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Abstract

In this paper we study the dependence of solutions of uncertain initial
value problems (UIVP) on the initial values. Introducing a contraction map-
ping and using Banach Fixed Point Theorem (BFPT), the existence and
uniqueness (EaU) of solutions of the UIVP will be proven. We show that
under appropriate assumptions, the solutions of UIVP are continues and dif-
ferentiable with respect to initial conditions (ICs). The paper will be ended
by proving a theorem about the existence of solutions of an autonomous
UIVP under weaker conditions. This theorem is a generalization of Peano
Theorem to UDEs.
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1. Introduction
To study the behavior of uncertain phenomena, Liu has founded the uncertainty
theory which is a branch of mathematics based on normality, monotonicity, self-
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duality, countable subadditivity, and product measure axioms ([1]). Uncertain dif-
ferential equation (UDE) has been introduced by Liu ([1]) as a differential equation
involving uncertain process. The theory of UDEs is developed by Yao Key ([2]).
A solution of an UDE, which models a physical or natural phenomenon, is used
to predict the behavior of the system with uncertain term.

Under Lipschitz continuous condition and linear growth condition, an EaU
theorem of solutions of an UDE is proved by Chen and Liu ([3]). EaU of solutions
of multi-dimensional UDE is proved by Ji and Zhou in [4]. Another EaU theorem
on UDEs with local Lipschitz condition (LC) is proved by Gao in [5]. EaU theorem
of a system of uncertain linear equations is also proved by the authors in [6].
Recently, the Liouville formula for the uncertain homogeneous linear system and
explicit solutions of the system has been proven by the authors in [7].

In this paper, using BFPT, the EaU of solutions of an UDE will be proven.
UDEs with an IC that have a unique solution, this unique solution is constantly
changing relative to the ICs. This means that a minor mistake in the IC measure-
ment only results in a minor mistake in the solutions. Continuity and differentabil-
ity of the solutions of an UIVP with respect to the ICs will also be considered in
this work. At the end, an existence theorem for an autonomous UIVP will be
presented without LC. This theorem is known as Peano Theorem in ordinary dif-
ferential equations. To see the definitions of uncertain measure, uncertainty space,
uncertain process, sample path, Liu process and Liu integral refer to [1, 8] and [9].

Definition 1.1. [8] Suppose f and g are two functions and Ct is a Liu process.
Then

dXt = f(t,Xt)dt+ g(t,Xt)dCt, (1)

is called an UDE. The uncertain process Xt that satisfies (1) identically in t is also
called a solution.

Equation (1) with the IC Xt0 = X0 is called an UIVP. That is:

dXt = f(t,Xt)dt+ g(t,Xt)dCt, Xt0 = X0.

The EaU of the solutions of the UIVP is proved in [3].
Remark 1. UDE (1) is autonomous if f and g be independent of t.
Remark 2. [8] The UIVP is equivalent to the uncertain integral equation

Xt = X0 +

∫ t

t0

f(s,Xs)ds+

∫ t

t0

g(s,Xs)dCs.

2. Continuity
In the classical theory of ordinary differential equations, it is well known that
under suitable conditions, solutions of an initial value problem are continuous with
respect to the ICs. This type of theorem concerning continuity of solutions with
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respect to ICs can be found in the literature. Similar theorems are also available
for other types of equations such as dynamic equations on time scales or differential
equations with impulses. The aim of this section is to prove a different version of
the EaU theorem for the UIVP by using a contraction mapping. Moreover, the
continuity of the solutions of the UIVP with respect to the ICs will be proven. Our
result unifies and extends existing theorems for other types of equations. First,
consider BFPT.

Theorem 2.1. [10] Every contraction mapping on a complete metric space has a
unique fixed point.

