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Abstract

The Mathieu group M24 has a maximal subgroup of the form Ḡ = N :G,
where N = 26 and G = 3.S6

∼= 3.PGL2(9). Using Atlas, we can see that
M24 has only one maximal subgroup of type 26:(3.S6). The group is a split
extension of an elementary abelian group, N = 26 by a non-split extension
group, G = 3.S6. The Fischer matrices for each class representative of G are
computed which together with character tables of inertia factor groups of G
lead to the full character table of Ḡ. The complete fusion of Ḡ into the parent
group M24 has been determined using the technique of set intersections of
characters.
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1. Introduction

The Mathieu group M24 is a sporadic simple group of order 244823040 and its
character table is given in Atlas [8, p. 56]. M24 is the largest of the five Mathieu
groups and has nine conjugacy classes of maximal subgroups. In this paper, we
will determine the conjugacy classes, inertia factor groups, calculate the Fischer
matrices and hence the ordinary character table of 26:(3·S6) using coset analysis
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technique and the theory of Fischer matrices. These methods have been used
extensively in literature (see for instance: [2, 3, 4, 6, 7, 15, 16]).

The fusion of Ḡ into M24 has been completely determined using the technique
of set intersections. This technique has also been used by Ali [1], Chileshe [7],
Moori [13] and Mpono [14]. Using the two 11× 11 matrices over F2 that generate
M24, supplied by [18], we were able to construct Ḡ inside GAP [10]. The two
11− dimensional matrices, m1 and m2 over F2 that generate Ḡ are given in Table
1 with o(m1) = o(m2) = 4 and o(m1m2) = 6.

Since Ḡ can be constructed in GAP, it is easy to obtain all its normal subgroups.
The group 26:(3·S6) has 3 non-trivial normal subgroups but only one of these
groups is of order 64 and is an elementary abelian 2-group. This group is the
N = 26 generated by six 11 × 11 matrices γ1, γ2, γ3, γ4, γ5 and γ6 each of order
2. Up to isomorphism, 26:(3·S6) has only one subgroup of order 2160 which is a
non-split extension of the form G = 3·S6 complement to N = 26. We note that
G = 3·S6

∼= 3.PGL2(9) and hence the two groups have the same character table.
The character table of 3.PGL2(9) has been determined by Whitley [17]. The group
G is generated by three matrices a, b and c given in Table 2 with o(a) = 2 = o(ab),
o(b) = 6 = o(ac), o(c) = 3, o(bc) = 5 and o(abc) = 4.

2. Conjugacy Classes of Ḡ = 26:(3·S6)

In this section, we calculate the conjugacy classes of Ḡ using the coset analysis
technique (for more details, see [1, 7, 13, 14, 16, 17]). Corresponding to 16 conju-
gacy classes of 3·S6, we get 33 conjugacy classes of Ḡ. We also use Programmes
A and B for the f ’s and power maps of elements of Ḡ (see Chileshe [7]). We list
the conjugacy classes of Ḡ in Table 3, where in this table:

• k is the number of fixed points of g on N which is equal to the number of
orbits under the action of N on Ng. The action of N on the identity coset
N produces 64 orbits and therefore, k = 64.

• fj is the number of orbits that come together under the action of CG(g)
on the orbits, Q1, Q2, . . . , Qk. In this case, the action of CG(1A) = G on
Q1, Q2, . . . , Qk produces 3 orbits of lengths 1, 18 and 45. Thus f1 = 1,
f2 = 18 and f3 = 45.

• the weights, (wj ’s) for the row orthogonalities of the Fischer matrices are

computed using the formula, wj =
fj × |N |

k
.

3. Fischer Matrices and Character Table of Ḡ
The theory behind Fischer matrices has been explained in several research papers.
If readers require a review on the method of Fischer matrices, they are encouraged
to consult the following papers [1, 9, 14, 17].
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For any group extension Ḡ = N.G, the Fischer matrix on a class representative
g of G is denoted byM(g). Further more, a(i,y)j denote the (i, j)th entry of the
Fischer matrix where y ranges over class representatives of the inertia factor groups
say H that fuse to g in G. Next, we state an important theorem that explains the
computation of the Fischer matrix M(1G).

Theorem 3.1. [14] Let Ḡ = N.G. Then the Fischer matrix M(1G) is the matrix
with rows equal to orbit sums of the action of Ḡ on the irreducible characters of
N with duplicate columns discarded. Further more, for this matrix, we have that
a
(i,1G)
j = [G:Hi] satisfies the row orthogonality relation

t∑
j=1

a
(i,1G)
j a

(i
′
,1G)

j |CḠ(xj)|−1 = δii′ |CHi
(1G)|−1 = δii′ |Hi|−1,

where the Hi’s are the inertia factor groups of G.

Results of Theorem 3.1 led to the construction of Programme C (given in
Section 5) to compute the Fischer matrix on the identity class of G. Note that
this programme can work for both split and non-split extensions since the orbit
sums from which the Fischer matrix is formed, are as a result of the action of the
whole Ḡ on the irreducible characters of N.

We now discuss how to obtain Fischer matrices on non-identity classes of G.
First we state and prove the following Corollary.

Corollary 3.2. Let Ḡ be a group extension of N by G such that N is an elementary
abelian p-group and ḡ ∈ Ḡ. Then the map ϑḡ : N −→ N given by ϑḡ(n) =
nḡn−1ḡ−1 is an endomorphism of N .

