
Mathematics Interdisciplinary Research 7 (2022) 357− 375

Original Scientific Paper

Some Results on Asymptotic Behavior of the

Recalls of Random Median Quicksort

Mehri Javanian? and Ali Mohammadian Mosammam

Abstract

This paper investigates the asymptotic behavior of the number of recalls
Xn of the Random Median Quicksort algorithm in order to sort a list of n
distinct numbers. As n→∞, we provide the asymptotics of the expectation
and variance of the recalls. Furthermore, by utilizing a refined version of
the contraction method for degenerate limits, we show the limiting distri-
bution of Xn correctly normalized is Gaussian. The theoretical results are
demonstrated by a simulation study.

Keywords: median Quicksort, recalls of algorithm, contraction method, nor-
mal limiting distribution.

2020 Mathematics Subject Classification: 60F05, 60F15, 68P10, 68Q25.

How to cite this article
M. Javanian and A. Mohammadian Mosammam, Recalls of random
median Quicksort, Math. Interdisc. Res. 7 (2022) 357-375.

1. Introduction
Sorting a list of numbers is obviously a fundamental problem. An efficient sorting
algorithm is Quicksort that was invented and developed by Hoare [5] in 1962.

Let S = [π1, π2, . . . , πn] be an array of n distinct numbers that we want to
be sorted. Quicksort sorts S based on a divide and conquer strategy. Quicksort
first picks a uniformly random element p from S and divide S (except p) into two
subarrays: The array S< of elements smaller than p and the array S> of elements
larger than p. The element p is called the pivot. Then Quicksort sorts S< and

?Corresponding author (E-mail: javanian@znu.ac.ir)
Academic Editor: Mohammad Amini Dehak
Received 14 April 2022, Accepted 23 November 2022
DOI:10.22052/MIR.2022.246282.1347

c©2022 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

358 M. Javanian and A. Mohammadian Mosammam

S> recursively. For many variants of Quicksort, the number of comparisons to
sort the input numbers has been extensively studied in numerous papers; see for
instance [7], [13], [14], [17], and thesis, such as [4], [8], [21] and [23].

The efficiency of the Quicksort algorithm very much depends on the selection
of the pivot element. Suppose we intend to sort the array S = [π1, π2, . . . , πn],
where π1 < π2 < · · · < πn, and our first selection of pivot is the maximum element
πn. In this case, we just divide and conquer in a trivial manner. One array will
have one element and the other one will have n−1 elements. If this happens, then
every element in the array of size n− 1 is less than the pivot, and it has taken us
n − 1 comparisons with πn. Now, again, assume the worst case occurs. Namely,
this time, in the array of size n−1, we choose the largest element πn−1 as a pivot.
Again the Quicksort makes n− 2 comparisons and we are left with every element
smaller than πn−1. If we continue to select the largest element of what is left as a
pivot, then, after n− 1 recursive calls, the overall number of comparisons made is
1 + 2 + · · · + (n − 1) = O(n2). Therefore, Quicksort needs quadratic run-time to
sort already sorted arrays if we select a pivot element in such a way that it gives
the most unbalanced partitions, though this behavior is rare.

We can avoid the worst case in Quicksort by selecting each pivot element to be
roughly in the middle of an input array of size n. Then, we make n−1 comparisons
in the first round. Next, in the second round, we make about n/2 comparisons in
each of two subarrays of size about n/2. Further, in the third round, we make n/4
comparisons in each of the four subarrays of size about n/4, and so forth. Thus,
in each round, we make about n comparisons. At each round, we are splitting
the arrays into roughly equally-sized subarrays, and it takes log2(n) rounds to get
down to trivially sorted arrays. Therefore, this case leads us to the O

(
n log2(n)

)
best-case asymptotic time complexity which is much smaller than O(n2) in the
worst case.

This informal argument makes it clear that the choice of pivot plays a funda-
mental role in the performance of Quicksort. Many authors have suggested various
methods to rectify how to choose the pivot and to pass the worst-case manner,
see [2], [5], [9], [20], [21] and [22]. These references include shuffling of the array
randomly prior to initialisation of the Quicksort, selecting the median of the array
as pivot, or selecting the median of a random sample of elements.

Scowen [20] proposed selecting as pivot the middle element among the array
elements. Applying this strategy for the selection of pivot, the purpose is the
splitting of the array into two subarrays of equal size. So the quadratic time
is avoided in the case where the array is an almost-sorted array. Towards this
pivot strategy, a naive idea would be computing the median as pivot among the
array elements. Unfortunately, the computing the median imposes extra costs to
the Quicksort algorithm. Hence, despite the always good selections, this strategy
might not be better than selecting the pivot randomly.

Singleton [22] proposed a randomly select three elements from an array of n
distinct numbers to be sorted and use their median as pivot, causing to a better
estimate of the median of the array.

Recalls of Median Quicksort 359

(a) A 1-median Quicksort tree of size 20. (b) A 3-median Quicksort tree of size 32.

Figure 1: Illustration of two 2k+1-Median Quicksort trees for k = 0 and k = 1, in
(a) and (b) respectively: The pivots are represented by gray ovals, i.e., the non-leaf
nodes. The leaves are represented by white squares in (a) and white rectangles in
(b). The recalls (recursive calls) of 2k + 1-Median Quicksort are represented by
the non-leaf nodes in the associated trees.