Let t ∈ R, Xt ∈ Γn and D be an open set in (t,Xt)-space. Suppose also that
(t0, X0) ∈ D and f and g are continuous on D and satisfy local LC

|f(t,Xt)− f(t, Yt)|+ |g(t,Xt)− g(t, Yt)| ⩽ L|Xt − Yt|, ∀Xt, Yt ∈ Γn,

for some constant L. Assume that A and B are positive such that

D
′
= {(t,Xt) ∈ R× Γn : |t− t0| ⩽ A, |Xt −X0| ⩽ B} ⊂ D.

Let
M = max

(t,Xt)∈D′
|f(t,Xt) +Kγg(t,Xt)|,

and a, b be sufficiently small positive numbers such that Ma ⩽ B − b and if
|X̄ −X0| ⩽ b, then

KX̄ = {(t,Xt) : |t− t0| ⩽ a, |Xt − X̄| ⩽ M |t− t0|} ⊂ D
′
.

Let Y shows the space of continuous mappings m : G → Rn where

G = {(t,Xt) : |t− t0| ⩽ a, |Xt −X0| ⩽ b},

and consider E as follows:

E = {m ∈ Y : |m(t,Xt)| ⩽ M |t− t0|}.

One can easily show that d, defined by

d(m1,m2) = max
(t,Xt)∈G

|(m1(t,Xt)−m2(t,Xt)|, m1,m2 ∈ E,

is a metric on E and (E, d) is a complete metric space.
Define mapping S : E → Y as,

Sm(t,Xt) =

∫ t

t0

f(s,Xs +m(s,Xs))ds+

∫ t

t0

g(s,Xs +m(s,Xs))dCs.

Now, we state the following lemma.
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Lemma 2.2. If a is sufficiently small, then S : E → E is a contraction mapping.

Proof. Let (s,Xs) ∈ G. Then,

|Xs −X0| ⩽ b, |s− t0| ⩽ a.

From

|Xs +m(s,Xs)−Xt0 | ⩽ |Xs −Xt0 |+ |m(s,Xs)|
⩽ b+Ma ⩽ B,

it can be concluded that (s,Xs + m(s,Xs)) belongs to the domain of f ; and
therefore, S is well-defined. From the continuity of f, g and m, it is easy to see
that, Sm is continuous and

|Sm(t,Xt)| ⩽ M |t− t0|.

Hence, S maps E to E.
On the other hand, since f and g satisfy LC with Lipschitz constant L, then

|Sm1(t,Xt)− Sm2(t,Xt)| =
∣∣∣∣∫ t

t0

f(s,Xs +m1(s+Xs))ds

+

∫ t

t0

g(s,Xs +m1(s+Xs))dCs

−
∫ t

t0

f(s,Xs +m2(s+Xs))ds

−
∫ t

t0

g(s,Xs +m2(s+Xs))dCs

∣∣∣∣
⩽ L

∫ t

t0

|m1(s,Xs)−m2(s,Xs)ds|

+KγL

∫ t

t0

|m1(s,Xs)−m2(s,Xs)ds|

⩽ L(1 +Kγ)d(m1,m2)|t− t0|
⩽ L(1 +Kγ)ad(m1,m2).

If L(1+Kγ)a < 1, then S is a contraction mapping on E, where Kγ is the Lipschitz
constant to the sample path Ct(γ).

In the following, we prove a theorem that includes the EaU of the solutions of
the UIVP and the continuity of the solutions with respect to the IC.

Theorem 2.3. Let D be an open set in (t,Xt)-space, (t0, X0) ∈ D, f and g be
continuous functions on D and satisfy LC with respect to Xt on D. There exist a,
b such that if |X̄ −X0| ⩽ b, then the initial value problem

dXt = f(t,Xt)dt+ g(t,Xt)dCt, Xt0 = X̄, (2)
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has a unique solution Xt(t0, X̄) on [t0 − a, t0 + a]. Moreover, this solution is a
continuous function of (t, X̄) on G

′
= {(t, X̄) : |t− t0| < a, |X̄ −X0| < b}.

