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Abstract

It has been claimed that Protein-Protein Interaction (PPI) networks are
scale free that contain a few hubs with ability to bind multiple proteins.
Hubs are classified as party and date hubs. Party hubs generally bind dif-
ferent proteins in specific module simultaneously, while date hubs interact
with multiple proteins in different modules at different times and locations.
Generally, they have been divided into two classes based on the average Pear-
son Correlation Coefficient (avPCC) of expression over all partners or their
functions. In this study, we propose a two-step algorithm to classify party
and date hubs based on their topological features of PPI network. In the
first step, we calculate some topological features for each hub vertex in PPI
network. In the second step, we apply an unsupervised learning model to
calculate Laplacian score for each feature. The Laplace value for each hub
vertex is considered based on Laplacian scores. Finally, the hub vertices are
classified into two classes date hubs and party hubs with respect to Laplace
values. We evaluate our method on reference hubs based on the avPCC on
PPI network. We show that the combination of topological features based on
ULPD can improve the performance of each topological feature. Finally, we
investigate the performance of our method for human dataset and analyze
two types of hubs as drug targets for Covid-19.
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1. Introduction

Proteins are identified as the main agent of biological processes that can determine
the phenotype of organisms. Some proteins are functional isolated form and some
ones interact with other proteins or other molecules. These interactions between
the proteins are often represented in the form of Protein-Protein Interaction (PPI)
network [3, 4, 9, 21, 24]. It is desirable to analyze these networks to understand
the internal organization of the cells. Since some proteins interact with multiple
proteins and others interact with only a few, the PPI network has a wide range
of degrees. The highly connected proteins in PPI network are referred as hubs.
There are some studies that reveal the functional and structural characterization
of hubs in PPI network [1, 8, 11, 19]. Bertolazzi et al. have determined the
special biological and structural features of hub proteins. They have studied the
role of hubs in molecular organization of PPI networks [8]. In 2010, Kukuroghu
et al., have examined the flexibility of the hubs using structural perspective [11].
Recently some computational methods have been presented the implication of
targeting hub proteins in treatment of diseases [2, 26, 28]. In the recent pandemic,
Covid-19 (coronavirus disease), the role of hub proteins in virus-host interaction
network have been highlighted to study pathogenesis of infection [26]. Prased
et al. have analyzed the human PPI network and targeted hub proteins to find
candidate drugs for Covid-19 [28].

In 2004, Han et al. have expressed that hub proteins which interact with
most of their partners simultaneously are designated as party hubs and those that
bind their different partners at different times or locations are date hubs [16].
Briefly, they have divided the highly connected proteins into two classes based
on the average of Pearson Correlation Coefficient (avPCC) of expression over all
partners. They have studied the role of two types of hubs in molecular organization
in a cell. They have also shown that party and date hubs play an important role
in organizing modules. Some topological features of two types of hub proteins in
the PPI network are presented [7, 12, 14, 27, 34]. Centrality measures are the
one of the main topological features that studied by Yu et al. [34]. They have
defined bottlenecks as proteins with a high betweenness centrality. They have
believed that date hubs are bottlenecks with the high degree while the party hubs
correspond mostly to hubs with the low betweenness in the PPI network. Other
topological features of party and date hubs in the PPI network are considered by
Bertin et al. [7]. They have shown that removing date and party hubs shows
different behavior on PPI network. In the other word, removing hubs from PPI
network have distinct effect on the characteristic path length.

In this study, we present an Unsupervised Learning model to identify Party
and Date hubs (ULPD). ULPD is a computational method based on a combination
of topological features of PPI network to classify party and date hubs. In the first
step, we propose informative features based on centrality mature for each vertex
on PPI network. In the second step, Laplacian score is calculated for each feature
based on Laplacian Eigenmaps [6] and Locality Preserving Projection [17]. Finally,
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hub vertices are classified based on Laplace values that calculated for hub vertices.
Then, we evaluate each topological feature and their combination with respect
to precision, recall and F-measure. Results show that the combination of these
features performs better than each existing feature on PPI network. Finally, we
analyze party and date hubs for human PPI netwok. Our evaluation show that
date hubs are some appropriate candidate drug targets. Most of these candidate
targets are recommended in other studies.