By Hoare [5], this modification generalized as to selecting a sample of 2k + 1
elements at every recursive call, finding their median and applying that median as
pivot, partitioning n ≥ 2k+2 elements. The arrays of size at most 2k+1 elements
are sorted by a simpler algorithm, such as insertion sort. But he didn’t analyse
this pivot strategy.

Roesler [18] analyze the number of comparisons to sort an array of n distinct
numbers by Hoare’s 2k + 1-Median version of Quicksort (2k + 1-MQ). Later on,
Okasha and Roesler [14] studied the number of comparisons applied by a general-
ized version of 2k + 1-Median Quicksort, where k is a random variable.

There is a connection between 2k + 1-Median Quicksort (2k + 1-MQ) and
random median-of-2k + 1 binary search trees, see Section 7.3 in [11]. Bell [1] and
Walker and Wood [24] introduced the median-of-2k+ 1 binary search trees. Given
an array S of n ≥ 2k + 2 elements on which a total order is defined, a 2k + 1-MQ
tree on S is constructed as follows. Take 2k + 1 elements at random from S. The
median of these elements serves as the root of the binary tree. For every pivot
(median-of-(2k + 1)) encountered create a non-leaf node in the tree labeled with
the pivot. The first pivot labels the root of the tree. As the first pivot splits the
array S into two parts (subarrays), a pivot will be found in each subarray of size
≥ 2k + 2 and will father a subtree. If the subarray of smaller elements is of size
≥ 2k + 2, the pivot found in it is attached to the root as a left child. Similarly,
if there are at least 2k + 2 larger elements, the pivot found there will be attached
to the root as a right child. As 2k + 1-MQ continues recursively, nodes are added
in this fashion to the tree until arrays of size at most 2k + 1 elements are the
subject of sorting; those are represented by leaves (bucket nodes). At the moment

360 M. Javanian and A. Mohammadian Mosammam

that a leaf node overflows (i.e., when it would grow to size 2k + 1), its bucket is
split about the median, leaving two new leave nodes (buckets) of size k each and a
non-leave node holding the median. For this binary tree construction, for example
see the two 2k+ 1-MQ trees for k = 0 and k = 1 in Figure 1, where the pivots are
represented by gray ovals (i.e., the non-leaf nodes). In Figure 1, we illustrate the
leaves by white squares and rectangles.

By “the number of recalls” of 2k + 1-MQ, we mean the number of times that
the pivot (median-of-2k+ 1) splitting the arrays of size ≥ 2k+ 2 is performed. As
an example, the pivots (i.e., recalls) are shown by gray nodes (non-leaf nodes) in
the 2k + 1-MQ trees illustrated by Figure 1.

A variant is the Random Median Quicksort (RMQ(µ)), where k is the outcome
of a random variable A with distribution µ. For every recall take an independent
random variable with the same distribution µ. The RMQ(µ) was introduced by
Okasha [14]. Notice the set of all RMQ algorithms contains all MQ algorithms.

In this paper, we are interested in the number of recalls Xn performed by any
2k + 1-MQ or RMQ(µ) in order to sort a set of size n. µ is a probability measure
on {0, 1, 2, . . . ,K},K ∈ IN0. For n < 2K + 1 := n0 we take any other sorting
algorithm and do not recall RMQ(µ). We also call RMQ(µ) by RMQ(K).

For the reader’s convenience, some notation on RMQ(µ) is adopted from [14].
Let the random variable A has probability distribution P(A = k) = pk, k =

0, . . . ,K. Let Zµn be the rank (= |S<| + 1) of the pivot element and Z
(k)
n =(

Zµn
∣∣A = k

)
be the rank of the pivot element conditioned to the outcome A = k.

The distribution of Z(k)
n is

p(k)n,m := P
(
Z(k)
n = m

)
=

(
m−1
k

)(
n−m
k

)(
n

2k+1

) , m = k + 1, . . . , n− k. (1)

The random variable Z(k)
n

n for fixed k converges in distribution to a random variable
U (k) with Beta(k+ 1, k+ 1) distribution, see Proposition 1 in [10]. The density of
U (k) is

fk(u) =
Γ(2k + 2)(
Γ(k + 1)

)2uk(1− u)k, 0 < u < 1, (2)

where Γ(·) denotes the gamma function that satisfies Γ(k + 1) = kΓ(k) = k!.
The case µ the point measure on 0 is well known. Devroye [3], see also Example

8.1 in [6], gave an explicit formula for the expectation and variance and showed
the limiting distribution of normalized Xn is the normal.

E(Xn) =
2n− 1

3
, Var(Xn) =

2

45
(n+ 1),

Xn − E(Xn)√
Var(Xn)

D−→ N
(
0, 1),

where D−→ denotes convergence in distribution. The argument runs by a connection
between Quicksort and random binary search trees, see Section 7.3 in [11]. Xn gets

Recalls of Median Quicksort 361

the interpretation as the number of non-leaf nodes (nodes with outdegree 6= 0) in
the associated random binary search tree.

The key equation is the recursion (3) in distribution of the Xn, n ∈ IN0. In
Section 2 we prove via an Euler differential equation the expectation and variance
of Xn grows linearly with n. In Section 3 we show via the contraction method
for degenerate limit [12], that the asymptotic distribution of standardized Xn is
Gaussian. The last section gives some indication via simulation of the speed of
convergence.

