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Abstract
This survey illustrates and investigates the application of polynomial

rings over finite fields to generate PRN codes for Global Navigation Satellite
System (GNSS) satellites. In GNSS, satellites continually broadcast signals
at two or more frequencies, including pseudo-random noise (PRN) codes.
Each GNSS satellite has its own PRN code, and due to the unique mathe-
matical properties of PRN codes, all satellites can communicate at the same
frequency without interfering with another one. Although the PRN code
appears to be devoid of any discernible structure, it is composed of a de-
terministic series of pulses that will repeat itself after its period. The PRN
code generator employs two shift registers known as Gold polynomials, and
the suitable polynomial is decided by the number of satellites. The approach
used in satellites is based on the usage of two primitive polynomials, with the
output of the first polynomial being used as input for the second polynomial.
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1. Introduction
Mathematics is utilized in a thorough study of many disciplines and other sciences
as a branch of the basic sciences. Mathematics does not rely heavily on other disci-
plines; that is, while certain natural sciences and engineering utilize mathematics,
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mathematics uses just its fundamental axioms and facts to establish a mathe-
matical statement and does not require other sciences. Discussing the utility of
mathematics in other sciences in the past, clear emphasis was placed on applied
mathematics. Nowadays and with dramatic development, pure mathematics, for
example, algebra has many useful applications in other sciences.

The application of mathematics in other disciplines, of course, increases the
significance of this subject. Today, the applications of mathematics in other dis-
ciplines are not only limited to physics and chemistry, but it is also used in other
fields of technical and engineering, and even the role of mathematics in the growth
of social and human sciences is essential [29]. It is worth noting that for many
years it was assumed that only the practical and computational aspects of mathe-
matics could be applied in other sciences, but today many of the pure and abstract
branches of mathematics, such as algebra, analysis, etc. have very important ap-
plications in other sciences.

The concept of abstract polynomial rings is a single mathematical concept that
is extensively used in a variety of disciplines nowadays. Groups, rings, and fields
are algebraic structures formed by integrating a set and one (or two) operation(s).
The study of these structures, and notably their application in other fields, espe-
cially in coding theory, has made significant progress, to the point where specific
polynomials are employed as code generators. Two of the most important mathe-
matical algebraic ideas in its development are the cipher and encryption theory.

Furthermore, there are Galois groups and mathematical ideas that are utilized
in the construction of code and encryption. Coding theory, or especially alge-
braic coding theory, is the study of techniques for transferring information from
one location to another efficiently and accurately manner. The theory has been
developed for a wide range of applications, including the reduction of noise in
compact disc recordings, the transmission of financial information over telephone
lines, data transfer from one computer to another or from memory to the central
processor, and information transmission from a remote source, such as a satellite
or spacecraft that sends images or signals to Earth [23].

The followings are instances of polynomial study in various applications of
coding and encryption theory. Massey, [17], employs both traditional and current
algebraic techniques such as finite fields, group theory, and polynomial algebra.
The findings of coding theory allow for the development of trustworthy techniques
for storing and/or transferring data from malfunctioning systems. A channel is a
physical medium via which information is conveyed. Channels include telephone
wires and the environment, such as the atmosphere. Unwanted interruptions,
known as noise, might cause the information received to differ from what was
delivered ([3]). In fact, the only control we have over this noise is the selection
of a reliable transmission channel and the use of various noise filters to overcome
various forms of interference that may be encountered. These are engineering
issues.

Once we’ve decided on the optimum mechanical solution for addressing these
issues, we may move on to the design of the encoder and decoder. Puchinger and
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Wachter-Zeh in [21] examine fast algorithms for linearized polynomial operations
and offered a novel multiplication method for skew polynomials with sub-quadratic
complexity in polynomial degrees, irrespective of the underlying field extension
degree m.

Their findings demonstrate how the novel rapid operations on linearized poly-
nomials lead to the first error and erasure decoding method for Gabidulin codes
of sub-quadratic complexity. Ivchenko et al. [13] investigate the analytic, number-
theoretic, and asymptotic characteristics of Krawtchouk polynomials under var-
ious parameter relationships, as well as the probabilistic features of polynomials
with random parameters. The Krawtchouk polynomials are used to study the
cryptographic characteristics of Boolean functions and coding theory. Permuta-
tion polynomials and their inverses are studied by Zheng et al. [30] because they
have applications in cryptography, coding theory, and combinatorial design theory.
Flaut [4] demonstrates several applications of a difference equation of degree k.
Based on such an equation, he provides a mechanism for message encryption and
decryption.

Furthermore, they show how to use the matrix associated with a difference
equation of degree k in coding theory. In a study, Mesnager [18] chose two major
classes of Boolean functions with ancurved and semi-curved functions based on
their algebraic and compositional properties. They demonstrate that oval polyno-
mials (which are connected to projective plane hyperovals) give birth to numerous
new constructions of infinite classes of semi-bent Boolean functions in even dimen-
sion.

Paryasto et al., [20], offer an implementation of an efficient technique to con-
vert from the representation of a field element in one basis to the representation of
a field element in another basis in polynomials. It is feasible to use this approach
to expand an implementation on one basis such that it supports additional basis
choices. Arnault et al., [1], began by recalling the conventional matrix form of lin-
ear finite state machines (LFSMs). They then offered a new matrix representation
with polynomial fractional coefficients. In the second section, a novel design crite-
ria for LFSRs termed diffusion delay is proposed and thoroughly contrasted with
existing related ideas. Thus, they offered a novel technique to randomly choose
LFSRs with desirable features (including the new one) and sparse descriptions
dedicated to hardware and software designs utilizing the matrix form.

