be a random variable having distribution function
F (k) = 0.3(

b−k
b−1 )

0.25

for k = 1, 2, . . . , b and FT3,4(k) be the distribution function of
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the 3nd order statistic T3,4 in a sample of size 4 from this distribution. Then, the
corresponding RAI function is

LT3,4(k) = (b− k)

 ln

(
4
(
0.3(

b−k+1
b−1 )

0.25
)3

− 3
(
0.3(

b−k+1
b−1 )

0.25
)4)

ln

(
4
(
0.3(

b−k
b−1 )

0.25
)3

− 3
(
0.3(

b−k
b−1 )

0.25
)4) − 1

 .

For example, we can show that, for b = 15, LT3,4(k) is nonmonotone.

From the counterexample given below, we see that DRAI class is not closed
under the formation of a k-out-of-n system.

Counterexample 4.4. Let T be a random variable having distribution function

F (k) =
k2

b2
for k = 1, 2, . . . , b and FT3,4(k) be the distribution function of the

3nd order statistic T3,4 in a sample of size 4 from this distribution. Then, the
corresponding RAI function is

LT3,4(k) = (b− k)

 ln
(

4(k−1)6

b6 − 3(k−1)8

b8

)
ln
(
4k6

b6 − 3k8

b8

) − 1

 .

For example, we can show that, for b = 10, LT3,4(k) is nonmonotone.

Proposition 4.5. Let T1 and T2 be lifetimes of components in a two-component
parallel system and T1 and T2 are independent and have the distribution functions
F1(k) and F2(k) respectively. If we show reversed aging intensities of components
respectively by L1 and L2, then the reversed aging intensity function of system is
given by

LT2:2(k) =

L1(k)
lnFT1 (k)

+ L2(k)
lnFT2 (k)

1
lnFT1 (k)

+ 1
lnFT2 (k)

.

Proof. We know that T2:2 = max(T1, T2) is the lifetime of a parallel system. Hence
FT2:2(k) = FT1(k)FT2(k), thus the reversed aging intensity function of the system
would have

LT2:2(k) = (b− k)

{
lnFT1(k − 1)FT2(k − 1)

lnFT1(k)FT2(k)
− 1

}
= (b− k)

{
lnFT1(k − 1) + lnFT2(k − 1)− lnFT1(k)− lnFT2(k)

lnFT1(k) + lnFT2(k)

}

= (b− k)

 ln
FT1(k−1)

FT1
(k) + ln

FT2(k−1)

FT2
(k)

lnFT1(k) + lnFT2(k)


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= (b− k)

{
−r∗1(k)− r∗2(k)

lnFT1(k) + lnFT2(k)

}

= (b− k)


−r∗1 (k)

lnFT1
(k) lnFT2

(k) +
−r∗2 (k)

lnFT1
(k) lnFT2

(k)

lnFT1 (k)+lnFT2 (k)

lnFT1 (k) lnFT2 (k)


=

L1(k)
lnFT2 (k)

+ L2(k)
lnFT1 (k)

1
lnFT1

(k) +
1

lnFT2
(k)

.

Corollary 4.6. If T1 and T2 are identically independent distributed, then LT2:2(k) =
L1(k).

5. Some Properties of Discrete Reversed Aging
Intensity Order

Analogous to continuous case, reversed aging intensity order for discrete distribu-
tions can be determined.

5.1 Discrete Reversed Aging Intensity Order
For random variables X, Y with support {1, 2, . . . , b} we say that X ≤DRAI Y , if
for all k = 1, 2, . . . , b, L

∗
X(k) ≤ L

∗
Y (k). The choice of L or L

∗
used to determine

reversed aging intensity order in the particular class of distributions depends on
the specific forms of these functions.

It means that if one random variable has larger discrete reversed aging inten-
sity function (or discrete alternative reversed aging intensity function), then it
is greater (better) in the discrete aging intensity DRAI order-it has the weaker
tendency of aging.