2. The Expectation and Variance
Let an := E(Xn) and bn := Var(Xn) be the expectation and variance of the
number Xn of recalls performed by RMQ(µ) to sort n distinct numbers. In this
section, we show that an = cn+o(n) and bn = σ2n+o(n) for some constants c, σ2

depending only on µ.
Since the RMQ(µ) is a divide and conquer algorithm the Xn, n ∈ IN satisfy

the recursion

Xn
d
= XZµn−1 +Xn−Zµn + 1, (3)

for n ≥ n0 := 2K+1. The symbol d= denotes equality in distribution. The random
variables Xi, Xi, Zµn are independent for n ≥ n0. Xi has the same distribution as
Xi for all i ∈ IN0. Further Xi ≡ 0 for i < n0.

The average behavior of RMQ(µ) can be obtained by taking expectation of
(3), yielding the recurrence

an = E
(
aZµn−1

)
+ E

(
an−Zµn

)
+ 1, (4)

for n ≥ n0. Further an = 0 for n < n0.
Hence conditioning on A = k and using P (Z

(k)
n = m) = P (Z

(k)
n = n−m+ 1)

we obtain from (4)

an = 2

K∑
k=0

pk

n−k∑
m=k+1

p(k)n,mam−1 + 1. (5)

Theorem 2.1. Let Xn be the number of recalls for random median Quicksort,
RMQ(µ), in order to sort n different numbers. Then for some constant c depending
only on µ

E(Xn) = cn+ o(n). (6)

Proof. We basically follow the paper [14]. Let D be the derivative operator of a
functions f , i.e. (D(f))(z) = d

dz f(z) for all z.We skip the brackets and use D also
for formal power series. Define the generating function

a(z) :=
∑
n≥0

anz
n.

362 M. Javanian and A. Mohammadian Mosammam

Then by a similar argument in the proof of Lemma 3.2 in [14], using (5) we obtain
the Euler differential equation

Dn0a(z)−zn0(1− z)−n0−1n0! = 2

K∑
k=0

pkD
2K−2k

n−k∑
m=k+1

(
m−1
k

)(
n−m

k

)(
n

2k+1

) am−1D
2k+1zn.

Multiplying both sides with (1− z)n0 provides the Euler differential equation

(1− z)n0Dn0a(z)− zn0

1− z
n0! = 2

K∑
k=0

pk

2K−2k∑
j=0

(
k+j
k

)(
2K−k−j

k

)(
2K+1
2k+1

) (2K + 1)!

(2K − k − j)!

(1− z)2K−k−jD2K−k−ja(z) (7)

Then by a similar argument in the proof of Lemma 3.2 in [14], using (5) we obtain
the Euler differential equation

(1− z)2K+1D2K+1a(z)− (2K + 1)!

1− z

= 2

K∑
k=0

pk

2K−2k∑
j=0

(
k+j
k

)(
2K−k−j

k

)(
2K+1
2k+1

) (2K + 1)!

(2K − k − j)!
(1− z)2K−k−jD2K−k−ja(z). (8)

Using a change of variables z = 1 − e−x, defining y(x) := a(z) = a(1 − e−x) and
the polynomial P in the variable λ by

P (λ) =

(
λ+ 2K

2K + 1

)
− 2

K∑
k=0

pk

2K−2k∑
j=0

(
k+j
k

)(
2K−k−j

k

)(
2K+1
2k+1

) (
λ+ 2K − k − j − 1

2K − k − j

)
,

and dividing by (2K + 1)! in (8), yields

P (D)y(x) = ex. (9)

By Lemma 3.5 in [14], we obtain the special solution y(x) = −ex for (9) respectively
the special solution as(z) for (8)

as(z) = − 1

1− z
= −

∑
n≥0

zn, |z| < 1. (10)

The homogeneous linear differential equation P (D)y(x) = 0 has solutions

xjexRe(λi) cos
(
x Im(λi)

)
, xjexRe(λi) sin

(
x Im(λi)

)
,

i = 1, . . . , l, j = 0, . . . , ri − 1, where λ1, . . . , λl ∈ C be the eigenvalues of the
characteristic polynomial P in λ and 1 ≤ r1, . . . , rl be the multiplicities,

∑
i ri = n.

Recalls of Median Quicksort 363

Therefore every solution of the associated homogeneous differential equation to (8)
is a convex combination of the fundamental system(

− ln(1− z)
)j

(1− z)−Re(λi) cos
(
− Im(λi) ln(1− z)

)
,(

− ln(1− z)
)j

(1− z)−Re(λi) sin
(
− Im(λi) ln(1− z)

)
,

(11)

i = 1, . . . , l, j = 0, . . . , ri− 1. Proposition 3.4 and Lemma 3.8 in [14], respectively,
show that λ1 = 2 is an eigenvalue of P with multiplicity 1 and all other eigenvalues
of P have a real part strictly less than 2.

Thus, from (10) and the above the fundamental system of solutions, the general
solution a(z) of (8) is

a(z) = c
(
− ln(1− z)

)0
(1− z)−2

+

l∑
i=2

ri−1∑
j=0

[
ci,j
(
− ln(1− z)

)j
(1− z)−Re(λi) cos

(
− Im(λi) ln(1− z)

)
+ c̃i,j

(
− ln(1− z)

)j
(1− z)−Re(λi) sin

(
− Im(λi) ln(1− z)

)]
=: c

∑
n≥0

(n+ 1)zn + ω(z),
(

[zn]ω(z) = o(n)
)

for some constants c, {ci,j} and {c̃i,j}, as i = 1, . . . , l, j = 0, . . . , ri − 1. Finally,
by Corollary 3.10 in [14], all eigenvalues λi 6= 2 contribute only an o(n) term to
an. Then an = cn+ o(n) and the result follows.