Hell [12] examined a family of weak feedback polynomials for LFSRs in the
nonlinear combiner. This class of weak polynomials was established in 2004, and
the attack’s primary feature is that the noise variables are represented as vec-
tors. Using coding theory, he assesses the attack’s complexity. He demonstrates
that polynomial groups may be seen as generating polynomials for a convolutional
code. The challenge of determining the attack complexity is thus identical to
determining the minimal row distance of the associated generating matrix. Guo
and Fu, [7], offered a new approach for disguising the algebraic structure of linear
codes used in code-based encryption in research. They presented the so-called
semi-linear transformations in coding theory, do extensive research on their alge-
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braic characteristics, and then creatively apply them to the design of code-based
cryptosystems. Their solution, as compared to some existing code-based cryp-
tosystems, allows for significantly more compact encoding of public keys. In [30],
Zheng demonstrates how permutation polynomials may be used in cryptography,
coding theory, combinatorial designs, and other fields of mathematics and engi-
neering.

Two new classes of permutation polynomials over finite fields are introduced as
a result of their finding. Other novel permutation polynomials are developed based
on the connection between equivalent equations and permutation polynomials. In
addition, Gulak in [6] offered a method for creating primitive polynomials, which
are utilized in the construction of radio engineering systems, critical infrastructure
control systems, and other socially relevant information systems.

Such polynomials, in particular, can be utilized to build cryptographic scheme
elements such as pseudo-random number generators, guaranteed period nodes, and
replacement nodes (substitution).

Muchtadi-Alamsyah, [19], gave a study of algebraic structures in cryptography,
such as groups, rings, and fields. Some of his results include the conversion of
polynomial bases to normal bases and the identification of a weak class of elliptic
curves that are unsuitable for cryptography. They will also briefly discuss how
higher algebraic structures are used in cryptography and coding theory.

We have already briefly given a review of prior research about the applications
of algebraic polynomials in various codings and generally coding theory. In this
article, we are going to take a fresh look at some of the most significant uses of the
polynomial ring and primitive polynomials. Indeed, in this work we investigate
the application of the polynomial ring on finite fields in the generation of various
satellite codes and their transmission to Earth to establish coordinates and other
purposes. We examine the subject in its simple instance and for finite sets, with
the goal of introducing the applications of these algebraic ideas in satellite-to-
terrestrial communication.

The structure of this document is as follows: First, key algebraic concepts and
examples will be introduced. The goal of this article is to introduce a very strong
application of polynomial rings in coding theory in an interdisciplinary manner.
So we introduce the basic mathematical preliminaries in a very simple way for
those who are familiar with geomatics and coding theory. Also, for the people
who are familiar with mathematics, we provide some questions to research. This
is the reason that we put the simple definitions and theorems (they can skip the
next section). For simplicity, we ignore all of the proofs and just introduce the
necessary definitions in the next section. Then, we will quickly present a variety of
codes, notably those generated by polynomials. Afterward, satellite systems will
be introduced, which have the task of communicating with ground equipment to
identify the position and coordinates of the points.
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2. Algebraic Prerequisites
In mathematics, several algebraic structures are utilized. Particularly in the sub-
ject of set theory, the most significant things are called groups, rings, and fields. We
begin with some essential definitions and assumptions that will be used throughout
the paper.

Definition 2.1. Let G be a non-empty set equipped with a binary operation.
The algebraic structure (G, ∗) is called a group whenever: G is closed under ∗, ∗
is associative on G, there is an identity element in G with respect to ∗ and every
element of G has inverse. Also G is said to be an abelian group if ∗ is commutative.

If G is an infinite set that makes a group with an operation, then we say that
G is an infinite group; Otherwise G is called a finite group. In the case that G is
finite, the number of its elements is called the order of G. The groups that will
be used in this article will be finite groups. For example, if G is the set of the
integer remainders modulo positive integer n, then this set makes a group with a
mathematical operation.

Obviously, if we divide any integer by a positive integer n, then the remainder
is like r such that it satisfies the inequality 0 ≤ r < n. Indeed, these residues which
individually represent all the integers that are the remainder of their division by
n, form a group denoted by Zn. It is clear that if n = 2, then the group is equal
to {0, 1}, which is highly useful and well-known.

Definition 2.2. Let G be a group, and let H be a subset of G. If H is also a
group by the operation of G, we say that H is a subgroup of G. G is said to be a
cyclic group if it consists of powers of some elements of G. In other words, G is a
cyclic group if and only if there is an element a of G such that:

G = {e, a±1, a±2, . . .}.

a is called a generator of this cyclic group. If a positive power of a equals the
identity element, then a finite cyclic group is obtained:

G = {e, a, a2, . . . , an−1}.

Rings are another algebraic structures that differ from groups. The following
definition introduces the concept of rings.

Definition 2.3. Assume that R is a non-empty set with two binary operations ∗
and ∆ on it. The algebraic structure (R, ∗,∆) is called a ring whenever: (R, ∗) is
an abelian group, it is closed and associative with respect to ∆ and ∆ distributes
over the first operator ∗.

Conventionally, the first operator is called addition, and the second operator
is said to be multiplication. In general, we show them by + and · marks in the
literature. The rings do not always have an identity element with respect to



306 A. Bagheri and H. Emami

multiplication. From now on, we assume that all of our rings are commutative.
In the theory of rings, an ideal is a particular subset of a ring. Let R be a ring
and assume that I is a subset of R. I is said to be an ideal of R if (I,+) is an
abelian group and for all a ∈ I and r ∈ R, we have ra = ar ∈ I. In this work,
the definition of ideal in its general form will not be used and we will just use
the ideals generated by some elements in R. Suppose that R is an arbitrary ring
and {a1, a2, . . . , an} are some elements of it. The ideal generated by a1, a2, . . . , an
is defined as the smallest ideal (with respect to inclusion) of R containing these
elements. This generated ideal also consists of elements in the following form:

r1a1 + r2a2 + · · ·+ rkak,

where ri’s are elements of R. The ideal generated by a single element is called a
principal ideal, and the single element is referred to as the generator of ideal. The
principal ideal generated by a is represented by 〈a〉. It is obvious that elements
of this ideal are multiples of a. Some of the rings have the property that all of
their ideals are principal. We call these rings principal ideal rings. We will become
acquainted with a set of these rings in the following. A specific instance of rings
becomes a key algebraic notion that is directly related to the topic of this research.
If the ring R is such that both (R,+) and (R− {0}, ·) are abelian groups, then R
is said to be a field. Immediately following the definition, one can see that every
non-zero element has inverse with respect to the second operator, while this is not
always the case in ordinary rings. It is obvious that the set of rational numbers,
real numbers and complex numbers are fields with their ordinary addition and
multiplication operations. It is also proven that Zn is a field if and only if n is a
prime number. We would be utilizing the Z2 field extensively in this work.