2. Methods

In a topological sense, a PPI network is considered as undirected graph G =<
V, E >. Generally, a vertex v of PPI network represents a given protein and each
edge uv between two vertices u and v represents the functional interaction between
two proteins. A vertex w is neighbor of another vertex v, if uv is an edge of G.
The set of all vertices that are the neighbors of v is the neighborhood of v and it
is denoted by N(v). The number of vertices of N(v) is called the degree of v and
denoted by d(v). Let H be a subset of vertices of G, the neighborhood of H is
the union of the neighborhood of each vertex of H, without H. It is defined as
following formula:
N(H) =UyenN@Ww)—H.

A sequence u = ug,uq, ..., u, = v of distinct vertices of non-empty network G is
a path between two vertices u and v, if u;u;41 for each 0 < i < n is an edge of
G. The number of edges of a path is considered as the length of the path. The
shortest path between two vertices v and v is defined as a path with the minimum
length. The minimum length of path between two vertices is denoted by d(u,v).
The following eight features show the informative topological features for each
vertex in PPI network.

The Clustering Coefficient (CC) for each vertex v of G = (V| E) is defended as
following formula:

2|E(H)|
d(v)(d(v) — 1)’
where H = N(v) and |E(H)| is the number of {uw € Eju,w € N(v)}. If all
vertices of H are pair wise neighbor, then H is a complete subgraph of G and
CC = 1. Generally, the clustering coefficient denotes the density of the neighbors
of each vertex.

The Betweenness (Bn) centrality for each vertex v of G = (V, E) is defined by:

Ba) = Y T,

u,weV uw

CC(v) =

where Ty, is the total number of shortest paths from vertex u to vertex w for each
wand w of V' and 7y,,(v) is the number of these shortest paths that pass through
v. It denotes the control of each vertex over the flow of information in the network.
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Let S = v U N(v), the Expansion (Ex) of v is defined by:

Ex(v) = |J\|7A(S’S)’

where |[N(S)| and |S| are the size of N(S) and S respectively.
Also the Density (D) of v is defined as following formula:
2|E(S)|
D(v) = rgrmar v
1S1(1S] = 1)

where S = v U N(v) and |E(S)| = {ww € E;u,v € S}|.

Suppose C = {c1,¢a,...,c,} is the clusters of vertices of graph G = (V, E).
The Participation Coefficient (PC) of each vertex v based on given cluster C' is
calculated by:

~ di(v) 2
PC@) = 1= (G

i=1

where d;(v), 1 < i < n, is the number of neighbors of v within ¢;. The partic-
ipation coefficient value for each vertex is a number between 0 and 1. If PC(v)
approaches 1, then we say the vertex v participate in maximum number of clusters.
To calculate participation coefficient value for each vertex on PPI network, we use
the Markov Cluster algorithm (MCL) [32].

The Closeness centrality (Cl) measure for each vertex v of network G = (V, E)
is defined by:

Vi-1
ZUEV d(“’v 'U) ’

If the Cl(v) meets or exceeds a threshold, then we say the vertex v has the shortest
distance with the other vertices of network.

Another centrality measure of each vertex v on graph G = (V, E) is Subgraph
Centrality (SC). The subgraph centrality for each vertex is defined as following
formula:

Cl(v) =

SCv) = 8k (v),
k=1

where Jx(v) is the number of path with length & that pass through v.
Finally, The Mean Degree Neighbor (M DN) for each vertex is calculated as a
topological feature of G. Briefly, it is calculated as following formula:

ZuGN(v) d(u) .

MDNE) = =250

In this work, we propose a new algorithm named ULPD (Unsupervised Learn-
ing model to identify Party and Date hubs) from input data. The ULPD algorithm
comprises two main steps. In the first step, some mentioned topological features
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are calculated for each hub vertex in PPI network. In the second step, we pro-
pose an unsupervised learning approach based on Laplacian Eigenmaps [6] and
Locality Preserving Projection [17]. In following section, we describe the details of
Laplacian Score as a feature selecting method which are mapped from algorithm
reported by He et al. [18].