Proof. We have to show that ϑḡ is a well defined homomorphism. For n1, n2 ∈ N ,
there is a ḡ ∈ Ḡ such that

n1 = n2 ⇒ n1ḡn
−1
1 ḡ−1 = n2ḡn

−1
2 ḡ−1 ⇒ ϑḡ(n1) = ϑḡ(n2),

and thus, ϑḡ is well defined. Furthermore,

ϑḡ(n1n2) = (n1n2)ḡ(n1n2)
−1ḡ−1

= n1n2ḡn
−1
1 n−1

2 ḡ−1

= n1n2ḡn
−1
1 ḡ−1ḡn−1

2 ḡ−1

= n1(ḡn
−1
1 ḡ−1)n2ḡn

−1
2 ḡ−1

= (n1ḡn
−1
1 ḡ−1)(n2ḡn

−1
2 ḡ−1)

= ϑḡ(n1)ϑḡ(n2).

Therefore, ϑḡ is a group homomorphism and the proof follows.
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Remark 1. In view of a vector space N which is invariant under the action of Ḡ,
it is shown in [12] that Im(ϑḡ) and ker(ϑḡ) are Cḡ-submodules of N . Recall that
Cḡ = N.CG(g). The factor group N/Im(ϑḡ) is prominent in the determination of
the entries of Fischer matrices. Denote M = Im(ϑḡ). From coset analysis, we
know that N acts on Nḡ where ḡ is a lifting of g ∈ G under the homomorphism
λ : Ḡ −→ G such that N ⊂ Ker(λ). Suppose the action of N on Nḡ results into
the set of orbits Ωi, then the action of M on Nḡ by left multiplication results into
the same set of orbits Ωi. In this manner, the action of Cḡ on Ωi is the same
as the action of Cḡ on the module N/M . Therefore, the elements of N/M can be
identified with the orbits of M on Nḡ.

For a split extension of N by G, it is shown (see [12]) that the Fischer matrix
at a non-identity element of G is the matrix with rows that are orbit sums of Cg

acting on the rows of all the irreducible characters of N/M with duplicate columns
discarded.

Corollary 3.3. Let N be an elementary abelian subgroup of Ḡ such that Ḡ = N :G,
where G is a complement of N in Ḡ. Let M = {ngn−1g−1 | n ∈ N}. Then
[N :M ] = k, where k is the number of elements in a fixed subspace of N by a class
representative g ∈ G.

Proof. From coset analysis, we know that when N acts on Ng, we obtain k orbits
denoted by Q1, Q2, . . . , Qk. Suppose B1, B2, . . . , Bk are orbits for the action of
M on Ng by left multiplication. These orbits are the same as those obtained when
N acted on Ng. The orbits can be identified with the elements of N/M . Thus it
follows that |N/M | = [N :M ] = k.

If N is an elementary abelian p − group such that |N | = pn, then k = pq for
0 ≤ q ≤ n and k in coset analysis is the number of elements of N fixed by a class
representative g of G. Let Q1, Q2, . . . , Qk be the orbits obtained from the action
of N on Ng and that the action of Cg on the listed orbits results into fi = 1
for all i ∈ {1, 2, . . . , k}. Then we have that the action of Cg on the irreducible
characters of N/M is trivial. In this case, the Fischer matrix M(g) coincides with
the character table of N/M , a group of order k. Thus for Ḡ = N :G, the set
stabilizer Cg = N :CG(g) and the action of Cg on the character table of N/M is
simply carried out as that of CG(g).

Further more, the discussion of Remark 1 led to the construction of pro-
gramme D given in Section 5. This programme determines the Fischer matrices
on non-identity classes of G and is applied on a group extension Ḡ = N.G such
that N is an elementary abelian p− group.

We now calculate the Fischer matrices M(g) of Ḡ = 26:(3.S6) where g is a
representative of a conjugacy class of G = 3.S6. The size of the Fischer matrix
M(g) is the number of conjugacy classes of Ḡ that correspond to [g]3.S6 and thus
range from 1 to 4. We also recall that the fusion of the conjugacy classes of the
inertia factor groups into 3.S6 is critical for the row labels of the Fischer matrices.
Since 3·S6 has 3 orbits from its action on the conjugacy classes, we have that it
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has 3 orbits from the action on Irr(26) but the lengths may be different. Thus, to
act 3·S6 on Irr(26), we need to write the 11× 11 matrix generators of G in terms
of 6 × 6 matrices. To do this, we use Programme A in [5, p.105]. Since G is
generated by a, b and c then the action of a on the 6 generators of N is the matrix
a1 described below

a1 : γ1 −→ γ1γ2γ3γ4γ5, γ2 −→ γ4γ6,

γ3 −→ γ2γ4γ5, γ4 −→ γ1γ3γ4,

γ5 −→ γ1γ6, γ6 −→ γ1γ2γ3γ4.

Similarly, for the action of b we have b1 described by

b1 : γ1 −→ γ3γ4γ5γ6, γ2 −→ γ2γ5,

γ5 −→ γ1γ2γ5, γ6 −→ γ3γ6,

γ3 −→ γ6, γ4 −→ γ3γ5.

Also, for the action of c we obtain c1 described by

c1 : γ5 −→ γ1γ2γ3γ4γ6, γ6 −→ γ1γ2γ5γ6,

γ3 −→ γ1γ2γ4γ5γ6, γ4 −→ γ4γ5γ6,

γ1 −→ γ2γ3γ4, γ2 −→ γ4γ5.

Hence G = ⟨a1, b1, c1⟩, where a1, b1 and c1 are the 6 × 6 matrices given in
Table 4 with o(a1) = 2 = o(a1b1), o(b1) = 6 = o(a1c1), o(c1) = 3, o(b1c1) = 5 and
o(a1b1c1) = 4.