By (6), we have an = E(Xn) = cn + g(n) where g(n) = o(n). From (3) and
defining Qn := Xn − cn− g(n) and Qn := Xn − cn− g(n), we obtain

Qn
d
= QZµn−1 +Qn−Zµn +Gn

(
Zµn
)
, (12)

Gn(Zµn) = (Zµn − 1)
(
c+

g(Zµn − 1)

Zµn − 1

)
+ (n− Zµn)

(
c+

g(n− Zµn)

n− Zµn

)
+ 1− n

(
c+

g(n)

n

)
∼ (Zµn − 1)c+ (n− Zµn)c+ 1− nc = 1− c, (∵ Zµn

a.s.−→∞,) (13)

as n→∞, where the notation a.s.−→ denotes the almost sure convergence.

Theorem 2.2. Let Xn be the number of recalls for random median Quicksort,
RMQ(µ), in order to sort n different numbers. Then for some constant σ2,

Var(Xn) = σ2n+ o(n). (14)

364 M. Javanian and A. Mohammadian Mosammam

Proof. Denote bn := Var(Xn) = E(Q2
n). Hence squaring (12), conditioning on A

and Z(k)
n , using Xi

d
= Xi for i = 0, . . . , n− 1, bn satisfies the recurrence

bn = 2E
(
bZµn−1

)
+ E

[(
Gn(Zµn)

)2]
= 2

K∑
k=0

pk

n−k∑
m=k+1

p(k)n,mbm−1 + E
[(
Gn(Zµn)

)2]
.

(15)

Denote the generating functions of gn := E
[(
Gn(Zµn)

)2] and bn by

G(z) :=
∑
n≥0

gnz
n, b(z) :=

∑
n≥0

bnz
n.

Again, by a similar argument in the proof of Lemma 3.2 in [14], using (15) we
obtain the Euler differential equation

(1− z)n0Dn0b(z)− (1− z)n0Dn0G(z) =

K∑
k=0

2K−2k∑
j=0

(
k+j
k

)(
2K−k−j

k

)(
2K+1
2k+1

) 2pk(2K + 1)!

(2K − k − j)!

(1− z)2K−k−jD2K−k−jb(z). (16)

By the same system in (11), every solution of the associated homogeneous differ-
ential equation to (16) is

b(z) = σ2
(
− ln(1− z)

)0
(1− z)−2 + ω̃(z) ∼ σ2(1− z)−2,

for some constant σ2 and [zn]ω̃(z) = o(n). Besides, the special solution is O
(
(1−

z)−1
)
(since gn → (1−c)2 then G(z) = O

(
(1−z)−1

)
and we have (1−z)2K+1D2K+1

G(z) = O
(
(1 − z)−1

)
). Namely, the general solution will be b(z) = σ2

∑
n≥0(n +

1)zn + ω̃(z). Therefore, the assertion follows.

3. Asymptotic Normality
In this section, we begin to prove the normality of limiting distribution of Xn.
The proof was completed by applying the contraction method, which was first
introduced by [17], in studying the Quicksort algorithm. The contraction technique
is usually arranged as follows: first, a limit distributional equation of the random
variable we considered is conjectured; then the conjecture is checked by showing
that the distribution function of the random variable we studied converges to that
of the conjectured limit under some metric space (see [15], [19]).

Here, we prefer the Zolotarev metric ζ3 (see [16], [25]) as the metric space
applied in the contraction method. Let the distribution of a random variable X
denoted by L(X). Then, for any given random variables X and Y , the 3rd order
Zolotarev metric between X and Y is defined as

ζ3(X,Y) := ζ3(L(X),L(Y)) := sup{|E[f(X)]− E[f(Y)]| : f ∈ F},

Recalls of Median Quicksort 365

where F = {f : f ∈ C(2), |f (2)(x)− f (2)(y)| ≤ |x− y|} denotes the set of all twice
differentiable functions, where the second derivative is Lipschitz continuous with
Lipschitz constant equal to 1.

The following two lemmas give several properties of probability metric ζ3(X,Y),
which are quite useful in our proof of Theorem 3.5.

Lemma 3.1 (see [16], [25]). Let ζ3(X,Y) be the 3rd order Zolotarev metric be-
tween the random variables X and Y . Then, we have

(i) For any real number θ > 0,

ζ3(θX, θY) = θ3ζ3(X,Y); (17)

(ii) If the random variables Y and (X1, X2) are independent mutually, then

ζ3(X1 + Y,X2 + Y) ≤ ζ3(X1, X2); (18)

(iii) For any pair (X,Y) of random variables,

E(|X|3) + E(|Y |3) <∞, E(Xk) = E(Y k), k = 1, 2 =⇒ ζ3(X,Y) <∞; (19)

(iv) For the random variables V and {Vn}n≥1, as n→∞

ζ3(Vn, V)→ 0 =⇒ Vn
D−→ V. (20)

Lemma 3.2 (see [13]). let X1, X2, T1 and T2 be random variables such that the
pairs (X1 + T1, X2 + T2) and (X1, X2) satisfies (19). Then

ζ3(X1 + T1, X2 + T2) ≤ ζ3(X1, X2) +

2∑
i=1

{‖Xi‖23‖Ti‖3
2

+
‖Xi‖3‖Ti‖23

2
+
‖Ti‖33

6

}
,

where we denote ‖X‖3 := E(|X|3)1/3 for a random variable X.