As we will see in the next section, if n is a prime number, then cyclic codes
become basically vector spaces over Zn. So let us introduce vector spaces over any
arbitrary field F. Let (V,+) be an abelian group and let F be a field. If there
exists a function (usually called scalar multiplication) · : F × V → V that meets
the following criteria, then V is called a vector space over the field F:

1. For every v ∈ V , 1 · v = v.

2. For every v ∈ V and scalars c1, c2 ∈ F, (c1c2) · v = c1 · (c2 · v).

3. For every scalar c ∈ F and every v1, v2 ∈ V , c · (v1 + v2) = c · v1 + c · v2.

4. For every v ∈ V and scalars c1, c2 ∈ F, (c1 + c2) · v = c1 · v + c2 · v.

Generally the elements of vector spaces are called vectors. The concept of
subspaces can be defined similarly as subgroups. Let V be a vector space over the
field F and let W be its subset. Then W is said to be the subspace of V if W is a
vector space over F with respect to addition and scalar multiplication of V .
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Definition 2.4. Let V be a vector space over a field F and let S = {v1, . . . , vn}
be a subset of V . S is called linearly independent if every linear combination

c1v1 + c2v2 + · · ·+ cnvn = 0,

where ∀i, ci ∈ F, leads us to c1 = c2 = · · · = cn = 0. Otherwise S is called linearly
dependent or simply dependent.

According to the preceding definition, as examples, the zero vector (or any
set containing the zero vector) is dependent. Every non-zero vector is linearly
independent and two vectors are linearly independent if and only if they are not
parallel.

Let V be a vector space over the field F and suppose that S is a set of vectors
of V . The smallest subspace of V containing S is called the subspace generated
by S. Similarly, the subspace generated by S is equal to the intersection of all
subspaces of V that contain S. It is easily proven that elements of the subspace
generated by S are of the form c1v1 + c2v2 + · · · + ckvk where ci’s belong to F.
One of the most essential notions in a vector space is dimension, which is directly
utilized in theoretical codes. If S = {v1, . . . , vn} is an independent subset of V
and the subspace generated by S is equal to V , then S is called a basis for V . In
this case we say that the dimension of V is equal to n, say dimV = n.

For example, R2 is a vector space of dimension 2 over R. One basis for this
space is {(1, 0), (0, 1)}. Similarly, R3 is a vector space of dimension 3 and Rn is
the vector space of dimension n. It is important to note that when a vector space
(even finite dimensional) is studied over an infinite field, one can not have any
control on its elements. However, if we have a finite-dimensional vector space over
a finite field, then the number of vectors of this vector space equals the number of
elements of the field power to the dimension of vector space. Particularly, if you
regard V as a 3-dimensional vector space over the field Z2, this space will then
have a total of 23 = 8 vectors, which are as follows:

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

This set of vectors can be written as

{000, 100, 010, 001, 110, 101, 011, 111}.

According to engineering disciplines, especially geomatics engineering, the infor-
mation to be transmitted is often presented as a series of zeroes and ones. A digit
is defined as a 0 or a 1. A word is a sequence of these numbers. The number of
digits in a word determines its length.

As a result, 0110101 is a seven-letter word. A word is sent via a binary channel
by transmitting its digits one after the other. The word “binary" refers to the usage
of only two numbers, 0 and 1. Each number is conveyed physically, electronically,
magnetically, or otherwise by one of two distinct types of pulses. A binary code
C is a collection of words.
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For example, the code of all words of length two is equal to

C = {00, 10, 01, 11}.

We can have another type of representation of codewords as polynomials. First
of all let us recall what a polynomial is. Let F be a field.

A polynomial has the representation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where x is an independent variable and ai’s are elements of the field F. n is
considered as a non-negative integer. The largest power of x in a polynomial
g(x) with a non-zero coefficient is known as the degree of the polynomial and
is represented by deg(g(x)). The field which the coefficients of polynomial come
from, is very important. If f(x) and g(x) are two polynomials with coefficients in
F, then the following equations for the degrees of polynomials are established:

deg(f(x) + g(x)) ≤ max{deg(f(x)),deg(g(x))}),
deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

Notice that if F is not a field, then the last equation may fail. Based on
the introductory materials given in the case of the rings, it can be observed that
the set of all polynomials with coefficients belonging to the field F with ordinary
addition and multiplication makes a new ring that is called polynomial ring. The
polynomial ring with coefficients in the field F is represented by the symbol F[x].
For example R[x] consists of all polynomials having real coefficients and Z2[x] is
the set of all polynomials with coefficients zero and one.

In coding theory, these kinds of rings are employed. Polynomial rings are also
known as rings, which are principal ideal rings (in abstract algebra these rings are
domains and they are said to be principal ideal domains). In other words, if I is
an ideal of F[x], then there exists the polynomial g(x) such that I is equal to the
ideal generated by g(x). This polynomial, which is the generator of a principal
ideal, is employed as a cyclic code polynomial generator. This is accomplished
easily by applying the division algorithm:

Theorem 2.5. If f(x) and g(x) are polynomials of the ring F [x] with g(x) 6= 0,
then there are polynomials q(x) and r(x) such that f(x) = g(x)q(x) + r(x) with
the property r(x) = 0 or 0 ≤ deg(r(x)) < deg(g(x)).