Proof. Let a, b, G, E and S be as before. According to Lemma 2.2, S : E → E is
a contraction mapping and E is complete metric space. Therefore, according to
Theorem 2.1, there exists a unique fixed point of S in E called m0(t,Xt). Thus,

m0(t,Xt) =

∫ t

t0

f(s,Xs +m0(s,Xs))ds+ g(s,Xs +m0(s,Xs))dCs. (3)

Now, replacing Xt with X̄ in (3), for |X̄ − X0| ⩽ b and |t − t0| ⩽ a, it can be
concluded that

X̄ +m0(t, X̄) = X̄ +

∫ t

t0

f(s, X̄ +m0(s, X̄))ds+

∫ t

t0

g(s, X̄ +m0(s, X̄))dCs.

Now let Xt = X̄ +m0(t, X̄), then Xt is a solution of the equation

Xt = X̄ +

∫ t

t0

f(s,Xs)ds+

∫ t

t0

g(s,Xs)dCs.

Therefore, according to Remark 1.2, Xt is a solution of (2). Since m0(t, X̄) is
continuous with respect to (t, X̄) and it is a unique fixed point of S in E, Xt is
also continuous with respect to (t, X̄) on G

′
.

If Yt be another solution of (2), then m(t, X̄) = Yt − X̄ is another fixed point
of S which satisfies condition |Yt − X̄| ⩽ M |t − t0|. Therefore, Yt − X̄ is a fixed
point of S in E. Since S has a unique fixed point on E, we have Yt = Xt.

3. Differentiability

In this section another property of the solutions will be studied. We consider basic
characteristic differentiability of the solutions with respect to ICs in the UDE. It
is important sometimes to use the fact that if f has continuous second derivatives,
then the solution is a differentiable function of Xt0 .

Theorem 3.1. Let D, a, b, f , g, (t0, X0), X̄, G′, Xt(t0, X̄) be those which
are defined in Theorem 2.2. Moreover, suppose that f and g have continuous
second partial derivatives with respect to all variables on D. Then, Xt(t0, X̄) has
continuous first partial derivatives with respect to each component of X̄ and has
continuous third partial derivative with respect to t.

Proof. Since Xt(t0, X̄) is a solution of (2), it is continuous on G
′
and

∂

∂t
Xt(t0, X̄) = f(t, X̄) + g(t, X̄)

∂Ct

∂t
.



254 V. Roomi and H. R. Ahmadi

Also, f and g are continuous functions of (t, X̄), thus ∂Xt

∂t is a continuous function
of (t, X̄) and

∂2xi

∂t2
=

∂fi
∂t

+
n∑

j=1

∂fi
∂xj

∂xj

∂t
+

∂gi
∂t

∂Ct

∂t
+

n∑
j=1

∂gi
∂xj

∂xj

∂t

∂Ct

∂t
+ g(t, X̄)

∂2Ct

∂t2
,

1 ⩽ i ⩽ n,

(4)

where xi is the ith component of Xt. Therefore, ∂2Xt

∂t2 exists and is a continuous
function of (t, X̄). Differentiating from both sides of (4) again, it can be concluded
that ∂3Xt

∂t3 also exists and it is continuous.
By Remark 2, if Xt(t0, X̄) is a solution of (2) such that X0 = X̄, then

Xt(t0, X̄) = X̄ +

∫ t

t0

f(s,Xs(t0, X̄))ds+

∫ t

t0

g(s,Xs(t0, X̄))dCs. (5)

Now, if such a solution Xt(t0, X̄) exists and is differentiable with respect to the
components x̄1, x̄2,. . . , x̄n of X̄, then differentiating both sides of (5) with respect
to x̄i, we obtain

∂Xt

∂x̄i
= Ii +

∫ t

t0

[
∂f

∂Xs
(s,Xs(t0, X̄))

] [
∂Xs

∂x̄i

]
ds (6)

+

∫ t

t0

[
∂g

∂Xs
(s,Xs(t0, X̄))

] [
∂Xs

∂x̄i

]
dCs.