Let A = [a;] shows the feature matrix of PPI network G' with n hub vertices
such that a;; denote the j-th feature of i-th hub vertex (1 < j < 8). Let A; =
[a1j,- - -, an;]T be the column matrix corresponding j-th feature of hub vertices and
let F; =< a1,-.-,a;3 > be the feature vector of each hub vertex v;. The weighted
matrix S = [s;j]nxn is defined as follow:

‘ﬁi7@‘2 . — —
P e 2 Zf‘FlfFj‘<5,
ij — .
0 otherwise.

We define a matrix D = diag(d;) as a diagonal weighted matrix S, where d; =

k=1 Sik-
Now the Laplacian matrix of S is considered as L = S — D. For j-th feature,
the column matrix is calculated by:

- A]-TDJ
Aj=Aj — 57
JTDJ
where J = [1 1 ... 1]7 . Now, Laplacian Score for j-th feature is calculated by
follow:
~ T -
i =T
A; DA,

Finally, for i-th hub vertex of network G the Laplace value is calculated as following
formula:

8
L(v) = aijp;L;,
j=1

where p; = —1 for three topological features (Participation Coefficient, Closeness
and Betweenness) and for other features p; = 1. The set of hub vertices are
classified into two clusters. The vertices that meet or exceed a threshold 6 are
considered as date hubs and other vertices are considered as party hubs.

3. Results

3.1 Datasets

In this work, we use two high-throughput protein-protein interaction data collec-
tions of Saccharomyces cerevisiae [13]. The first dataset collection contains yeast
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Table 1: The summery of each dataset: In the datasets column refers to networks,
where (1) denotes the first dataset, (2) denotes the second dataset. Here |V| and
|E| are the number of genes and interactions between them respectively and |[Hub|
is the number of hub proteins. The number of refrence party and date hub proteins
are denoted by |Party| and |Date| respectively.

Datasets | |V| |E| |Hub| avPCC |Party| |Date]
(1) 4445 45869 465 0.65 127 338
(2) 2834 41258 290 0.58 94 196

cells which grown aerobically on galactose medium. Another data collection is in-
dustrial fermentations of saccharomyces cerevisiae which grown in glucose-limited
chemostat culture in different oxygen concentrations [16]. CLR algorithm [7] iden-
tifies 45869 regular interactions between 4445 genes in the first dataset and the
second dataset contains 2834 genes and 41258 interactions. We consider ten per-
centages of high-degree nodes as hubs. This yields 465 hubs in the first dataset and
290 hubs in the second dataset. We identify real date and party hubs according
to the definition of Han et al. [16]. We calculate the average of Pearson Corre-
lation Coefficients (avPCC) between the hub and each of its respective partners
for mRNA expression to distinct date and party hubs. Ones with relatively high
avPCCs are chosen as real party hubs and the other ones are defined as real date
hubs. Some descriptive statistics of each protein interaction network are presented
in Table 1.

3.2 Performance Evaluation Measures

To evaluate the performance of our method, we use some evaluation measures.
These measures are based on the relation between the number of hubs correctly
predicted positive (TP), the number of hubs correctly predicted negative (TN),
the number of hubs incorrectly predicted positive (FP), and the number of hubs
incorrectly predicted negative (FN). The precision (Pre) and recall (Re) are two
evaluation measures and they are defined as following formula:

TP
Pre = ——,
Tp+ Fp
Re— 1P
Tp+ Fn

They are two numbers between 0 and 1 and commonly used to evaluate the per-
formance of classification methods. In particular, precision corresponds to the
fraction of prediction hub class that are matched by real hub class and recall cor-
responds to the fraction of real hub class that are matched by predicted hub class.
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Table 2: The threshold values of each criterion with respect to the best F-measure.

Topological features Thresholds
Subgraph Centrality 0.055
Participation Coefficient | 0.85
Expansion 0.22
Density 0.59

Mean Degree Neighbor 0.54
Clustering Coefficient 0.6
Closeness centrality 0.5
Betweenness 0.08

Another measure which can be used to evaluate the performance of a method is
F-measure. The F-measure as the harmonic mean of precision and recall is defined

as follow:

P 2 Precision Recall

" Precision + Recall’

3.3 Testing for Accuracy

The previous studies on party and date hubs show that the centrality measures
are the main topological features to classify hubs [34]. In this work, we used
some centrality measures as topological features, such as clustering coefficient,
betweenness, participation coefficient, closeness, subgraph centrality, mean degree
neighbor, density and expansion to identify party and date hubs. The histogram
of frequency distribution of each normalized topological feature for real date and
party hubs on the first dataset is shown in Figure 1. In this figure, the blue lines
indicate the date hubs and the red lines indicate the party hubs. The figure shows
that there are no specific threshold on each topological feature to classify party
and date hubs completely.