In this division the quotient is q(x), while the remainder of the division is
r(x). The remainder of a division in a polynomial ring over a field is uniquely
determined. Let F[x] be the ring of polynomials with coefficients in F, and let
〈g(x)〉 be the principal ideal generated by g(x). Consider the set

f(x) + 〈g(x)〉 = {f(x) + h(x)|h(x) ∈ 〈g(x)〉}.
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This set is called a coset. The set of all cosets equipped with addition and multi-
plication operations

(f1(x) + 〈g(x)〉) + (f2(x) + 〈g(x)〉) = ((f1(x) + f2(x)) + 〈g(x)〉),

(f1(x) + 〈g(x)〉) · (f2(x) + 〈g(x)〉) = ((f1(x) · f2(x)) + 〈g(x)〉),

is a new a ring known as quotient ring.
One represents this ring by F[x]

〈g(x)〉 . It is worth noting that in this ring, the
additive identity element is g(x) and f1(x) + 〈g(x)〉 = f2(x) + 〈g(x)〉 if and only if
g(x)|f1(x)− f2(x).

Recall the Zn ring. It can be easily seen that this ring is a quotient ring of
integers and each element of this ring is corresponding to the set of nk+is. In fact,
Zn corresponds algebraically to the quotient ring of Z/nZ. In the next sections,
we will devote a significant amount of attention to this quotient ring.

Let p be a prime number. Then it is easily seen that Zp is a (finite) field. If we
have an irreducible polynomial over Zp[x], say p(x), then the quotient Zp[x]/〈p(x)〉
is a finite field with pm elements where m is the degree of p(x). Notice that for
every prime number p, there exists at least one irreducible polynomial of degree m
such that the so called quotient ring is a finite field of order pm. The polynomials
over finite fields that permute the elements of the field are the main core of coding
theory. These polynomials together with some properties are the generators of
codes.

Polynomials, as previously stated, play a vital role in the generation of cyclic
codes. Irreducible polynomials and primitive polynomials play a considerably more
prominent part in this role.

The polynomial f(x) of the ring F[x] is said to be irreducible if it cannot
be decomposed into two positive degree polynomials. In other words, f(x) is
irreducible if and only if the equation f(x) = g(x)h(x) where 0 < deg(g(x)) <
deg(f(x)) and 0 < deg(h(x)) < deg(f(x)) is not possible.

Finally, we introduce the primitive polynomials over the Z2 field (they can be
defined over any field). A primitive polynomial is an irreducible polynomial f(x)
of degree m in the ring Z2[x] such that the lowest positive integer n for which f(x)
divides xn − 1 is equal to 2m − 1. In other words, the polynomial f(x) of degree
m in the ring Z2[x] is primitive if it contains a root a such that the set

{0, 1, a, a2, . . . , a2
m−2},

equals the Galois field GF (2m).
What happens with primitive polynomials is that when a number of bits are

started as input, the recurrency relation is produced to define the code, which has
a length of 2m−1 and then these bits are repeated. Indeed, a primitive polynomial
generates every LFSR with maximum length. The code length is 2n − 1 where n
is the length of the input bits for code generation. This is the main reason that
the primitive polynomials are used to generate PRN codes.
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3. Codes

Coding theory is a method for studying the properties of codes and their applica-
tions. Codes have numerous applications in different fields and are very important
in terms of both information transport and information security.

A block code is a code that has all of its words of the same length; this number
is referred to as a code’s length. In this note, only block codes will be considered.
As a result, for us, the term code will always refer to a binary block code. The
words that belong to a certain code C are referred to as codewords. The second
point is that detecting the beginning of the first word sent is simple. Thus, if
we use codewords of length 3 and obtain 011011001, we know the words are in
sequence 011, 011, 001.

The following statements will demonstrate that the set of elements of a vector
space is known as a code. It is observed that these elements may be classified into
components, as the result of the addition of two elements is again an element of
the same set. Each permutation also gives another vector of the same set.

In general, a code is defined as follows. Consider the Cartesian product of a
set An, where A is a set.

The output of this Cartesian product is known as a block code. In this context,
studying this idea in general will be difficult and ineffective. So, because of the
scope of this paper, we restrict ourselves to cyclic codes over finite fields in order
to demonstrate their functioning and applicability. This is because these codes
directly relate to polynomials.

A linear code is one in which the componentwise addition of two items is also
one of the elements. More precisely, C is a linear code over the finite field F with q
elements if it is a k-dimensional vector subspace. This code is represented by [n, k]
over F. As we can see, the code has a completely algebraic structure, and this
algebraic structure will have various applications. Every vector space, of course,
has a dimension. C (as a vector space) has the dimension k and it has a basis of k
vectors that are linearly independent and generate C. For this code, a generating
matrix of order k × n is defined, with constituent rows representing the linearly
independent elements of the basis of C.

Since each code (as an element of a vector space) is a unique linear combination
of basis vectors, all elements of this code can be constructed from the introduced
generating matrix. Of course, there is another approach to express the code, which
is based on calculating the null space of another matrix called the parity check
matrix H with order (n − k) × n. In other words, C characterizes the null space
of H. Using these two matrices, it is simple to determine if an n-tuple belongs to
C or not (is an element of the code). If Hct = 0, then c belongs to C. It is also
feasible to determine the verticality or non-verticality of vector space vectors by
utilizing the concept of inner multiplication for the elements of a vector space.

When the inner multiplication of two elements is zero, then they are orthogonal.
This definition establishes a link between the generating matrices of C and C⊥

codes. This connection states that if H is C’s parity check matrix, then H is the
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generating matrix of C⊥. It should be mentioned that the general notion of linear
codes can be established on rings, and numerous research has been conducted on
them. According to the objectives of this research, we will not discuss codes on
rings and will instead focus on codes and their applications on finite fields.

3.1 Cyclic Codes

Let F be a finite field with k elements. An [n, k] code is a sequence of n-tuples
whose components are from F. Let v = (v0, v1, . . . , vn−1) be an n-tuple of Fn.
Moving these components i places to the right, (In the form of a cyclic code)
results in a new n-tuple, as

v(i) = (vn−i, vn−i+1, . . . , vn−1, v0, v1, . . . , vn−i−1).

This rightward shift by i is the same as the leftward shift by n− i. Furthermore, if
you consider these components to be a polynomial coefficients, this is equivalent to
multiplying the polynomial by xi. These expressions represent a particular state
of the cyclic code.