Therefore, when 3·S6 acts on Irr(26) we have that 64 = 1 + p + q, since the
identity character is fixed. Using GAP [10], we obtain p = 18 and q = 45. Thus
the action of 3·S6 on Irr(26) produces 3 orbits of lengths 1, 18 and 45 with cor-
responding point stabilizers 3·S6, S5 and 2 × S4. These are the inertia factor
groups.

The fusions of the inertia factor groups H2 = S5 and H3 = 2× S4 are given in
Tables 5 and 6 respectively. Also, the character tables of H1, H2 and H3 computed
in GAP [10] are given in Tables 7, 9 and 8 respectively.

It is important to note that Programmes C and D only produce candidates
for Fischer matrices. However, the following information supplied in [14] together
with the partial character tables of the inertia factor groups, help to correctly label
the candidates for Fischer matrices:

• the centralizer orders of the class representatives of Ḡ as computed from
coset analysis corresponding to each class representative g of G,

• if χ is a character of any group H and h ∈ H, then we have |χ(h)| ≤ χ(1H),
where 1H is the identity element of H,
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• if χ is a character of any group H and h is a p−singular element of H, where
p is a prime, then we have χ(h) ≡ χ(hp) mod p,

• for any irreducible character χ of a group H and for hi ∈ Ci then di =
biχ(hi)

χ(1H)
is an algebraic integer, where Ci is the ith conjugacy class of H and

bi = |Ci| = [H : CH(hi)]. Clearly if di ∈ Q, then di ∈ Z,

• let H be a group such that Ḡ ≤ H. We use the fusion of conjugacy classes of
Ḡ into H and restrictions of characters to Ḡ to correctly label the columns
of the Fischer matrices.

Furthermore, for the Fischer matrix on the identity class, the rows could be
well labeled by associating to each row the stabilizer of its orbit representative
(since each row is an orbit sum, with appropriate duplicates discarded). These
stabilizers are subgroups of the group on top in the group extension and therefore
are the inertia factor groups. All the Fischer matrices of Ḡ are listed in Table 10.

Remark 2. By using the centralizer orders on class representatives of Ḡ and the
power maps of the elements of Ḡ the columns of the Fischer matrices are identified
correctly. For instance, for M(1A) we have that columns 1, 2 and 3 correspond to
1A, 2A1 and 2A2 respectively. For M(2A), columns 1, 2, 3 and 4 correspond to
2A3, 2A4, 4A1 and 4A2 respectively. For M(2B), columns 1, 2 and 3 correspond
to 2A6, 4A5 and 4A6 respectively. For M(2C), columns 1, 2 and 3 correspond to
2A5, 4A3 and 4A4 respectively. For M(4A), columns 1, 2 and 3 correspond to 4A7,
4A8 and 8A1 respectively. And for the rest of the Fischers matrices, identification
of their columns reveals that they coincide with the classes of Ḡ as obtained from
coset analysis.

We used the Fischer matrices and the character tables of the inertia factor
groups H1, H2 and H3 together with their fusions into 3.S6 given in Tables 5
and 6 to obtain the character table of Ḡ = 26:(3.S6). The character table of
Ḡ = 26:(3.S6) is partitioned into 3 blocks BL1, BL2 and BL3 corresponding to
the inertia factor groups H1, H2 and H3 respectively. Clearly,

BL1 = {χi : 1 ≤ i ≤ 16},
BL2 = {χi : 17 ≤ i ≤ 23},
BL3 = {χi : 24 ≤ i ≤ 33},

where Irr(Ḡ) =
∪3

i=1BLi. For instance, on the classes 1A, 2A1 and 2A2 of Ḡ in
the first, second and third block we have:
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

1
1
5
5
5
5
6
6
9
9
10
10
12
16
18
30



[
1 1 1

]
=



1 1 1
1 1 1
5 5 5
5 5 5
5 5 5
5 5 5
6 6 6
6 6 6
9 9 9
9 9 9
10 10 10
10 10 10
12 12 12
16 16 16
18 18 18
30 30 30



,



1
1
4
4
5
5
6


[
18 −6 2

]
=



18 −6 2
18 −6 2
72 −24 8
72 −24 8
90 −30 10
90 −30 10
108 −36 12


and



1
1
1
1
2
2
3
3
3
3



[
45 5 −3

]
=



45 5 −3
45 5 −3
45 5 −3
45 5 −3
90 10 −6
90 10 −6
135 15 −9
135 15 −9
135 15 −9
135 15 −9


respectively.

This way, we are able to fill all the portions of the character table of Ḡ given
as Table 11.

4. Fusion of Ḡ = 26 : (3.S6) into M24

In this section, we determine the fusion of 26:(3·S6) into M24. The permutation
character for the action of M24 on the cosets of 26:(3·S6) in M24 is given by

χ(M24|Ḡ) = χ1 + χ7 + χ9 + χ14,
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where χi ∈ Irr(M24) (refer to Atlas [8, p.56] or Table A.2 in [5, p.111] for character
values of M24). We use the permutation character values on the classes of M24

and the known power maps for M24 and Ḡ to determine the partial fusions of
the conjugacy classes of Ḡ into M24. To get a complete fusion of Ḡ into M24,
we restrict some irreducible characters of M24 to Ḡ. In order to achieve this, we
employ the technique of set intersections as follows.

If ζ is a character of 3·S6 afforded by the regular representation of 3·S6, then

ζ =

16∑
i=1

diϕi, where ϕi ∈ Irr(3·S6) and di is the degree of ϕi.