Moreover, the proof of Theorem 3.5 requires the following upper bound for
metric ζ3:

ζ3(X,Y) ≤ 1

2

(
‖X‖23 + ‖X‖3‖Y ‖3 + ‖Y ‖23

)
`3(X,Y), (21)

where the minimal L3-metric `3 defined by

`3(X,Y) := `3(L(X),L(Y)) := inf{‖X ′ − Y ′‖3 : L(X) = L(X ′),L(Y) = L(Y ′)},

for random variables X and Y with ‖X‖3 <∞, ‖Y ‖3 <∞.
We standardize Xn with its mean and variance, i.e.,

Yn :=
Xn − E(Xn)√

Var(Xn)
, Var(Xn) = n

(
σ2 +

h(n)

n

)
∼ σ2n,

(
h(n) = o(n)

)
. (22)

366 M. Javanian and A. Mohammadian Mosammam

Let τ(n) :=
√

Var(Xn). The Equations (12) and (13) give the distributional
recurrence

Yn
d
=
τ(Zµn − 1)

τ(n)
YZµn−1 +

τ(n− Zµn)

τ(n)
Y n−Zµn +

1√
n
Gn(Zµn),

=: un(Zµn)YZµn−1 + un(Zµn)Y n−Zµn + vn(Zµn) (23)

=: BZµn−1 +Bn−Zµn + vn(Zµn) (24)

where Yi
d
= Y i, for 0 ≤ i ≤ n−1. The random variables Yi, Y i, Z

(k)
n , A, 0 ≤ k ≤ K,

0 ≤ i ≤ n− 1, are independent for n ≥ n0 = 2K + 2.
To prove the Theorem 3.5, we still require some more arrangements. The

following three lemmas are necessary.

Lemma 3.3. Let W , W1 and W2 be independent random variables with the
standard normal distribution. If a random variable with the distribution function
in (1), Z(k)

n =
(
Zµn
∣∣A = k

)
is independent of W , W1 and W2, then we have

W
d
=

√
Zµn
n
W1 +

√
n− Zµn
n

W2. (25)

Proof. It is sufficient to verify that the characteristic function of the right side
of (25) is the same as that of a standard normal random variable. From the
independence of the random variables W , W1, W2, Z

(A)
n , we have

E
[

exp

{
it

(√
Zµn
n
W1 +

√
n− Zµn
n

W2

)}]
=

K∑
k=0

pk

n−k∑
m=k+1

p(k)n,mE
[

exp
{
it
(√m

n
W1 +

√
n−m
n

W2

)}]

=

K∑
k=0

pk

n−k∑
m=k+1

p(k)n,mE
[

exp
{
i
(
t

√
m

n

)
W1

}]
E
[

exp
{
i
(
t

√
n−m
n

)
W2

}]

=

K∑
k=0

pk

n−k∑
m=k+1

p(k)n,m exp
(
− m

2n
t2
)

exp
(
− n−m

2n
t2
)

= exp
(
− t2

2

)
.

The function e−
t2

2 is the characteristic function of a standard normal random
variable. Hence we obtain the claim.

Recalls of Median Quicksort 367

Remark 1. As n→∞, by (2), (22) and (23), we have

E
[(
un(Zµn)

)3] ∼ E
[(Zµn − 1

n

) 3
2
]

=

K∑
k=0

pkE
[(Z(k)

n − 1

n

) 3
2
]

→
K∑
k=0

pkE
[(
U (k)

) 3
2
]

=

K∑
k=0

pk

∫ 1

0

fk(t)t
3
2 dt

=

K∑
k=0

pk
Γ
(
k + 1 + 3

2

)
Γ(2k + 2)

Γ
(
2k + 2 + 3

2

)
Γ(k + 1)

=:

K∑
k=0

pkϕ(k).

The function ϕ(·) is strictly decreasing because,

ϕ(k + 1) =
4(2k + 3)(2k + 5)

(4k + 7)(4k + 9)
ϕ(k) < ϕ(k) ≤ ϕ(0) = 0.4, k ≥ 0.

Lemma 3.4. As n→∞, E[|Y 3
n |] = O(1).

Proof. From (24) we obtain

E[|Y 3
n |] ≤ 2E

[∣∣BZµn−1∣∣3]+ 6E
[∣∣BZµn−1∣∣2∣∣Bn−Zµn ∣∣]

+ 6E
[∣∣BZµn−1∣∣2∣∣vn(Zµn

)∣∣]+ 6E
[∣∣BZµn−1∣∣∣∣vn(Zµn)

∣∣2] (26)

+ 6E
[∣∣BZµn−1Bn−Zµnvn(Zµn

)∣∣]+ E
[∣∣vn(Zµn)

∣∣3].
Note that ∃u∗ > 0 such that un < u∗ and un < u∗ for n ≥ 1, by (22) and (23).
Let

ξn := 1 ∨ max
0≤j≤n

E[|Y 3
j |].