Hear Ii = (0, 0, . . . , 1, 0, . . . , 0), Ii has a 1 in the ith position and 0 elsewhere,[
∂Xt

∂x̄i

]
=

(
∂x1t

∂x̄i
, . . . , ∂xnt

∂x̄i

)T

and
[

∂f
∂Xs

(
s,Xs(t0, X̄)

)]
and

[
∂g
∂Xs

(
s,Xs(t0, X̄)

)]
are n × n matrices whose element in the (i, j) position is ∂fi

∂xj

(
s,Xs(t0, X̄)

)
and

∂gi
∂xj

(
s,Xs(t0, X̄)

)
respectively; where xj is the jth component of Xt and fi and gi

are the ith components of f and g respectively. This suggests that in order to show
the differentiability of Xt(t0, X̄) with respect to x̄i and the continuity of that, it
is sufficient to show that the system

Xt = X̄ +

∫ t

t0

f(s,Xs)ds+

∫ t

t0

g(s,Xs)dCs,

Y i
t = Ii +

∫ t

t0

∂f

∂Xs
(s,Xs)Y

i
s ds+

∫ t

t0

[
∂g

∂Xs
(s,Xs)Y

i
s

]
dCs, (i = 1, . . . , n).

(7)

Since f and g have continuous second partial derivatives with respect to Xt, it
follows that ∂fi

∂xj
and ∂gi

∂xj
satisfy LC with respect to Xt and the result (Xt, Yt)

on G′. Solving (7) for Xt and Y 1
t , . . . , Y

n
t is equivalent to solving (5) and (6)

for Xt(t0, X̄) and ∂Xt

∂x̄i
, i = 1, . . . , n. Therefore, by the EaU theorem ([3]), system
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(7) has a unique solution. Let
(
Xt(t0, X̄), Yt(t0, X̄)

)
denotes the solution. Then,(

Xt(t0, X̄), Y 1
t (t0, X̄), . . . , Y n

t (t0, X̄)
)

is the limit of{(
Xm

t (t0, X̄), (Y 1
t )

m(t0, X̄), . . . , (Y n
t )m(t0, X̄)

)}∞
m=1

,

on G = {(t,Xt) : |t− t0| ⩽ a, |Xt − X̄| ⩽ b} where(
Xt(t0, X̄), Y 1

t (t0, X̄), . . . , Y n
t (t0, X̄)

)
= (X̄, 1, . . . , 1),

and

Xm+1
t (t0, X̄) = X̄ +

∫ t

t0

f
(
s,Xm

s (t0, X̄)
)
ds+

∫ t

t0

g
(
s,Xm

s (t0, X̄)
)
dCs, (8)

and

(Y i
t )

m+1(t0, X̄) = Ii +

∫ t

t0

∂f

∂Xs
(s,Xm

s (t0, X̄))(Y i
s )

m(t0, X̄)ds

+

∫ t

t0

∂g

∂Xs
(s,Xm

s (t0, X̄))(Y i
s )

m(t0, X̄)dCs.

Now, it is sufficient to prove (Y i
t )

m =
∂Xm

t

∂x̄i
. Let for some fixed m and for all

(t,Xt) ∈ IntG, it is true that ∂Xm
t

∂x̄i
= (Y i

t )
m, for i = 1, . . . , n. Now differentiating

both sides of (8) with respect to x̄i, we get

∂Xm+1
t

∂x̄i
= Ii +

∫ t

t0

∂f

∂Xs

(
s,Xs

m(t0, X̄)
)(∂Xs

m

∂x̄i
(t0, X̄)

)
ds

+

∫ t

t0

∂g

∂Xs

(
s,Xs

m(t0, X̄)
)(∂Xs

m

∂x̄i
(t0, X̄)

)
dCs

= Ii +

∫ t

t0

∂f

∂Xs

(
s,Xs

m(t0, X̄)
)
(Y i

s )
m(t0, X̄)ds

+

∫ t

t0

∂g

∂Xs

(
s,Xs

m(t0, X̄)
)
(Y i

t )
m(t0, X̄)dCs

= (Y i
t )

m+1(t0, X̄).