Thus, ζ can be taken as a character of 26:(3·S6) containing 26 in its kernel such
that

ζ(g) =

{
|3·S6|, if g ∈ 26,

0, otherwise.

Now, for ψ a character of 26:(3·S6), ρ1 an identity character of 26 and ψ26 a
restriction of ψ to 26, we obtain the following:

⟨ζ, ψ⟩26:(3·S6) =
1

|26:(3·S6)|
(ζ(1A)ψ(1A) + 18ζ(2A1)ψ(2A1) + 45ζ(2A2)ψ(2A2))

=
1

|26:(3·S6)|
(|3·S6|ψ(1A) + 18|3·S6|ψ(2A1) + 45|3·S6|ψ(2A2))

=
|3·S6|

|26:(3·S6)|
(ψ(1A) + 18ψ(2A1) + 45ψ(2A2))

=
1

64
(ψ(1A)ρ1(1A) + 18ψ(2A1)ρ1(2A1) + 45ψ(2A2)ρ1(2A2))

= ⟨ψ26 , ρ1⟩.

Similarly, we obtain ψ26 = δ1ϑ1+δ2ϑ2+δ3ϑ3, where for i ∈ {1, 2, 3, 4}, the δi’s
are non-negative integers and ϑi’s are the sums of the irreducible characters of 26
which are in one orbit under the action of 3·S6 on Irr(26). Let ρj ∈ Irr(26), for
j ∈ {1, 2, . . . , 64}. Since the groups 26 and 3·S6 were constructed inside 26:(3·S6)
and the orbits for the action of 3·S6 on Irr(25) are of lengths 1, 18 and 45, we have
the following:

ϑ1 =
1∑

i=1

ρj = ρ1, deg(ϑ1) = 1,

ϑ2 =
19∑
i=2

ρj , deg(ϑ2) = 18 and

ϑ3 =
64∑

i=20

ρj , deg(ϑ3) = 45.
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Therefore, ψ26 = δ1ρ1 + δ2

19∑
i=2

ρj + δ3

64∑
i=20

ρj and so ⟨ψ26 , ψ26⟩ = δ1
2 +18δ2

2 +

45δ3
2. Clearly,

δ1 = ⟨ψ26 , ρ1⟩ = ⟨ζ, ψ⟩26:(3·S6).

In a similar way, we obtain

⟨ψ26 , ψ26⟩ =
1

64
(ψ(1A)ψ(1A) + 18ψ(2A1)ψ(2A1) + 45ψ(2A2)ψ(2A2)).

We now apply the above results to the restrictions ψ1 = χ3 and ψ2 = χ2, where
χ2 and χ3 are irreducible characters of M24 of degrees 23 and 45 respectively (see
the character table of M24 in Atlas [8, p.56] or Table A.2 in [5, p.111]). From the
partial fusions of 26:(3·S6) into M24 established already, we note that 1A 7→ 1A,
2A1 7→ 2B and 2A2 7→ 2A. Thus, for ψ1, we obtain

δ1 = ⟨ζ, ψ1⟩26:(3·S6) =
1

64
(ψ1(1A) + 18ψ1(2A1) + 45ψ1(2A2))

=
1

64
(χ3(1A) + 18χ3(2B) + 45χ3(2A))

=
1

64
(45 + 18(5) + 45(−3)) = 0.

Since deg(ψ1) = 45, it follows that δ1 + 18δ2 + 45δ3 = 45. This way, δ1 = 0
implies that δ2 = 0 and δ3 = 1. Therefore, (ψ1)26:(3·S6) becomes an irreducible
character of degree 45 when restricted to 26:(3·S6). Thus, based on the partial
fusion of 26:(3·S6) into M24, which has already been computed, we obtain

(ψ1)26:(3·S6) = χ25.

Next, we restrict ψ2 = χ2 ∈ Irr(M24) to an irreducible character of Ḡ =
26:(3·S6) as follows:

δ1 = ⟨ζ, ψ2⟩26:(3·S6) =
1

64
(ψ2(1A) + 18ψ2(2A1) + 45ψ2(2A2))

=
1

64
(χ2(1A) + 18χ2(2B) + 45χ2(2A))

=
1

64
(23 + 18(−1) + 45(7)) = 5.

Since deg(ψ2) = 23, we have δ1 + 18δ2 + 45δ3 = 23. Thus, δ1 = 5 implies that
δ2 = 1 and δ3 = 0 . This way, (ψ2)26:(3·S6) becomes the sum of two irreducible
characters of degrees 5 and 18 in 26:(3·S6). Therefore, based on the partial fusion
of 26:(3·S6) into M24 which has already been computed, we obtain

(ψ2)26:(3·S6) = χ3 + χ17.
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For the values of χ3 and χ17 on the classes of 26:(3·S6), see Table 11.
Using the partial fusion which has already been determined, the values of ψ1

and ψ2 on the classes ofM24 and the values of (ψ1)26:(3·S6) = χ25 and (ψ2)26:(3·S6) =
χ3+χ17 on the classes of 26:(3·S6), we are able to complete the fusion of 26:(3·S6)
intoM24. For instance, consider the classes 2A6, 4A10, 12A1 and 15A2 of 26:(3·S6).
The following holds:

χ25(2A6) = ψ1(2A) = −3,

χ25(4A10) = ψ1(4B) = 1.

Similarly,
χ3(12A1) + χ17(12A1) = ψ2(12B) = −1,

χ3(15A2) + χ17(15A2) = ψ2(15B) = 0.