Using (23), for 0 ≤ k ≤ K and k + 1 ≤ m ≤ n− k, conditionally given Z(k)
n = m,

E
[∣∣BZµn−1∣∣3] ≤ E

[(
un(Zµn)

)3]
ξn−1 (27)

E
[∣∣BZµn−1∣∣2∣∣Bn−Zµn ∣∣] ≤ u∗3(max

0≤j≤n−1
E[|Yj |2]

)(
max

0≤j≤n−1
E[|Yj |]

)
= O(1). (by (14)) (28)

By Hölder inequality, the two summands in line (26) are bounded, e.g., for the
first one, from (13) and (27), we have

E
[∣∣BZµn−1∣∣2∣∣vn(Zµn

)∣∣] ≤ u∗2 K∑
k=0

pk
{
E
[∣∣Y

Z
(k)
n −1

∣∣3]} 2
3
{
E
[∣∣vn(Z(k)

n

)∣∣3]} 1
3

≤ u∗2
K∑
k=0

pkξ
2
3
n−1
{
E
[∣∣vn(Z(k)

n

)∣∣3]} 1
3

≤ o(1)ξn−1.

368 M. Javanian and A. Mohammadian Mosammam

We similarly have

E
[∣∣BZµn−1Bn−Zµnvn(Zµn

)∣∣]
≤ u∗2

K∑
k=0

pk
{
E
[∣∣Y

Z
(k)
n −1

∣∣3]} 1
3
{
E
[∣∣Y

Z
(k)
n −1

∣∣3]} 1
3
{
E
[∣∣vn(Z(k)

n

)∣∣3]} 1
3

≤ o(1)ξn−1.

The summand E
[∣∣vn(Zµn)

∣∣3] tends to zero by (13). Collecting all terms, we obtain

E[|Y 3
n |] ≤

(
2E
[(
un(Zµn)

)3]
+ o(1)

)
ξn−1 + O(1)

=
(

2

K∑
k=0

pkE
[(
U (k)

) 3
2
]

+ o(1)
)
ξn−1 + O(1) (29)

≤
(
0.8 + o(1)

)
ξn−1 + O(1) (by Remark 1).

Hence, there exist an n0 ∈ N and a constant 0 < α <∞ such that for n ≥ n0

E[|Y 3
n |] ≤ 0.9ξn−1 + α.

By induction, we have E[|Y 3
n |] ≤ ξn0 ∨ (10α) for all n ≥ 0. This implies the

claim.

In the following, we begin to prove the asymptotic normality distribution for Xn.

Theorem 3.5. Let Xn be the number of recalls for RMQ(µ) on an array of size n.
Then, as n→∞, for some constants c and σ2 defined in (6) and (14), respectively,

Xn − cn√
n

D−→ N(0, σ2).

Proof. Let N be a standard normal random variable. Using Lemma 3.4 and (19),
we have ζ3(Yn,N) < ∞. So, by (20), we just need to show that the Zolotarev
metric between the random variables Yn and N, approaches 0, as n→∞.

For W1 and W2 independent standard normal random variables also indepen-
dent of Zµn , we set (un(·) and un(·) defined in (23))

Θn := un(Zµn)W1 + un(Zµn)W2, n ≥ n0 := 2k + 2.

Note that Var(Θn) > 0 for all n ≥ n0, and Var(Θn) → 1 as n → ∞. Hence
there exists a deterministic sequence (δn)n≥n0

with δn → 0 as n → ∞ such that
Var
(
(1 + δn)Θn

)
= 1 for all n ≥ n0. So, each pair from the random variables Yn,

(1 + δn)Θn and N satisfy(19). Thus we obtain

ζ3(Yn,N) ≤ ζ3
(
Yn, (1 + δn)Θn

)
+ ζ3

(
(1 + δn)Θn,N

)
.

Recalls of Median Quicksort 369

We introduce Φn := un(Zµn)YZµn−1 + un(Zµn)Y n−Zµn and νn := vn(Zµn). Then we
have Yn

d
= Φn + νn by (23). Now Lemma 3.2 yields

ζ3
(
Yn, (1 + δn)Θn

)
≤ ζ3

(
Φn,Θn

)
+

1

2
‖Φn‖23‖νn‖3 +

1

2
‖Φn‖3‖νn‖23 +

1

6
‖νn‖33

+
(1

2
|νn|+

1

2
ν2n +

1

6
|νn|3

)
‖Φn‖33.

Since supn≥n0
‖Φn‖3 <∞ and ‖νn‖3 → 0 (νn

a.s.−→ 0) then

ζ3
(
Yn, (1 + δn)Θn

)
≤ ζ3

(
Φn,Θn

)
+ o(1).

The bound (21) implies ζ3
(
(1 + δn)Θn,N

)
≤ M`3

(
(1 + δn)Θn,N

)
for all n ≥ n0

and a finite constant M > 0. Using Lemma 3.3 we obtain

ζ3
(
(1 + δn)Θn,N

)
≤M`3

(
(1 + δn)Θn,N

)
≤M

∥∥∥∥((1 + δn)un(Zµn)−
√
Zµn
n

)
W1

+

(
(1 + δn)un(Zµn)−

√
n− Zµn
n

)
W2

∥∥∥∥
3

→ 0.