The term “cyclic code” refers to a specific form of linear codes that is widely
utilized. If (c0, c1, . . . , cn−1) ∈ C and one can conclude that (cn−1, c0, . . . , cn−2) ∈
C, then we call C a cyclic code. It is self-evident from the definition that C is
a cyclic code whenever for every v ∈ C, one can prove that for all i, v(i) ∈ C.
If in very special case we have F = Z2, then C = {000, 110, 011, 101} will be a
cyclic code; this is extremely simple to explore and this set is essentially a Z3

2

vector subspace. Clearly, algebra and especially polynomial algebra, over a finite
field and cyclic codes are closely related and one can describe these type of codes
algebraically.

Keep in mind that each element of Fn has n components, and if you wish to
match this n components with a polynomial, you must limit yourself to polyno-
mials of degree n− 1. The quotient ring F[x]

〈xn−1〉 does this. Consider a one-to-one
correspondence

Fn → F[x]

〈xn − 1〉
,

with
(c0, c1, . . . , cn−1) 7−→ c0 + c1x+ · · ·+ cn−1x

n−1.

Each element of code C may be represented by a polynomial with coefficients
in the field F and of degree n−1 by using this one-to-one correspondence. Because
of this relationship, the definition of cyclic codes becomes more algebraic. If c0 +
c1x+ · · ·+ cn−1x

n−1 ∈ C, the multiplication of x in this expression will be c0x+
c1x

2 + · · ·+ cn−1x
n. You should divide this phrase by xn − 1 if you wish to view

it in F[x]
〈xn−1〉 . The remainder of this division is

cn−1 + c0x+ · · ·+ cn−2x
n−1,
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which will be a C code element. As previously stated, permuting code digits is
equivalent to multiplying xi by their corresponding polynomial.

As a result, it is possible to say that studying cyclic codes over the field F is
equivalent to studying the ideals of F[x]

〈xn−1〉 . It was shown in the preceding section

that the ideals of F[x]
〈xn−1〉 are all principal ideals and would thus be generated by

a polynomial. As a result, each C code is created by a polynomial, which is
called as the code’s generating polynomial. If g(x) is a generator for code C, then
you must have g(x)|xn − 1; that is, xn − 1 must be divisible by the generating
polynomial. This is a significant algebraic result for cyclic codes. The following
theorem summarizes the above issues.

Theorem 3.1. Assume that C is an [n, k] cyclic code in F[x]
〈xn−1〉 . The monic

and unique polynomial g(x) in this instance is such that deg(g(x)) = n − k and
g(x)|xn − 1. Also C = 〈g(x)〉.

If you wish to get the generating matrix of this code, you must first obtain a
basis for the required vector space and then arrange the basis elements in the rows
of a matrix. Let

g(x) = g0 + g1x+ · · ·+ gn−kx
n−k,

be the generating polynomial of code C of length n over the finite field F. Then
the generating matrix of this code is

g0 g1 · · · gn−k 0 · · ·
0 g0 g1 · · · gn−k 0 · · ·
· · · · · · · · · · · · · · ·
0 0 · · · g0 g1 · · ·

 .
So the generating matrix of C is the matrix whose rows are multiples of xig(x):

g(x)
xg(x)

...
xk−1g(x)

 .
The parity check matrix can be derived from the notion of quotient-rings. If g(x)
is a polynomial that generates the code C over F with length n and dimension
k, then h(x) = (xn − 1)/(g(x)) is referred to as a parity check polynomial. If
h(x) = h0 + h1x + · · · + hkx

k, then the ideal generated by h(x) is the same null
generator as C.

Example 3.2. Let C be the code generated by the polynomial g(x) = 1 +
x + x3 on Z2 with length 7. Then this set is generated by all permutations of
(0, 0, 0, 1, 0, 1, 1). Consider the equation

h(x) = (x7 − 1)/(1 + x+ x3) = x4 + x2 + x+ 1.
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The rows of generating matrix for this code will be the polynomials in the following
order as:

g(x), xg(x), x2g(x), x3g(x).

It is now explained how to construct an [n, k] cyclic code. Suppose that g(x) is a
generating polynomial over Z2 for the code C. To code the phrase (c0, c1, . . . , ck−1)
in this situation, first treat it as the polynomial c(x) = c0 + c1x+ · · ·+ ck−1x

k−1.
Then compute xn−kc(x) and divide it by g(x). We know from the division algo-
rithm that there exist q(x) and r(x) such that

xn−kc(x) = g(x)q(x) + r(x).

Given that the degree of g(x) is equal to n−k, the remainder r(x) will have degrees
less than or equal to n− k− 1, according to the division algorithm. The following
expression is a multiple of g(x) and hence an element of C because

r(x) + xn−kc(x) = q(x)g(x).

The code generation process, in general, follows this pattern. In a [4, 7] code
with a generating polynomial g(x) = x3+x+1 for example, the approach would be
as follows: To code (0, 1, 1, 0), first calculate the relevant polynomials, i.e. multiply
x2 +x by x3 and then divide it by g(x). The required code is produced by adding
the remainder to the original equation, which in this case is equal to x5 + x4 + 1,
that is equivalent to (1, 0, 0, 0, 1, 1, 0).

Let C = 〈1 + x2〉 with n = 3 be over the field Z2. Elements of C will be the
elements of 〈1 + x2〉 in Z2[x]

〈x2−1〉 . To identify the elements of C, just compute all

the r(x)(1 + x2) where r(x) is an element of Z2[x]
〈x2−1〉 := R. R is made up of the

following polynomials:

{0, 1, x, 1 + x, x2, 1 + x2, x+ x2, 1 + x+ x2}.

Therefore
C = {0, 1 + x, 1 + x2, x+ x2}.

That is to say C = {000, 110, 101, 011}.
This code was introduced as an example of a simple code in the first part. It

is worth noting that the number of divisors of xn − 1 can be utilized to produce
generating polynomials (and thus code). To compute all 4-length codes on Z3, for
example, first decompose x4 − 1 as

x4 − 1 = (x− 1)(x+ 1)(x2 + 1).