This way, for the classes 2A6, 4A10, 12A1 and 15A2 of 26:(3·S6), we obtain the
following fusions into M24.

2A6 7→ 2A, 4A10 7→ 4B, 12A1 7→ 12B and 15A2 7→ 15B.

The complete fusion of all the classes of 26:(3·S6) into the parent group M24 is
shown in Tables 12 and 13.

5. GAP Programmes and Tables
In this section, we present GAP programmes and Tables cited in the main work.

Programme C

I:=Irr(N);; o:=Orbits(G,I);; FM:=[];; for i in [1..Size(o)]

do Append(FM,[AsList(Sum(o[i]))]);od;

M1:=TransposedMat(FM);; M2:=AsDuplicateFreeList(M1);;

FM:=TransposedMat(M2);; Display(FM);

this is the Fischer Matrix on the identity

element of G

Programme D

C:=List(ConjugacyClasses(G),Representative);; M:=[];;

g:=C[i];; for n in N do

Add(M, n*g*Inverse(n)*Inverse(g));; od;

M:=AsGroup(M);; cent:=Centralizer(G, g);;

O:=RightCosets(N,M);; D:=O;; B:=[];;

for j in [1..Size(N)] do

B[j]:=[];;od; j:=1; while D <> [] do

x:=Representative(D[1]);for i in [1..Size(O)] do

y:=x^cent; if Intersection(y, O[i]) <> [] then
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Add(B[j],O[i]); fi;od; D:=Difference(D,B[j]);

j:=j+1; od; i:=1; while B[i] <> [] do

Print(Size(B[i]));Print(" - " );i:=i+1; od;

I:=Irr(N);; IM:=[];; for i in [1..Size(I)] do

if IsSubgroup(Kernel(I[i]), M) then Add(IM,I[i]);

fi; od; oo:=Orbits(cent,IM);; FM:=[];;

for i in [1..Size(oo)] do

Append(FM,[AsList(Sum(oo[i]))]);od; M1:=TransposedMat(FM);;

M2:=AsDuplicateFreeList(M1);;

FM:=TransposedMat(M2);; Display(FM);

Table 1: Generators of Ḡ = 26:(3·S6).

m1 =



1 1 0 1 0 1 1 1 1 1 1
1 0 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 0 1 0 0 1
0 0 1 0 0 0 1 1 1 1 0
1 1 1 0 1 0 1 0 1 1 1
1 1 1 0 0 1 0 0 1 0 1
1 0 0 1 0 1 0 0 1 0 1
0 0 1 1 0 1 0 0 0 1 0
0 0 1 1 0 1 1 0 0 0 0
1 0 0 1 0 1 0 1 0 0 1
0 1 0 0 1 0 0 1 1 1 1



m2 =



1 0 1 0 0 0 0 0 1 1 1
1 1 0 0 1 1 1 1 1 0 0
1 1 1 0 1 0 0 1 1 1 1
1 1 0 1 1 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1 0 1 1
1 1 1 0 0 0 1 1 0 0 1
0 0 1 1 0 1 0 0 1 1 0
0 1 0 0 1 1 1 0 0 1 0
1 1 1 1 0 1 1 1 0 1 1
0 0 0 1 1 1 0 1 1 0 1


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Table 2: Matrix Generators of G = 3·S6.

a =



0 0 0 0 0 0 0 0 1 0 1
1 1 1 1 0 1 0 0 1 0 0
1 1 0 1 1 1 1 0 1 1 1
0 1 1 1 1 0 1 0 1 0 0
0 0 0 1 1 1 0 0 1 1 0
0 1 0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 1 0 1 1
0 1 0 1 1 1 1 0 0 0 1
0 1 1 1 1 1 1 0 0 0 0
1 1 0 1 1 1 1 0 0 0 1



b =



0 1 0 0 0 0 1 1 1 1 1
0 1 1 1 1 0 0 0 0 0 1
0 0 0 1 1 0 0 1 0 0 1
1 0 0 1 1 1 1 0 0 0 0
0 1 0 1 1 0 0 1 0 0 0
1 1 1 0 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 0 1 1
0 1 0 0 1 0 1 1 0 1 1
0 0 0 1 0 0 1 1 1 1 0
1 0 1 1 0 0 0 1 1 1 1
1 0 1 1 1 0 0 0 1 0 1



c =



0 1 1 1 1 1 0 0 0 1 0
1 1 0 1 0 1 1 1 0 0 1
0 1 1 0 0 0 1 0 0 1 0
1 1 0 1 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1 1 1 1
1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 1 0
0 0 1 1 0 1 1 0 1 0 0
0 1 0 1 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 0 1 1
1 1 1 1 0 1 1 0 1 1 1


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Table 3: Conjugacy Classes of Ḡ = 26:(3·S6).

[g]G k fj wj [g]Ḡ |CḠ(g)| 2 3 5 Size of [g]Ḡ

1A 64 f1 = 1 w1 = 1 1A 138240 1A 1
f2 = 18 w2 = 18 2A1 7680 1A 18
f3 = 45 w3 = 45 2A2 3072 1A 45

2A 16 f1 = 1 w4 = 4 2A3 768 1A 180
f2 = 3 w5 = 12 2A4 256 1A 540
f3 = 6 w6 = 24 4A1 128 2A2 1080
f4 = 6 w7 = 24 4A2 128 2A2 1080

2C 8 f1 = 1 w8 = 8 2A5 384 1A 360
f2 = 3 w9 = 24 4A3 128 2A2 1080
f3 = 4 w10 = 32 4A4 96 2A1 1440