To check the validity of ULPD, we compare the output of ULPD with the two
classes of hubs obtained by each topological feature, on the two protein interaction
networks. The party and date hubs which obtained from avPCC definition are
used as benchmark real party and date hubs. The best threshold value of each
topological feature is calculated on the first datset. By varying the threshold on
each normalized topological feature, we calculate the harmonic mean of F-measure
values based on two classes of hubs. The best threshold value for each topological
feature is presented in Table 2. In this survey, the topological features are modeled
by Laplacian matrix. The output of this model is Laplacian Score for each feature.
All Laplacian Scores which calculated by our model are shown in Table 3. We also
find that the best threshold of Laplace value to classify date and party hubs on
first dataset are 0.3.

In the first dataset, almost all features have similar performance in recall how-
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date and party hubs on first dataset.
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Table 3: The Laplacian Score of each criterion which is modeled by unsupervised

learning model.

Topological features Laplacian Scores
Subgraph Centrality 0.97
Participation Coefficient | 0.95
Expansion 0.12
Density 0.74

Mean Degree Neighbor 0.79
Clustering Coefficient 0.65
Closeness centrality 0.71
Betweenness 0.43

Table 4: Precision and recall values of ULPD and other features on first dataset

to predict date hubs.

TP TN FP FN | Pre Re F
ULPD 337 117 10 1 0.97 0.99 0.984
Subgraph Centrality 337 107 20 10 | 0.94 0.99 0.96
Participation Coefficient | 302 104 23 36 092 0.89 091
Expansion 303 72 55 35 0.84 0.89 0.87
Density 325 110 17 13 | 095 0.96 0.95
Mean Degree Neighbor 337 105 23 1 090 0.99 0.96
Clustering Coefficient 325 110 17 13 | 095 096 0.95
Closeness 328 113 14 10 | 095 097 0.96
Betweenness 325 69 58 13 0.84 096 0.90

ever, as can be seen in Table 4, ULPD performs better than others to predict
date hubs. Furthermore, this significant superiority of ULPD in recall comes with
the highest precision value. Also, Table 5 show the superiority of ULPD in both

precision and recall values to predict party hubs on the first datset.

The first dataset is a difficult example because, the best threshold values are
chosen with respect to maximum F-measures on the first dataset. Then, we com-
pare ULPD results with the results of topological features on the second dataset.
We find that ULPD shows the best performance compare to other features to pre-
dict party and date hubs on the second dataset. In fact, both precision and recall
values of ULPD are greater than all features, as can be seen in Table 6 and Table

7.
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Table 5: Precision and recall values of ULPD and other features on first dataset
to predict party hubs.

TP TN FP FN | Pre Re F

ULPD 117 337 1 10 0.99 0.92 0.95
Subgraph Centrality 107 337 10 20 0.99 084 0091
Participation Coefficient | 104 302 36 23 | 0.74 081 0.77
Expansion 72 303 35 55 | 0.67 0.56 0.61
Density 110 325 13 17 0.89 0.86 0.89

Mean Degree Neighbor 105 337 1 23 | 0.99 0.82 0.89
Clustering Coefficient 110 325 13 17 | 0.89 0.86 0.88
Closeness 113 328 10 14 | 091 0.88 0.90
Betweenness 69 325 13 58 | 0.86 0.56 0.66

Table 6: Precision and recall values of ULPD and other features on second dataset
to predict date hubs.

TP TN FP FN | Pre Re F

ULPD 186 82 12 10 | 0.93 0.94 0.94
Subgraph Centrality 175 77 17 21 091 0.89 0.90
Participation Coefficient | 183 75 19 13 | 090 0.93 0.91
Expansion 176 33 61 20 | 074 089 0.81
Density 177 74 20 19 | 0.89 090 0.90

Mean Degree Neighbor 179 70 24 17 0.88 0.91 0.89
Clustering Coefficient 179 75 19 17 0.90 0.91 0.90
Closeness 176 70 24 20 0.88 0.89 0.88
Betweenness 182 51 43 14 0.92 0.80 0.86

Table 7: Precision and recall values of ULPD and other features on second dataset
to predict party hubs.