From (17), (18), (22) and Lemma 3.1, we can conclude that

ζ3(Yn,N) ≤ ζ3
(
Φn,Θn

)
+ o(1)

≤
K∑
k=0

pkζ3

(
un(Z(k)

n)Y
Z

(k)
n −1

+ un(Z(k)
n)Y

n−Z(k)
n
,

un(Z(k)
n)W1 + un(Z(k)

n)W2

)
+ o(1)

≤
K∑
k=0

pk

n−k∑
m=k+1

p(k)n,mζ3

(
un(m)Ym−1 + un(m)Y n−m,

un(m)W1 + un(m)W2

)
+ o(1)

= 2

K∑
k=0

pk

n−k∑
m=k+1

p(k)n,m

(
un(m)

)3
ζ3
(
Ym−1,N

)
+ o(1)

= 2

K∑
k=0

pkE
[(
un(Z(k)

n)
)3
ζ3(Y

Z
(k)
n −1

,N)
]

+ o(1) (30)

≤ 2

K∑
k=0

pk

(
E
[(
U (k)

) 3
2
]

+ o(1)
)

sup
0≤m≤n

ζ3(Ym−1,N) + o(1).

370 M. Javanian and A. Mohammadian Mosammam

This implies, similarly to the inequality (29),
(
ζ3(Yn,N)

)
n≥0 that is bounded. We

denote ξ := supn≥0 ζ3(Yn,N) and s := lim supn→∞ ζ3(Yn,N) ≥ 0. For any ε > 0
there exists an n1 ≥ n0 such that ζ3(Yn,N) ≤ s + ε for all n ≥ n1. Hence, from
(30) we obtain

ζ3(Yn,N) ≤ 2

K∑
k=0

pkE
[
11{Z(k)

n ≤n1}

(
un(Z(k)

n)
)3]

ξ

+ 2

K∑
k=0

pkE
[
11{Z(k)

n >n1}

(
un(Z(k)

n)
)3]

(s+ ε) + o(1)

∼ 2

K∑
k=0

pkE
[
11{Z(k)

n >n1}

(
un(Z(k)

n)
)3]

(s+ ε) + o(1).

Therefore 0 ≤ s = lim supn→∞ ζ3(Yn,N) ≤ 0.8(s + ε) < s + ε. Since ε > 0
is arbitrary then we have s = 0. Namely, limn→∞ ζ3(Yn,N) = 0. By (20), the
assertion holds.

4. A Simulation Study

We now investigate the empirical performance of the various sorting algorithms
proposed in this paper to sort n distinct numbers through an intensive simulation
study. For each proposed sorting algorithm, the code to implement the method,
run these simulations and produce the plots is provided with the R programming
software (code available upon request). All simulations are carried out with R
software and in Intel(R), Core(TM) i5-7200U CPU, 2.50GHz, 2701 Mhz, 32-bit
processor PC laptop with 8 GB RAM memory, only.

The simulation consists of the generation of random permutations of 1, 2, . . . , n,
and sort them in order to compare the number of recalls. The generated permuta-
tions for sorting are uniformly at random chosen from one to n integer numbers us-
ing sample function in R so that sample(1:n, size=n, replace = FALSE) gen-
erates a random permutation of the elements of 1 : n. Indeed sample function
takes a sample of the specified size from the elements of a vector using with or
without replacement.

For each n, n = 1, 2, . . . , 4000 number of elements, after generating the random
permutations discussed above, the standard Quicksort, 3-MQ and RMQ(2) and
RMQ(5) sorting algorithms are repeated 1000 times and the number of recalls are
counted and saved in 4000 × 1000 matrices. The average number of recalls and
variance of recalls versus the number of sorted elements for these 1000 replications
were then displayed in Figure 2.

Recalls of Median Quicksort 371

0 1000 2000 3000 4000

0
50

0
10

00
15

00
20

00
25

00

Number of elements

N
um

be
r

of
 r

ec
al

ls

Sort Types

1−MQ
3−MQ
RMQ(k random of 0,1,2,3,4,5)
RMQ(k random of 0,1,2)

0 1000 2000 3000 4000
0

50
10

0
15

0
20

0
25

0
30

0

Number of elements

V
ar

ia
nc

e
of

 r
ec

al
ls

Sort Types

1−MQ
3−MQ
RMQ(k random of 0,1,2,3,4,5)
RMQ(k random of 0,1,2)

0 1000 2000 3000 4000

0
50

10
0

15
0

20
0

25
0

30
0

Number of elements

V
ar

ia
nc

e
of

 r
ec

al
ls

Sort Types

1−MQ
3−MQ
RMQ(k random of 0,1,2,3,4,5)
RMQ(k random of 0,1,2)

Figure 2: The average and variance of recalls for four algorithms with different
number of elements.

Functions rowMeans and apply(matrix, 1, var) are applied to calculate the
average number of recalls and variance of recalls for these 1000 replications for
each size of n. It is easy to see that the algorithms run in linear time. As variance
of recalls are noisy, linear regression with lm function fitted to the variance of
recalls and shown in Figure 2. From Figure 2 it appears that the average number
and variance of recalls increases linearly with estimated slopes resulting from lm
function are shown in Table 1. Note also that the histogram for standardized
number of recalls for n = 4000 and 1000 repeats are shown in Figure 3 which are
consistent with the standard normal distribution. From these figures we conclude
that, in term of number of recalls, the RMQ(5) algorithm performs better than
RMQ(2), 3-MQ and 1-MQ, i.e., the standard Quicksort algorithm.

372 M. Javanian and A. Mohammadian Mosammam

Table 1: Estimated slopes of the linear trends of the average and variance of recalls.