2B 8 f1 = 1 w11 = 8 2A6 384 1A 360
f2 = 6 w12 = 48 4A5 384 2A2 360
f3 = 6 w13 = 48 4A6 64 2A2 2160

3A 1 f1 = 1 w14 = 64 3A1 1080 1A 128
3B 4 f1 = 1 w15 = 16 3A2 72 1A 1920

f2 = 3 w16 = 48 6A1 24 3A2 2A1 5760
3C 4 f1 = 1 w17 = 16 3A3 72 1A 1920

f2 = 3 w18 = 48 6A2 24 3A3 2A2 5760
4A 4 f1 = 1 w19 = 16 4A7 32 2A4 4320

f2 = 1 w20 = 16 4A8 32 2A3 4320
f3 = 2 w21 = 32 8A1 16 4A1 8640

4B 4 f1 = 1 w22 = 16 4A9 96 2A3 1440
f2 = 3 w23 = 48 4A10 32 2A4 4320

5A 4 f1 = 1 w24 = 16 5A1 60 1A 2304
f2 = 3 w25 = 48 10A1 20 5A1 2A1 6912

6A 1 f1 = 1 w26 = 64 6A3 24 3A1 2A3 5760
6B 2 f1 = 1 w27 = 32 6A4 12 3A2 2A5 11520

f2 = 1 w28 = 32 12A1 12 6A1 4A4 11520
6C 2 f1 = 1 w29 = 32 6A5 12 3A3 2A6 11520

f2 = 1 w30 = 32 12A2 12 6A2 4A5 11520
12A 1 f1 = 1 w31 = 64 12A3 12 6A3 4A9 11520
15A 1 f1 = 1 w32 = 64 15A1 15 5A1 3A1 9216
15B 1 f1 = 1 w33 = 64 15A2 15 5A1 3A1 9216

Table 4: 6× 6 Matrix Generators of G = 3·S6.

Generators of G Generators of G

a1 =


1 1 1 1 1 0
0 0 0 1 0 1
0 1 0 1 1 0
1 0 1 1 0 0
1 0 0 0 0 1
1 1 1 1 0 0

 b1 =


0 0 1 1 1 1
0 1 0 0 1 0
0 0 0 0 0 1
0 0 1 0 1 0
1 1 0 0 1 0
0 0 1 0 0 1



c1 =


0 1 1 1 0 0
0 0 0 1 1 0
1 1 0 1 1 1
0 0 0 1 1 1
1 1 1 1 0 1
1 1 0 0 1 1


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Table 5: Fusion of the classes from H2 to G = 3·S6.
[h]H2 7→ [g]G [h]H2 7→ [g]G [h]H2 7→ [g]G
1a 1A 3a 3B 5a 5A
2a 2A 4a 4A 6a 6B
2b 2B

Table 6: Fusion of the Classes from H3 to G = 3·S6.
[h]H3 7→ [g]G [h]H3 7→ [g]G [h]H3 7→ [g]G
1a 1A 2d 2B 4a 4B
2a 2A 2e 2C 4b 4A
2b 2A 3a 3C 6a 6C
2c 2C

Table 7: Character Table of G = H1 = 3·S6.
[g]G 1A 2A 2B 2C 3A 3B 3C 4A 4B 5A 6A 6B 6C 12A 15A 15B

CG(g) 2160 48 48 48 1080 18 18 8 24 15 24 6 6 12 15 15

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 −1 −1 1 1 1 −1 1 1 1 −1 −1 1 1 1
χ3 5 1 3 −1 5 2 −1 1 −1 0 1 0 −1 −1 0 0
χ4 5 1 1 −3 5 −1 2 −1 −1 0 1 1 0 −1 0 0
χ5 5 1 −3 1 5 2 −1 −1 −1 0 1 0 1 −1 0 0
χ6 5 1 −1 3 5 −1 2 1 −1 0 1 −1 0 −1 0 0
χ7 6 −2 0 0 −3 0 0 0 2 1 1 0 0 −1 d d̄
χ8 6 −2 0 0 −3 0 0 0 2 1 1 0 0 −1 d̄ d
χ9 9 1 −3 −3 9 0 0 1 1 −1 1 0 0 1 −1 −1
χ10 9 1 3 3 9 0 0 −1 1 −1 1 0 0 1 −1 −1
χ11 10 −2 −2 2 10 1 1 0 0 0 −2 1 −1 0 0 0
χ12 10 −2 2 −2 10 1 1 0 0 0 −2 −1 1 0 0 0
χ13 12 4 0 0 −6 0 0 0 0 2 −2 0 0 0 −1 −1
χ14 16 0 0 0 16 −2 −2 0 0 1 0 0 0 0 1 1
χ15 18 2 0 0 −9 0 0 0 2 −2 −1 0 0 −1 1 1
χ16 30 −2 0 0 −15 0 0 0 −2 0 1 0 0 1 0 0



On a Maximal Subgroup of M24 211

Table 8: Character Table of H3 = 2× S4.
[h]H2 1a 2a 2b 2c 2d 2e 3a 4a 4b 6a
CH2(h) 48 8 8 48 16 16 6 8 8 6

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 −1 −1 −1 1 1 1 −1 −1
χ3 1 −1 −1 1 1 1 1 −1 −1 1
χ4 1 −1 1 −1 −1 1 1 −1 1 −1
χ5 2 0 0 −2 −2 2 −1 0 0 1
χ6 2 0 0 2 2 2 −1 0 0 −1
χ7 3 1 −1 −3 1 −1 0 −1 1 0
χ8 3 −1 −1 3 −1 −1 0 1 1 0
χ9 3 −1 1 −3 1 −1 0 1 −1 0
χ10 3 1 1 3 −1 −1 0 −1 −1 0

Table 9: Character Table of H2 = S5.
[h]H2

1a 2a 2b 3a 4a 5a 6a
CH2(h) 120 8 12 6 4 5 6

χ1 1 1 1 1 1 1 1
χ2 1 1 −1 1 −1 1 −1
χ3 4 0 −2 1 0 −1 1
χ4 4 0 2 1 0 −1 −1
χ5 5 1 1 −1 −1 0 1
χ6 5 1 −1 −1 1 0 −1
χ7 6 −2 0 0 0 1 0

Table 10: Fischer Matrices of 26:(3.S6).