Theorem 5.1. If T1 have the distribution F1(k) = q
( b−k

b−1 )
α1ck−1

1

1 , for k = 1, 2, . . . , b,

and T2 have the distribution F2(k) = q
( b−k

b−1 )
α2ck−1

2

2 , for k = 1, 2, . . . , b, with α1 ≤ α2

and c1 ≥ c2, then T1 ≤DRAI T2.

Proof. We must shown that LT1(k) ≤ LT2(k). By using Equation (3), since α1 ≤
α2 and ln c1 ≤ ln c2 and also ln b−k

b−k+1 < 0, the result is obtained.

The following counterexample shows that the condition α1 ≤ α2 in Theorem
5.1 cannot be relaxed.

Counterexample 5.2. Let T1 and T2 have distributions F1 and F2 given in the
Theorem 5.1. If α1 = 4 > α2 = 3 and c1 = 0.4 > c2 = 0.3 then for b = 10,
L
∗
T1
(2) = 11.78 < L

∗
T2
(2) = 13.22 but L

∗
T1
(9) = 5.322 > L

∗
T2
(9) = 4.737. Hence

T1 ≰DRAI T2.
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The next counterexample shows that the condition c1 > c2 in Theorem 5.1
cannot be removed.

Counterexample 5.3. Let T1 and T2 have distributions F1 and F2 given in the
previous Theorem. If α1 = 3 < α2 = 4 and c1 = 0.3 < c2 = 0.4 then for b = 10,
L
∗
T1
(2) = 13.222 > L

∗
T2
(2) = 11.779 but L

∗
T1
(9) = 4.737 < L

∗
T2
(9) = 5.322. Hence

T1 ≰DRAI T2.

6. Relationship Between DRAI Order and other
Stochastic Orders

To study the relationship between DRAI order and other existing stochastic orders,
let us first recall that for discrete variables T1 and T2 with support {1, 2, . . . , b},
T1 is smaller than T2 in

(i) stochastic order (denoted by T1 ≤st T2) if FT1(k) ≤ FT2(k), for all k;

(ii) likelihood ratio order (denoted by T1 ≤lr T2) if pT1
(k)

pT2
(k) is nondecreasing for

all k;

(iii) reversed failure rate order (denoted by T1 ≤rfr T2) if r∗T1
(k) ≤ r∗T2

(k), for all
k;

(iv) discrete increasing concave order (denoted by T1 ≤dicv T2) if
∑k

i=1 FT1(i) ≥∑k
i=1 FT2(i), for all k;

(v) mean inactivity time order (denoted by T1 ≤MIT T2) if and only if
∑k

i=1 FT1
(i)∑k

i=1 FT2 (i)

is decreasing in k;

(vi) variance inactivity time order (denoted by T1 ≤V IT T2) if and only if∑k
i=1 iFT1 (i)∑k
i=1 FT1 (i)

≤
∑k

i=1 iFT2 (i)∑k
i=1 FT2 (i)

, for all k.

Theorem 6.1. For two random variables T1 and T2, the following conditions are
equivalent.

(i) T1 ≥DRAI T2.

(ii)
∑b

i=k+1 r∗T1
(i)∑b

i=k+1 r∗T2
(i)

is decreasing in k = 1, 2, . . . , b.

(iii) lnFT1 (k)

lnFT2 (k)
is decreasing in k = 1, 2, . . . , b.
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Proof. We first show that (i) and (iii) are equivalent.

T1 ≥DRAI T2 ⇐⇒
ln

lnFT1
(k)

lnFT1
(k−1)

ln b−k
b−k+1

≥
ln

lnFT2
(k)

lnFT2
(k−1)

ln b−k
b−k+1

⇐⇒ ln
lnFT1

(k)

lnFT1(k − 1)
≤ ln

lnFT2
(k)

lnFT2(k − 1)

⇐⇒ lnFT1(k)

lnFT1(k − 1)
≤ lnFT2(k)

lnFT2(k − 1)

⇐⇒ lnFT1(k)

lnFT2(k)
≤ lnFT1(k − 1)

lnFT2(k − 1)
.