Thus, for all m and for all (t,Xt) ∈ IntG it is true that (Y i
t )

m =
∂Xm

t

∂x̄i
. But

the sequence
{
(Y i

t )
m(t0, X̄)

}∞
m=1

converges uniformly on G to (Y i
t )(t0, X̄). Thus,

∂Xt(t0,X̄)
∂x̄i

= (Y i
t )(t0, X̄). Also, since (Y i

t )(t0, X̄) is continuous with respect to
(t, t0, X̄), then ∂Xt

∂x̄i
is also continuous.
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4. Existence without Uniqueness
In this section, we prove the existence of solutions for an uncertain autonomous
differential equation if f and g be continuous, and do not satisfy LC. Proving such
an existence result helps us to find as clear a picture as possible of what conditions
are needed to insure existence. Also, the used technique in the proof is the basis
for numerical methods.

Theorem 4.1. (Existence without uniqueness) Let Ḡ be the closure of a bounded
open set G in Rn and f = (f1, f2, . . . , fn)

T : Ḡ −→ Rn and g = (g1, g2, . . . , gn)
T :

Ḡ −→ Rn be continuous on Ḡ. Let t0 be fixed and Xt0 = (X1t0 , . . . , Xnt0)
T be a

fixed point in G. If M = sup{|fi(Xt)| : Xt ∈ Ḡ, 1 ⩽ i ⩽ n}, N = sup{|gi(Xt)| :
Xt ∈ Ḡ, 1 ⩽ i ⩽ n}, and d = inf ∥X0 −Q∥ for Q ∈ Ḡ \G, then autonomous UIVP

dXt = f(Xt)dt+ g(Xt)dCt, Xt0 = X0, (9)

has a solution that its domain includes the interval [t0− d√
n(M+KγN)

, t0+
d√

n(M+KγN)
],

where Kγ is the Lipschitz constant to the sample path Ct(γ).

Proof. Let ϵ > 0. Since f and g are continuous on Ḡ and Ḡ is compact, there

exists δ > 0 such that for Xt, Yt ∈ Ḡ, if |Xt − Yt| =
n∑

i=1

|xit − yit| < δ, then

|f(Xt)− f(Yt)| <
ϵ

2
, |g(Xt)− g(Yt)| <

ϵ

2
.

Now, we defined a sequence X1t, X2t, . . . of uncertain process such that attains
the solution of (9). If f(X0) = g(X0) = 0, then Xt = X0 with domain R is a
solution of (9). If f(X0) ̸= 0 or g(X0) ̸= 0, then let t1 = t0 +

δ
2n(M+KγN+1) and

X1t = X0 + f(X0)(t− t0) + g(X0)(Ct − Ct0), t0 ⩽ t ⩽ t1,

and X1 = X1t1 . If X1 ∈ G, f(X1) = g(X1) = 0, then let t1 ⩽ t < ∞ and X2t = X1,
and if X1 ∈ G and f(X1) ̸= 0 or g(X1) ̸= 0, then let t2 = t1 +

δ
2(M+KγN+1)n and

X2t = X1 + f(X1)(t− t1) + g(X1)(Ct − Ct1), t1 ⩽ t ⩽ t2,

and X2t2 = X2. Suppose that by induction, t1, t2, . . . , tk and X1t, . . . Xkt and also
X1, . . . , Xk are defined. If Xk ∈ G and f(Xk) = g(Xk) = 0, then let tk ⩽ t < ∞
and X(k+1)t = Xk. If Xk ∈ G and f(Xk) ̸= 0 or g(Xk) ̸= 0, then let tk+1 =

tk + δ
2(M+KγN+1)n and

X(k+1)t = Xk + f(Xk)(t− tk) + g(Xk)(Ct − Ctk), tk ⩽ t ⩽ tk+1. (10)

Now, let J =
∪
k⩾0

[tk, tk+1] and define Xϵt as follows

Xϵt = Xkt, t ∈ [tk−1, tk], k ⩾ 1.
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First, we show that the domain of Xϵt contains the interval [t0, t0 + d
(M+KγN)

√
n
].