Fischer Matrices of 26:(3.S6) Fischer matrices of 26:(3.S6)

M(1A) =

 1 1 1
18 −6 2
45 5 −3

 M(2A) =


1 1 1 1
3 3 −1 −1
6 −2 2 −2
6 −2 −2 2


M(2B) =

 1 1 1
1 1 −1
6 −2 0

 M(2C) =

 1 1 1
3 3 −1
4 −4 0


M(3A) =

(
1
)

M(3B) =

(
1 1
3 −1

)
M(3C) =

(
1 1
3 −1

)
M(4A) =

 1 1 1
1 1 −1
2 −2 0


Continued on next page
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Table 10 – continued from previous page.
Fischer Matrices of 26:A8 Fischer Matrices of 26:A8

M(4B) =

(
1 1
3 −1

)
M(5A) =

(
1 1
3 −1

)
M(6A) =

(
1
)

M(6B) =

(
1 1
1 −1

)
M(6C) =

(
1 1
1 −1

)
M(12A) =

(
1
)

M(15A) =
(
1
)

M(15B) =
(
1
)

Table 11: Character Table of 26 : (3.S6).
[g]Ḡ 1A 2A1 2A2 2A3 2A4 4A1 4A2 2A5 4A3 4A4 2A6 4A5 4A6 3A1 3A2 6A1 3A3 6A2

CḠ(g) 138240 7680 3072 768 256 128 128 384 128 96 384 384 64 1080 72 24 72 24

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1
χ3 5 5 5 1 1 1 1 3 3 3 −1 −1 −1 5 2 2 −1 −1
χ4 5 5 5 1 1 1 1 1 1 1 −3 −3 −3 5 −1 −1 2 2
χ5 5 5 5 1 1 1 1 −3 −3 −3 1 1 1 5 2 2 −1 −1
χ6 5 5 5 1 1 1 1 −1 −1 −1 3 3 3 5 −1 −1 2 2
χ7 6 6 6 −2 −2 −2 −2 0 0 0 0 0 0 −3 0 0 0 0
χ8 6 6 6 −2 −2 −2 −2 0 0 0 0 0 0 −3 0 0 0 0
χ9 9 9 9 1 1 1 1 −3 −3 −3 −3 −3 −3 9 0 0 0 0
χ10 9 9 9 1 1 1 1 3 3 3 3 3 3 9 0 0 0 0
χ11 10 10 10 −2 −2 −2 −2 −2 −2 −2 2 2 2 10 1 1 1 1
χ12 10 10 10 −2 −2 −2 −2 2 2 2 −2 −2 −2 10 1 1 1 1
χ13 12 12 12 4 4 4 4 0 0 0 0 0 0 −6 0 0 0 0
χ14 16 16 16 0 0 0 0 0 0 0 0 0 0 16 −2 −2 −2 −2
χ15 18 18 18 2 2 2 2 0 0 0 0 0 0 −9 0 0 0 0
χ16 30 30 30 −2 −2 −2 −2 0 0 0 0 0 0 −15 0 0 0 0
χ17 18 −6 2 6 −2 −2 2 0 0 0 4 −4 0 0 0 0 3 −1
χ18 18 −6 2 6 −2 −2 2 0 0 0 −4 4 0 0 0 0 3 −1
χ19 72 −24 8 0 0 0 0 0 0 0 −8 8 0 0 0 0 3 −1
χ20 72 −24 8 0 0 0 0 0 0 0 8 −8 0 0 0 0 3 −1
χ21 90 −30 10 6 −2 −2 2 0 0 0 4 −4 0 0 0 0 −3 1
χ22 90 −30 10 6 −2 −2 2 0 0 0 −4 4 0 0 0 0 −3 1
χ23 108 −36 12 −12 4 4 −4 0 0 0 0 0 0 0 0 0 0 0
χ24 45 5 −3 9 1 1 −3 7 −1 −1 3 3 −1 3 −1 0 0
χ25 45 5 −3 −3 5 −3 1 5 −3 1 −3 −3 1 0 3 −1 0 0
χ26 45 5 −3 −3 5 −3 1 −5 3 −1 3 3 −1 0 3 −1 0 0
χ27 45 5 −3 9 1 1 −3 −7 1 1 −3 −3 1 0 3 −1 0 0
χ28 90 10 −6 6 6 −2 −2 −2 −2 2 −6 −6 2 0 −3 1 0 0
χ29 90 10 −6 6 6 −2 −2 2 2 −2 6 6 −2 0 −3 1 0 0
χ30 135 15 −9 −9 −1 −1 3 3 −5 3 3 3 −1 0 0 0 0 0
χ31 135 15 −9 −9 −1 −1 3 −3 5 −3 −3 −3 1 0 0 0 0 0
χ32 135 15 −9 3 −5 3 −1 −9 −1 3 3 3 −1 0 0 0 0 0
χ33 135 15 −9 3 −5 3 −1 9 1 −3 −3 −3 1 0 0 0 0 0
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Table 11: (cont.)
[g]Ḡ 4A7 4A8 8A1 4A9 4A10 5A1 10A1 6A3 6A4 12A1 6A5 12A2 12A3 15A1 15A2