TP TN FP FN | Pre Re F
ULPD 82 186 10 12 | 0.89 0.87 0.88
Subgraph Centrality 7 175 21 17 | 0.78 0.81 0.80
Participation Coefficient | 75 183 13 19 0.85 0.79 0.82
Expansion 33 176 20 61 0.62 035 0.44
Density 74 177 19 20 | 079 0.78 0.79
Mean Degree Neighbor 70 179 17 24 | 080 0.74 0.77
Clustering Coefficient 75 179 17 19 0.81 0.79 0.80
Closeness 70 176 20 24 | 077 074 0.76
Betweenness 51 182 14 43 0.78 054 0.64
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Table 8: Precision and recall values of ULPD and other features on second dataset
to predict party hubs.

Gene Name

ACD, ACTB, ATM, B2M, BRCA1, BTK, CARDY9, CASP3, CASPS,
CCL5, CD40, CD79A, CD81, CDC42, CFTR, DICER1, EGFR,
ERBIN, FADD, FANCA, FANCC, FANCG, FAS, FASLG, FOXP3,
Green-Date GATA1, HAX1, HDAC6, HTRA2, HYOU1, IGHM, IKBKB,
IKZF1, IRAK1, IRF3, ISG15, ITCH, ITGB3, JAK1, JAKS, LAT,
LCK, LIG4, MSN, MYDS88, NCSTN, NFE2L2, NFKB1, NFKBIA,
PIK3R1, PLCG2, POLD1, POLR3A, POMP, PRKCD, PRKDC,
PSEN1, PSMBS8, PSTPIP1, PTEN, RAD51, RBCK1, REL, RELA,
SEC61A1, SH3KBP1, SLX4, STAT1, STAT3, TAZ, TBK1, TCF3,
TFRC, TGFB1, TGFBR1, TGFBR2, TINF2, TNF, TNFRSF1A,
TP53, TRAF3, TYK2, WAS, XIAP, ZAP70, IKBKG

ADAR, AIRE, ARPC1B, BCL10, BLM, BRCA2, COPA, CTPSI,
Green-Par ty | DKC1, DNMT3B, FANCD2, FANCI, G6PD, IL7R, KMT2A,
MAP3K14, MCM4, MSH6, MTHFD1, NBN, NFKB2, NOS2, PMS2,
RANBP2, RELB, RIPK1, RNF31, RPSA, SAMHD1, SMARCD?2,
STAT5B, STK4, STX11, TERT, TNFAIP3, TOP2B, WDRI1

3.4 Performance of our Method for Human PPI Network

The previous studies on hub proteins show that they could be particularly inter-
esting drug targets [5]. In this work, we study party and date hub proteins as
drug targets for COVID-19. We propose a human PPI network that obtained by
habibi et al. [15]. This PPI network is gathered by five human high-throughput
binary interactions [3, 4, 9, 21, 24|. Then, some proteins which cannot be mapped
to a Uniprot ID [31] are removed. It yields to 304730 interactions between 25260
proteins. We choose ten percentages of high-degree vertices in human PPI network
as hubs. Applying ULPD algorithm on PPI network reveals 704 party and 1824
date hubs among 2528 human hubs.

We also use a research gene panel associated with SARS-CoV-2 to identify
essential genes related to disease. The high level of evidence genes are gathered by
[25] (COVID-19 research (Version 1.79)). It contains 461 genes related to SARS-
CoV-2. We find that from 461 genes 86 genes have been selected as date hubs that
denoted as Green-Date hubs and 37 genes have been identified as party hubs that
denoted as Green-Party hubs. Table 8 shows these Green-Date and Green-Party
genes that are related to SARS-CoV-2.

To identify the subset of date hubs and party hubs as suitable candidate genes
with important biological roles related to COVID-19, we narrow down Green-Party
and Green-Date hubs to the disease-associated genes. The previous studies show
that various symptoms from asymptomatic to death between different patient with
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COVID-19. These studies indicated that patient with underlying diseases such
as, Cardiovascular diseases, Diabetes, Hepatitis, Lung diseases, Kidney disease,
and different types of cancers have more severe symptoms than others. Then we
correlate the genes related to these diseases in in Green-Date and Green-party sets.
Then we find three genes, ITGB3, TNF, TP53 in Green-Date set are corresponding
to five out of six of mentioned diseases.