It is discovered that x4 − 1 has eight divisors, and each of these divisors will
generate a unique code. It is simpler to discover these codes if you know the
generating matrix that goes with them. This is only possible if you provide rows
of matrices that are multiples of xig(x).
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Recall that polynomials of degreem are primitive if the least integer n for which
g(x)|xn − 1 equals 2m − 1. The characteristics of the Z2 cyclic code generating
polynomials may be summarized as follows based on what has been discussed thus
far:

1. The degree of g(x) for each [n, k] code must be equal to n− k = m.

2. The constant term of g(x) is equal to 1.

3. g(x) is the primitive polynomial of xn + 1.

4. Since we discuss in Z2, then xn + 1 = xn − 1.

5. Each element of the code has a maximum degree of n− 1.

6. Each code element is a multiple of g(x).

Another advantage of using primitive polynomials to generate codes is that it
prevents repetition in the first 2m − 1 bits.

3.2 Shift Registers
Polynomials can be used to define shift registers, which are utilized for code genera-
tion. The code for a given satellite is defined by the initial value of the polynomials
and the phase between them. So far, generating polynomials and their types have
been recognized.

The linear-feedback shift register (LFSR) idea is now briefly explained. When
the Z2 field is considered, the primitive polynomials can be used to generate quasi-
random codes. The primitive polynomials can generate any LFSR with a maxi-
mum length of 2n−1, where n is the length of the initial LFSR. In this process, an
initial ten-bit code is considered, with each bit allocated a position ranging from
1 to 10. These bits can be thought of as polynomial coefficients on Z2.

At each step, the bits are now shifted one position to the right. This operation,
obviously, corresponds to the multiplication of x in polynomials related to the
initial bits. If polynomials like x10 + x3 + 1 are used for shifts, then the initial
position is determined by adding the third and tenth bits. As a result, 210 − 1
bits will be generated, and the start attribute of g(x) will prohibit this code from
being repeated before 210 − 1.

This technique is utilized in GNSS satellite systems that send code from satel-
lites to ground receivers to calculate the coordinates of locations. The appropri-
ate polynomial is determined by the number of satellites and does not interact
with other satellite systems. Based on the usage of primitive polynomials, the
mechanism employed in satellites to transmit information is such that two main
polynomials are utilized in such a way that the output of the first polynomial is
used as input for the second polynomial.

The stability of displacement, which is an electrical circuit in which the bits
are shifted evenly at each stage, performs this operation, and bits are added to
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the first place of the bits generated. If these adjustments are done one bit at a
time (as with satellites), this stability is known as linear displacement. When the
polynomial employed is primitive, then the greatest number of bits that could be
retrieved without repetition is 2n − 1.

4. Primitive Polynomials in Geomatics Engineering

All sciences and engineering are founded on mathematics. Furthermore, we may
assert unequivocally that mathematics is the structure and engineering is the phys-
ical body, [9]. Furthermore, mathematics in engineering focuses on mathematical
applications in science and engineering. Geomatics engineering, on the other hand,
is a specialized branch of engineering that focuses on the monitoring, implemen-
tation, and maintenance of global geospatial information.

Geospatial information is defined as any information that has positional char-
acteristics. Satellite navigation (SATNAV) systems are a subfield of geomatics
engineering that employs satellites to offer autonomous geospatial positioning.
There are various SATNAV systems in use now all over the world. Some are
worldwide, while others solely serve a specific region. The term Global Navigation
Satellite System (GNSS) refers to the collection of all SATNAV systems and their
enhancements [16].

The GNSS systems are owned by the United States, Global Positioning Sys-
tem (GPS), Chinese BeiDou Navigation Satellite System (BDS), European Galileo,
Russian Federation Global Navigation Satellite System (GLONASS), Navigation
with Indian Constellation (NavIC), and Japan’s Quasi-Zenith Satellite System
(QZSS) (Grewal et al., [5]; Winternitz, [27]). The GNSS consists of constellations
of Earth orbiting satellites that broadcast their locations in space and time, net-
works of ground control stations, and receivers that determine ground positions
via trilateration.

Figure 1 depicts four widely used GNSS systems. GNSS system positioning
is based on a fairly basic idea. To make it function, however, a high level of
technological competence is necessary. The satellites transmit an electromagnetic
signal, and the user has a receiver that includes a clock. Figure 2 depicts the
fundamental principle of GNSS positioning. The user’s position may be calculated
using the known positions of four satellites SV Ni and the signal travel distance
ρi. A GNSS signal is sent from a satellite to a receiver to determine the distance
between the satellite and the receiver.

Each GNSS transmits its signal on a specific radio frequency and constantly
transmits signals at two or more frequencies [11]. These signals carry range codes,
which allow users to compute the travel time from the satellite to the receiver as
well as the satellite coordinates at any time [2, 11]. a ranging code is a series
of zeroes and ones that allows the receiver to calculate the time it takes for the
radio signal to travel from the satellite to the reception. They are referred to as
pseudo-random noise (PRN) sequences or PRN codes [25]. PRN codes contain
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Figure 1: Four well-known GNSS systems are orbiting the Earth [22].

Figure 2: The fundamental idea of GNSS positioning [15, 27].
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Figure 3: A short repeating PRN code sample [10].

random noise characteristics yet are clearly specified. They are a series of zeroes
and ones, with each zero or one referred to as a “chip". Figure 3 illustrates a brief
repeating PRN code sample.

The PRN codes have specific mathematical features that allow all satellites to
communicate at the same frequency without interfering with one another. These
codes also enable exact range measurements between satellites and user devices.

The structure of the PRN code generation is essentially identical for all GNSS
systems, however the method of employing mathematical equations in the devel-
opment of these codes differs somewhat [28]. A deterministic system generates the
PRN codes, which are limited in length.

In general, PRN codes are almost orthogonal to one another. In other words,
they are nearly completely unrelated. An autocorrelation function with a single
correlation peak is also present in the orthogonal codes. The GPS is the first of a
new generation of GNSS systems, and it employs two distinct PRN code strings.
The Coarse Acquisition Code (C/A-code), often known as the “Civilian Code,"
and the Precise, or Protected Code (P-Code) are the two [15].