CḠ(g) 32 32 16 96 32 60 20 24 12 12 12 12 12 15 15

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 1 1 1
χ3 1 1 1 −1 −1 0 0 1 0 0 −1 −1 −1 0 0
χ4 −1 −1 −1 −1 −1 0 0 1 1 1 0 0 −1 0 0
χ5 −1 −1 −1 −1 −1 0 0 1 0 0 1 1 −1 0 0
χ6 1 1 1 −1 −1 0 0 1 −1 −1 0 0 −1 0 0
χ7 0 0 0 2 2 1 1 1 0 0 0 0 −1 d d̄
χ8 0 0 0 2 2 1 1 1 0 0 0 0 −1 d̄ d
χ9 1 1 1 1 1 −1 −1 1 0 0 0 0 1 −1 −1
χ10 −1 −1 −1 1 1 −1 −1 1 0 0 0 0 1 −1 −1
χ11 0 0 0 0 0 0 0 −2 1 1 −1 −1 0 0 0
χ12 0 0 0 0 0 0 0 −2 −1 −1 1 1 0 0 0
χ13 0 0 0 0 0 2 2 −2 0 0 0 0 0 −1 −1
χ14 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
χ15 0 0 0 2 2 −2 −2 −1 0 0 0 0 −1 1 1
χ16 0 0 0 −2 −2 0 0 1 0 0 0 0 1 0 0
χ17 2 −2 0 0 0 3 −1 0 0 0 1 −1 0 0 0
χ18 −2 2 0 0 0 3 −1 0 0 0 −1 1 0 0 0
χ19 0 0 0 0 0 −3 1 0 0 0 1 −1 0 0 0
χ20 0 0 0 0 0 −3 1 0 0 0 −1 1 0 0 0
χ21 −2 2 0 0 0 0 0 0 0 0 1 −1 0 0 0
χ22 2 −2 0 0 0 0 0 0 0 0 −1 1 0 0 0
χ23 0 0 0 0 0 3 −1 0 0 0 0 0 0 0 0
χ24 1 1 −1 3 −1 0 0 0 1 −1 0 0 0 0 0
χ25 1 1 −1 −3 1 0 0 0 −1 1 0 0 0 0 0
χ26 −1 −1 1 −3 1 0 0 0 1 −1 0 0 0 0 0
χ27 −1 −1 1 3 −1 0 0 0 −1 1 0 0 0 0 0
χ28 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
χ29 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0
χ30 −1 −1 1 3 −1 0 0 0 0 0 0 0 0 0 0
χ31 1 1 −1 3 −1 0 0 0 0 0 0 0 0 0 0
χ32 1 1 −1 −3 1 0 0 0 0 0 0 0 0 0 0
χ33 −1 −1 1 −3 1 0 0 0 0 0 0 0 0 0 0
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Table 12: Fusion of 26:(3·S6) into M24.
[y] 1A 2A 2B 3A 3B 4A 4B 4C 5A

|CM24 (y)| 2448 21 76 10 5 3 1 9 6
23040 504 80 80 04 84 28 6 0

χ(M24|Ḡ)(y) 1771 91 51 16 7 11 7 7 1

[x] |CḠ(x)|
1A 138240 [1771]
2A1 7680 [1]
2A2 3072 [7]
2A3 768 [28] 10
2A4 256 84 [30]
2A5 384 56 [20]
2A6 384 [56] 20
3A1 1080 [1]
3A2 72 [15] 7
3A3 72 15 [7]
4A1 128 3 [1]
4A2 128 [3] 1
4A3 128 [3] 1
4A4 96 4 [1]
4A5 384 [1]
4A6 64 6 [2]
4A7 32 12 [4] 3
4A8 32 12 4 [3]
4A9 96 [4] 1
4A10 32 12 4 [3]
5A1 60 [1]

Table 12: (cont.)
[y] 6A 6B 8A 10A 12A 12B 15A 15B

|CM24 (y)| 2 2 1 2 1 1 1 1
4 4 6 0 2 2 5 5

χ(M24|Ḡ)(y) 4 3 1 1 2 1 1 1

[x] |CḠ(x)|
6A1 24 [1] 1
6A2 24 1 [1]
6A3 24 [1] 1
6A4 12 [2] 2
6A5 12 2 [2]
8A1 16 [1]
10A1 20 [1]
12A1 12 [1] 1
12A2 12 1 [1]
12A3 12 [1] 1
15A1 15 [1] 1
15A2 15 1 [1]
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Table 13: Summary for the Fusion of 26:(3·S6) into M24.
[ḡ]Ḡ 7→ [y]M24 [ḡ]Ḡ 7→ [y]M24 [ḡ]Ḡ 7→ [y]M24

1A 1A 4A2 4A 6A2 6B
2A1 2B 4A3 4A 6A3 6A
2A2 2A 4A4 4C 6A4 6A
2A3 2A 4A5 4A 6A5 6B
2A4 2B 4A6 4B 8A1 8A
2A5 2B 4A7 4B 10A1 10A
2A6 2A 4A8 4C 12A1 12A
3A1 3A 4A9 4A 12A2 12B
3A2 3A 4A10 4C 12A3 12A
3A3 3B 5A1 5A 15A1 15A
4A1 4B 6A1 6A 15A2 15B
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