Algorithm 1-MQ 3-MQ RMQ(2) RMQ(5)
Slope (Average) 0.6666654 0.3428574 0.2035475 0.1813382
Slope (Variance) 0.04441642 0.01922950 0.0709953 0.054628859

Histogram of standardized recalls for n=4000

1−MQ

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram of standardized recalls for n=4000

3−MQ

D
en

si
ty

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Histogram of standardized recalls for n=4000

RMQ(k random of 0,1,2,3,4,5)

D
en

si
ty

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram of standardized recalls for n=4000

RMQ(k random of 0,1,2)

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 3: Histogram for the distribution of number of recalls for n = 4000 and
1000 repeats in different sorting algorithms.

Recalls of Median Quicksort 373

5. Conclusion

Javanian and Roesler [10] have analyzed the correctly normalized number X(n, l)
of "comparisons" to sort the l smallest out of n elements in 2k+ 1-Median version
of Quicksort (2k+ 1-MQ). However, it has not been analyzed Y (n, l), the number
of "recalls" to sort the l smallest out of n elements in 2k + 1-MQ. The results of
this paper is for the special case l = n, i.e., the number of "recalls" to sort the n
elements in 2k+ 1-MQ. In order to study the limit behavior of Y (n, l) as n→∞,
for l = 0, 1, . . . , n, we can define(

Yn

(l
n

))
l

:=
(Y (n, l)− E(Y (n, l))√

n

)
l
.

Next, by extending the process Yn to the process Yn(t) := Yn
(dnte

n

)
on [0, 1], we

can guess that the process Yn converges weakly to a Brownian motion.

Conflicts of Interest. The authors declare that there are no conflicts of interest
regarding the publication of this article.

References

[1] C. J. Bell, An Investigation into the Principles of the Classification and Analy-
sis of Data of an Automatic Digital Computer, Ph.D. Thesis, Leeds University,
UK, 1965.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, 2nd Ed., MIT Press, USA, 2001.

[3] L. Devroye, Limit laws for local counters in random binary search trees, Ran-
dom Struct. Algor. 2 (1991) 303− 316.

[4] P. Hennequin, Analyse Enmoyenne D’algorithmes, Tri Rapide et Arbres de
Recherche, Ph.D. Thesis, École Polytechnique, Palaiseau, 1991.

[5] C. A. R. Hoare, Quicksort, Comput. J. 5 (1962) 10− 15.

[6] C. Holmgren and S. Janson, Limit laws for functions of fringe trees for binary
search trees and random recursive trees, Electron. J. Probab. 20 (4) (2015)
1− 51.

[7] V. Iliopoulos, A note on multipivot Quicksort, J. Info. Optim. Sci. 39 (2018)
1139− 1147.

[8] V. Iliopoulos, The Quicksort Algorithm and Related Topics, PhD Thesis, De-
partment of Mathematical Sciences, University of Essex, 2013.

374 M. Javanian and A. Mohammadian Mosammam

[9] D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting and
Searching, 2nd Ed., Addison-Wesley Publishing Company, Reading, MA,
USA, 1998.

[10] M. Javanian and U. Röesler, Median Quicksort process, Probab. Eng. Inf. Sci.
(2021) Submitted.

[11] H. M. Mahmoud, Sorting: A Distribution Theory, John Wiley & Sons, New
York, 2000.

[12] R. Neininger and L. Rüschendorf, On the contraction method with degenerate
limit equation, Ann. Probab. 32 (3B) (2004) 2838− 2856.

[13] R. Neininger, Refined Quicksort asymptotics, Random Struct. Algor. 46
(2015) 346− 361.

[14] H. M. Okasha and U. Röesler, Asymptotic distribution for random median
Quicksort, J. Discrete Algor. 5 (2007) 592− 608.

[15] S. Rachev and L. Rüschendorf, Probability metrics and recursive algorithms,
Adv. Appl. Probab. 27 (1995) 770− 799.

[16] S. Rachev, Probability Metrics and the Stability of Stochastic Models, John
Wiley & Sons, New York, 1991.

[17] U. Röesler, A limit theorem for “Quicksort”, RAIRO Théor. Inform Appl. 25
(1991) 85− 100.

[18] U. Röesler, On the analysis of stochastic divide and conquer algorithms, Al-
gorithmica 29 (12) (2001) 238− 261.

[19] U. Röesler and L. Rüschendorf, The contraction method for recursive algo-
rithms, Algorithmica 29 (2001) 3− 33.

[20] R. S. Scowen, Algorithm 271: Quickersort, Commun. ACM 8 (1965) 669−670.

[21] R. Sedgewick, Quicksort, Ph.D. Thesis, Garland Pub. Co., New York, 1980.

[22] R. C. Singleton, Algorithm 347: An efficient algorithm for sorting with mini-
mal storage, Commun. ACM 12 (3) (1969) 185− 186.

[23] K. H. Tan, An Asymptotic Analysis of the Number of Comparisons in Multi-
partition Quicksort, Ph.D. Thesis, Carnegie Mellon University, 1993.

[24] A. Walker and D. Wood, Locally balanced binary trees, Comput. J. 19 (1976)
322− 325.

[25] V. M. Zolotarev, Approximation of distributions of sums of independent ran-
dom variables with values in infinite-dimensional spaces, Theory Probab. Appl.
21 (4) (1976) 721− 737.

Recalls of Median Quicksort 375

Mehri Javanian
Department of Statistics,
University of Zanjan,
Zanjan, I. R. Iran
e-mail: javanian@znu.ac.ir

Ali Mohammadian Mosammam
Department of Statistics,
University of Zanjan,
Zanjan, I. R. Iran
e-mail: a.m.mosammam@znu.ac.ir