The C/A code is a particular sequence of ones and zeroes that is created 10
times slower than the P-Code. The coding rate for C/A is 1.023 million bits per
second. Satellite identification is simple in this case. Each GPS satellite not only
broadcasts its own fully unique 1023 bit C/A code, but it also repeats it every
millisecond [26]. The C/A code generator, also known as PRN, comprises two
shift registers known as Gold polynomial 1 (G1) and Gold polynomial 2 (G2),
which are used to generate Gold code [8].

A Gold sequence, sometimes known as a Gold code, is a type of binary sequence
used in communications and GNSS satellites. Robert Gold inspired the name of
the Gold codes. Within a set, Gold codes have limited, small cross-correlations,
which is beneficial when several devices broadcast in the same frequency band. A
Gold code sequence set is made up of 2n+1 sequences, each with a period of 2n−1,
[24]. The procedures below can be used to produce a set of Gold codes. Choose
two maximum length sequences of the same length 2n − 1 with absolute cross-
correlation less than or equal to 2(n+2)/2, where n is the size of the LFSR used to
produce the maximum length sequence. A set of 2n + 1 Gold code sequences is



318 A. Bagheri and H. Emami

formed by the set of the 2n−1 exclusive-OR of the two sequences in their different
stages, as well as the two maximum length sequences [8].

In some phases, the exclusive OR of two different Gold codes from the same
set equals another Gold code. About half of the codes in a set of Gold codes
are balanced -the number of ones and zeroes differs by one. The sequence would
include 512 ones and 511 zeroes, which would appear to be randomly dispersed.
Furthermore, while Gold codes are not orthogonal, they ensure consistently low
cross-correlation with other Gold codes. Because all GPS satellites communicate
on the same frequency, this feature is critical.

Gold codes have a maximum length of 1023 chips. To produce signals on all
frequencies, the GPS satellite has a 10.23 MHz internal satellite clock. The L1
C/A code has a duration of 1 ms. As a result, the chip rate is 1023 chips/ms.
Additionally, the Gold codes are generated with the help of a pair of shift registers
(gold polynomials) with feedback.

A shift register is just a list of bits with an input and output end. The GPS
registers have a length of ten. We’ll begin with all 1s, compute the feedback, and
then move all of the numbers to the right. In the past sections we explained the
meaning of moving the numbers to the right. The GPS C/A range codes are Gold
codes from the period 1, 023 [11].

Each satellite has its own code string. The C/A code is the Standard Posi-
tioning Service code (SPS). The shift registers are reset to all ones every 1023rd
period, causing the function to restart. After the codes are generated, they are
merged with the navigation data using Gold polynomial 2 adders. The C/A code
generator has two shift registers, G1 and G2. Each of these shift registers has ten
cells that generate sequences of length 1023. The feedback configuration of the G1
register is always the polynomial, as shown in the following equation

G1 : F (X) = 1 +X3 +X10.

This means that states 3 and 10 are returned to the input. Figure 4 depicts the
setup of a Gold polynomial (G1) shift register generator. Because the sequence
repeats itself, just the delay between the polynomials counts in this situation. The
delay is determined by selecting certain tap outputs and combining them with an
exclusive OR operation. Similarly, the polynomial in the equation

G2 : F (X) = 1 +X2 +X3 +X6 +X8 +X9 +X10,

applies to the G2 register.
Both polynomials starting states are assigned to the same value 1:

G1(0) = G2(0) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

Figure 5 depicts the setup of a Gold polynomial (G2) shift register generator.
Thirty-six of the available GPS satellite pairings can be chosen. Figure 6 depicts
the GPS satellite combinations used for C/A code generation. As it is seen in
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Figure 4: Gold polynomial (G1) shift register generator configuration [8].

Figure 5: Gold polynomial (G2) shift register generator configuration [11].
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Figure 6: Coordinates of GPS satellites for C/A code generation.

Figure 6, each satellite has a unique combination for generating the C/A code.
For example, satellite number 23 employs the power 1 and power 3 of the second
polynomial (G2), while satellite number 16 employs combinations 9 and 10. A
Boolean operator that works on two variables and returns 1 if one but not both
of the variables returns 1. So the output of the two shift registers (G1, G2) is
mixed in an unusual way to generate separate C/A codes for the satellites. The
G1 register always provides its output, while the G2 register generates its output
by supplying two of its states to a modulo 2 adder. Phase selection refers to the
process of selecting states for the modulo 2 adder.

Moreover, a shift register is a collection of one-bit storage or memory cells.
When the register receives a clock pulse, the content of each cell changes one
bit to the right. As output, the final cell’s content is “read out". The unique
characteristics of such shift registers are determined by how information is “read
in" to cell 1. The condition of the other cells determines the input to cell 1 in a
tapped linear feedback shift register. The binary sum of cells 3 and 10 in a 10-cell
register, for example, could be used as the input.

If cells 3 and 10 have distinct states (one is 1 and the other is 0), the following
clock pulse will read a 1 into cell 1. If cells 3 and 10 both have the same state,
the value 0 is read into cell 1. If we start with 1 in each cell, the contents will be
0010001110 after 12 clock pulses. The next clock pulse will take the 1 in cell 3 and
the 0 in cell 10 and add them together to get a total of 1 in cell 1. Meanwhile, all
of the other bits have shifted one cell to the right, and the 0 in cell 10 has become



Applications of Algebraic Polynomial Rings 321

Figure 7: C/A code generation ([14]).

the next bit in the output. Cells 2, 3, 6, 8, 9 and 10 of the other G2 polynomial are
tapped and binary-added to produce the new input to cell 1. In this example, the
output comes from a different set of taps rather than cell 10.

These second taps are binary-added in various pairs. The various couples
produce the same sequence with varied delays or shifts. G1’s output is binary-
added with the delayed form of the G2 sequence. There are 37 PRN C/A codes in
all, however two of them (34 and 37) are identical. When old satellites expire and
new satellites are launched, a portion of the first 32 codes is allocated to (no more
than 24) spacecraft and recycled. Codes 33˘37 are allocated for various uses, such
as ground transmitters. Each of the first 32 segments corresponds to a distinct
satellite.