If Xϵt = Xkt for k = 1 to m, then the domain of Xϵt is [t0, t0 +
mδ

2(M+KγN+1)n ].
Now, let Xm /∈ G, then we must have

d ⩽∥ Xm −X0 ∥⩽
m∑

k=1

∥ Xk −Xk−1 ∥

=
m∑

k=1

∥ f(Xk−1)(tk − tk−1) + g(Xk−1)(Ctk − Ctk−1
) ∥

⩽
m∑

k=1

∥ f(Xk−1)(tk − tk−1) ∥ +

m∑
k=1

∥ g(X(k−1))(Ctk − Ctk−1) ∥

⩽
m∑

k=1

√
nM(tk − tk−1) +

m∑
k=1

√
nN |Ctk − Ctk−1

|.

Therefore, a necessary condition for Xm /∈ G is that m be large enough so that

d ⩽
√
nM

mδ

2(M +KγN + 1)n
+
√
nN

Kγmδ

2(M +KγN + 1)n

=
mδ

2(M +KγN + 1)n
(
√
nM +Kγ

√
nN),

or
d√

n(M +KγN)
⩽ mδ

2(M +KγN + 1)n
.

Thus, [t0, t0 + d
(M+KγN)

√
n
] ⊆ [t0, t0 +

mδ
2(M+KγN+1)n ]. Similarly, we can define the

uncertain variable Xϵt on the interval [t0− d√
n(M+KγN)

]. That way, we will obtain
continuous uncertain variable Xϵt with domain [t0− d√

n(M+KγN)
, t0+

d√
n(M+KγN)

]

which is continuous and piecewise smooth. Now, we want to extract a sequence of
Xϵt such that converges to the solution of (9).

Claim: For t ∈ I = [t0 − d√
n(M+KγN)

, t0 +
d√

n(M+KγN)
], we have

Xϵt = X0 +

∫ t

t0

f(Xϵs)ds+

∫ t

t0

g(Xϵs)dCs +

∫ t

t0

hϵ(s)ds+

∫ t

t0

pϵ(s)dCs,

where hϵ(s) = f(Xj)−f(X(j+1)s) and pϵ(s) = g(Xj)−g(X(j+1)s) for s ∈ [tj , tj+1].
Also, for s ∈ I we have |qϵ(s)| = |hϵ(s) + pϵ(s)| < ϵ.

Proof of the claim: Let t ∈ [t0, t0 + d√
n(M+KγN)

]. From (10) it can be
concluded that

Xj+1 −Xj =

∫ tj+1

tj

f(Xj)ds+

∫ tj+1

tj

g(Xj)dCs, j = 0, 1, . . . , k − 1.
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Similarly, for tk ⩽ t ⩽ tk+1,

Xϵt −Xk =

∫ t

tk

f(Xk)ds+

∫ t

tk

g(Xk)dCs.