The equivalence of (ii) and (iii) results from Equation (4).

The reflexive, commutative, and antisymmetric properties of the RAI order are
given below. The proof is omitted.

Proposition 6.2. (i) T1 ≤DRAI T1.

(ii) If T1 ≤DRAI T2 and T2 ≤DRAI T3, then T1 ≤DRAI T3.

(iii) If T1 ≤DRAI T2 and T2 ≤DRAI T1, then T1 and T2 have proportional reversed
failure rates.

Now, we want to express relationship between RAI order and some stochastic
orders.

The following counterexample shows that DRAI order does not imply increas-
ing concave order.

Counterexample 6.3. Let T1 and T2 have distributions F1(k) = 0.5(
b−k
b−1 )

2

and
F2(k) = 0.4(

b−k
b−1 )

3

for k = 1, 2, . . . , b, respectively. Then by using Theorem 6.1,
T1 ≤DRAI T2. Now, for example if we assume b = 8, then

∑2
i=1 0.5

( b−i
b−1 )

2

=

1.101 >
∑2

i=1 0.4
( b−i
b−1 )

3

= 0.962 and
∑7

i=1 0.5
( b−i
b−1 )

2

= 5.412 <
∑7

i=1 0.4
( b−i
b−1 )

3

=
5.427. Hence T1 ≰dicv T2. This shows that T1 ≤DRAI T2 ⇏ T1 ≤dicv T2.

Since DRAI ordering does not imply increasing concave ordering, it is obvious
that DRAI ordering implies none of likelihood ratio ordering , reversed failure rate
ordering, and stochastic ordering.

Counterexample 6.4. Let T1 and T2 have distribution functions F1(k) =

0.5(
b−k
b−1 )

3
0.3k−1

for k = 1, 2, . . . , b and F2(k) = 0.5(
b−k
b−1 )

4
0.4k−1

, for k = 1, 2, . . . , b
respectively. By using counterexample 5.3, we know that T1 ≰DRAI T2. It is easy
to verify that for b = 10,

F2(k)

F1(k)
= 0.5

( 10−k
9 )

3

{
10−k

9 0.4k−1−0.3k−1

}
,

increases with k = 2, . . . , 10. This means T1 ≤rfr T2, but T1 ≰DRHR T2.
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The following counterexample shows that DRAI orderig does not imply vari-
ance inactivity time ordering.

Counterexample 6.5. If T1 have the distribution F1(k) = (0.4)(
10−k

9 )
3
(0.5)k−1

,

for k = 1, 2, . . . , 10, and T2 have the distribution F2(k) = (0.3)(
10−k

9 )
4
(0.2)k−1

, for
k = 1, 2, . . . , 10, then T1 ≤DRAI T2, however since,∑k

i=1 i(0.4)
( 10−i

9 )
3
(0.5)i−1∑k

i=1(0.4)
( 10−i

9 )
3
(0.5)i−1

≰
∑k

i=1 i(0.3)
( 10−i

9 )
4
(0.2)i−1∑k

i=1(0.3)
( 10−i

9 )
4
(0.2)i−1

,

therefore T1 ≰V IT T2. For example, for k = 3 the left ratio is equal to 2.246 and
the right ratio is equal to 2.318, whereas for k = 8 the left ratio is 4.922 and the
right ratio is 4.896.

We can also easily show that, T1 ≰MIT T2.

7. Conclusion
In this paper, discrete reversed aging intensity and discrete alternative reversed
aging intensity functions were introduced. Further, using these functions we char-
acterized the distribution functions F . For example in situation that L

∗
(k) is

constant, we characterized the distribution function uniquely. Hence for analysis
of real data, if estimation of the discrete alternative reversed failure rate oscillate
around the constant, then we conclude that the data follows of the distribution (5).
Also we introdued the discrete reversed aging intesity order and studied its prop-
erties and the relationships it has with some stochastic orders. Furthermore we
studied whether class IRAI or DRAI clossed under different reliability operations.
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