The P code is generated using the same concepts as the C/A code, with the
exception that four shift registers with 12 cells are utilized. Modulo 2 addition is
used to mix the code with the binary navigation data. If the code chip and the
data bits are the same (both 0s and both 1s), the result is 0; otherwise, the result
is 1. Modulation is the technique by which the composite binary signal is imposed
upon the carrier. Figure 7 depicts the combination of two polynomials as well as
the generation of a C/A code. To be more precise, let us explain why the output
is 1 in step 11. The input to cell 1 of a tapped LSFR is governed by the state of
the other cells. The binary sum of cells 3 and 10 in a 10-cell register G1, will be
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used as the input. If cells 3 and 10 have opposite states (one is 1 and the other is
0), the following clock pulse will read a 1 into cell 1. If cells 3 and 10 both have
the same state, the value 0 is read into cell 1.

4.3 C/A or PRN Code Generation Steps
As previously stated, the C/A code generator has two shift registers known as
G1 and G2. Each of these shift registers has ten cells that generate sequences of
length 1023. The G1 register is always in feedback mode with the polynomial as
shown. Table 1 shows that the whole sequence of 1, 023 chips is repeated 1, 000
times per second, yielding a “Chip-Rate" of 1.023 MHz or one phase switch (chip)
per one-millionth of a second. The shift registers are reset with all ones every
1023rd period, causing the function to restart.

After the codes are generated, they are merged with the navigation data using
Gold polynomial 2 adders.

Table 1: Code generation from G1.
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Similarly, the second table demonstrates how to combine the codes from the G1
polynomial and produce PRN codes for each satellite separately using G2. This
table only includes the first GPS satellite.

Table 2: Code generation using G2 only for SV#01 and SV#32.

The output of the G1 polynomial code is passed into the second G2 polynomial
as an input. Furthermore, Figure 6 depicts GPS satellite combinations for C/A
code generation, demonstrating that each satellite has a unique combination for
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Figure 8: The combinations of the G1 and G2 outputs to generate a unique PRN
or C/A code for each GPS satellite.

generating the C/A code. Figure 8 depicts the G1 and G2 polynomial output
combinations used to produce a unique code for each satellite.

Table 3: C/A PRN Code generation for SV#01 and SV#32.
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As indicated in the above table, the C/A PRN codes for satellites No. 1 and
32 GPS are produced in 10 states that are distinct and unique to each satellite.
For each GNSS satellite, these codes are generated and repeated into 1023 strings
of PRN code every microsecond. Following that, the GPS carrier’s waves may
have been modulated in a variety of ways to convey the binary codes, which are 0s
and 1s. In any case, binary phase shift keying is the most widely utilized spread
spectrum modulation method (BPSK). This method was used to generate the
NAV Message, the P (Y ) code, and the C/A code.

Binary biphasic modulation is the process of transitioning from 0 to 1 and 1
to 0 by 180 phase shifts in the carrier wave. PRN codes are made up of a series
of zeroes and ones, with each zero or one referred to as a "chip". These codes are
concatenated and modulated with navigation data before being transmitted to the
ground.

4.4 Gold Polynomial Coding for Additional GNSS Systems
The structure of PRN code generation is essentially identical in all GNSS systems,
however the method of employing mathematical equations in the development
of these codes differs somewhat. The following equations show the gold code
generating polynomials for BeiDou satellite systems [28]:

G1(X) = 1 + x+ x7 +X8 +X9 +X10 +X11,

G2(X) = 1 + x+ x2 +X3 +X4 +X5 +X8 +X9 +X11,

with initial states

G1(0) = G2(0) = {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0}.

The range codes are different from GPS, even for the same taps, because the
polynomials and their initial states are different.

Similarly, the gold code generating polynomial for GLONASS satellite systems
is represented by equations

G1(X) = 1 +X5 +X9,

G2(X) = 1 +X3 +X5.

5. Conclusion
Coding theory, sometimes known as algebraic coding theory, is the study of strate-
gies for efficiently and accurately transmitting information from one location to
another. This research not only presents and discusses the generation of PRN codes
for GNNS satellites using various polynomials, but it also illustrates a practical
application of mathematics in geomatics engineering. In recent decades, algebraic
geometry has found fascinating applications in coding theory and cryptography.
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To this end, we investigated the application of the polynomial ring on finite fields
in the generation of various satellite codes and their transmission to Earth to
establish coordinates and other purposes.

This paper discussed advanced elements of coding and cryptography in the
Global Navigation Satellite System (GNSS). In GNSS, satellites continually broad-
cast signals at two or more frequencies, whose transmissions include pseudo-
random noise (PRN) codes.

Each GNSS satellite has its own unique PRN code, which allows all satellites
to communicate at the same frequency without interfering with one another due
to the unique mathematical features of PRN codes. The PRN code generator
employs two shift registers known as gold polynomials.

The number of satellites and their interacts with other satellite systems decide
the suitable polynomial. The technique used in satellites to transmit information
is based on the use of primitive polynomials, in which two primitive polynomials
are used in such a way that the output of the first polynomial is used as input for
the second polynomial. This process is performed by the stability of displacement,
which is an electrical circuit in which the bits are displaced equally at each stage,
and bits are added to the first of the number of bits generated. This stability is
known as linear displacement when these changes are made one bit at a time (as
with satellites).

When the used polynomial is primitive, the most bits that can be recovered
without repetition is 2n − 1. The PRN codes have unique mathematical features
that allow all satellites to communicate at the same frequency without interfering
with one another, as well as exact range measurements between satellites and user
devices. The structure of the PRN code generation utilizing polynomials is essen-
tially identical to all GNSS systems, however the method of applying mathematical
equations in the development of these codes is slightly different.

The PRN code generator has two shift registers and is constantly in feedback
mode with the polynomial equations. They are configured by selecting particu-
lar tap outputs and merging them with an exclusive OR operation. Polynomials
can be used to define shift registers, which are utilized for code generation. The
correlation measurements define the basic properties of the PRN sequences. Two
infinite random sequences should be unrelated to one another. This study presents
and discusses the generation of PRN codes for GNNS satellites using various poly-
nomials.
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