Thus,

Xϵt −X0 =

k−1∑
j=0

∫ tj+1

tj

f(Xj)ds+

∫ t

tk

f(Xk)ds

+
k−1∑
j=0

∫ tj+1

tj

g(Xj)dCs +

∫ t

tk

g(Xk)dCs

=

k−1∑
j=0

∫ tj+1

tj

f(Xjs)ds+

∫ t

tk

f(Xks)ds

+
k−1∑
j=0

∫ tj+1

tj

g(Xjs)dCs +

∫ t

tk

g(Xks)dCs

+
k−1∑
j=0

∫ tj+1

tj

[−f(Xjs) + f(Xj)]ds+

∫ t

tk

[−f(Xks) + f(Xk)]ds

+
k−1∑
j=0

∫ tj+1

tj

[−g(Xjs) + g(Xj)]dCs +

∫ t

tk

[−g(Xks) + g(Xk)]dCs

=

∫ t

t0

f(Xϵs)ds+

∫ t

t0

g(Xϵs)dCs +

∫ t

t0

hϵ(s)ds+

∫ t

t0

pϵ(s)dcs,

where for s ∈ [tj , tj+1] and j = 0, 1, . . . , k, we have

|Xjs −Xj | = |f(Xj)(t− tj) + g(Xj)(Ct − Ctj )|
⩽ |f(Xj)|(tj+1 − tj) + |g(Xj)|(Ctj+1 − Ctj )

⩽
√
nMδ

2(M +KγN + 1)n
+

√
nKγNδ

2(M +KγN + 1)n

=
δ

2

( √
nM

(M +KγN + 1)n
+

√
nKγN

(M +KγN + 1)n

)
⩽ δ.

Therefore,

|qϵ(s)| = |f(Xj)− f(Xjs) + g(Xj)− g(Xjs)| ⩽
ϵ

2
+

ϵ

2
= ϵ.

Proof for t ∈ [t0 − d√
n(M+KγN)

, t0] can be done in the same manner. If t ∈ I,
then for k ⩾ 1 we have t0 ⩽ t ⩽ tk or there exists a k such that t ⩾ tk. In the
latter case for s > tk, we have qϵ(s) = 0. Thus, in every case, the above clime is
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true.

Now, let m = 1, 2, . . . and ϵ = 1
m . We display Xϵt match it with Xm

t . That
way, we will get sequence (Xm

t )∞m=1 of uncertain variables with domain [t0 −
d√

n(M+KγN)
, t0+

d√
n(M+KγN)

] that is uniformly bounded and equicontinuous. We
have from (9),

|Xm
t | ⩽ |X0|+M |t− t0|+N |Ct − Ct0 |+

1

m
|t− t0|+

1

m
|Ct − Ct0 |,

|Xm
t′ −Xm

t′′ | ⩽ M |t′ − t′′|+N |Ct′ − Ct′′ |+
1

m
|t′ − t′′|+ 1

m
|Ct′ − Ct′′ |,

Thus, according to Arzela-Ascoli Theorem ([11]), there exists a subsequence
(Xmk

t )
∞
k=1 of (Xm

t )∞m=1 which is uniformly convergence on I. Let Xt = lim
mk→∞

Xmk
t

for t ∈ I Thus,

Xmk
t = X0 +

∫ t

t0

f(Xmk
s )ds+

∫ t

t0

g(Xmk
s )dCs +

∫ t

t0

hmk
(s)ds+

∫ t

t0

pmk
(s)dCs,

and

lim
mk→∞

∫ t

t0

hmk
(s)ds = lim

mk→∞

∫ t

t0

pmk
(s)dCs = 0.

Functions f and g are uniformly continuous on Ḡ and the sequence (Xmk
t )∞m=1 is

uniformly convergence on I. Thus, {f(Xmk
s )}∞k=1 and {g(Xmk

s )}∞k=1 are uniformly
convergence. Therefore, if mk → ∞, then

Xt = X0 +

∫ t

t0

f(Xs)ds+

∫ t

t0

g(Xs)dCs, t ∈ I.

Or in other word
∂Xt

∂t
= f(Xt) + g(Xt)

∂Ct

∂t
, Xt0 = X0, t ∈ I.

Remark 3. Theorem 4.2 is known as Peano Theorem in ordinary differential equa-
tions.

5. Conclusion
In this work the continuity and differentiability of solutions on ICs of the UIVP
have been considered. Also, the EaU of solutions of an UIVP have been proved
under the weaker conditions. Moreover, a generalization of Peano Theorem to
autonomous UIVP has been presented.
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