The first main gene is ITG-B3. Integrins (ITBs) constitute an important sub-
family and have a meaningful correlation with enhanced invasion. It is noticeable
that the high proportions of these genes were detected in the lung of the COVID-19
patients [20]. Researchers observed that this high level of ITBs might predispose
to greater on cell entry. The study on this gene could be a promising therapeutics
target [30].

The second main gene is TNF that is considered as cytosine. Tumor Necrosis
Factors (TNFs) are a super-family that by used by immune system cells. They
are related to proinflammatory responses and play main role in the regulation a
inflammatory processes. In the most severe cases, the high level of TNF alpha is
observed [10, 22]. Leng et al., observed that intravenous injection of MSCs have
been significantly decreased the pro-inflammatory cytosine TNF-a and it can be
possible therapeutic approach to inhibit TNF-«, among other cytokines [23].

The next main hub gene related to COVID-19 is TP53 (P53). Cellular tumor
antigen pH3 is a key participant in the type I interferon antiviral defense mechanism
[23]. The spike protein of virus using p53 degradation tries to help viral survival in
lung cells. Researcher believes that p53 might effectively inhibit viral replication
in the human respiratory tract and lung cells [29].

To evaluate party and date hubs associated with SARS-CoV-2, we also study
449 drugs as clinical trials that are reported in Drug Bank [33]. We consider
some drugs if they have two features. First, it needs to be studies in more than
two clinics. Second, it needs to have human targets in PPI network. Finally, we
select 328 drugs that denoted by Clinical-Drug. Evaluation of protein targets in
Clinical-Drug group shows that from 328 drugs in this group, none of them is
approved by Green-Party hubs. But 21 drugs of Clinical-Drug group are approved
by Green-Date hubs. We also find that from 86 genes in Green-Date set, 18 genes
are targeted by this group of drugs.

4. Summery and Discussion

One of the beneficial filed of research is the analysis of protein-protein interaction
network and its importance has been increasing recently. For example, it helps in
discovering unknown essential proteins related to diseases. Hub proteins as highly
connected proteins in PPI network give more information on essential proteins.
The main idea of this work is to classify hub proteins into two classes (date and
party hubs) based on topological features, and evaluate two hub classes as drug
targets on human PPI network.
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In the first part of this work, we have presented the short preliminaries of
graph theory and mentioned some topological features of each hub vertex in PPI
network. Then, we have proposed the ULPD algorithm to identify party and date
hubs based on unsupervised learning model.

In the second part of this work, we have studied the impact of each topological
feature to identify party and date hubs. The results on two datasets show that our
algorithm can progressively improve the performance of each centrality feature to
identify party and date hubs based on common evaluating parameters (TP, TN,
FP, FN and F-measure). Results indicate that ULPD algorithm agrees well with
two hub classes obtained by the average Pearson Correlation Coefficient between
hub and each of respective partners for mRNA expression, and F-measure values
can be increased considerably in comparison with each feature.

Finally, we have performed our method to identify party and date hubs for
human PPI network. We have studied the party and date hubs as two different
groups of essential proteins. In the first part, 1824 date hubs and 704 party hubs
for human PPI network are identified. Since it seems urgent to find the essential
genes associated with COVID-19 in the recent time, we have focused on identi-
fying the hubs that are essential to the pathology of this disease. We found a
subset of date hubs and a subset of party hubs that in the previous studies are
reported as high-evidence genes related to COVI-19. Finally, we evaluate three
essential date hub genes (ITG-B3, TNF, TP53) associated with at least five of
six underlying diseases. We find that 8 drugs in Clinical-Drug group including
(Adalimumab, Chloroquine, Infliximab, Pomalidomide, Tirofiban, Po-
malidomide, Thalidomide, Aspirin) are approved by these three hub genes.
Our study showed that date hub proteins can be effective and suitable candidates
in clinical trials for COVID-19 treatment.

Conflicts of Interest. The authors declare that there are no conflicts of interest
regarding the publication of this article.
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