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Abstract

Universal left congruences on semigroups were studied in “Y. Dandan, V.
Gould, T. Quinn-Gregson and R. Zenab, Semigroups with finitely generated
universal left congruence, Monat. Math. 190 (2019) 689−724”. We consider
universal congruences on acts over monoids and extend the results from
semigroups to acts. Among other things, for an S-act AS with zero over a
monoid S, we prove that being finitely generated of the universal congruence
ωA and being pseudofinite of AS coincide.
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1. Introduction
Finitary conditions of a class of algebras are of great significance to understand
the structure and behavior of semigroups, groups, rings and many other types
of algebras. Here we focus on two finitary conditions, which are the case where
being an S-act AS over a monoid S pseudofinite and the weaker condition that
the universal congruence ωA is finitely generated. Dandan et al. [1] investigated
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left universal congruences on semigroups. In this article, this concept is studied
for S-acts, particularly, those ones whose universal congruences are finitely gen-
erated. Also we find some relationships between finite generatedness of ωA and
pseudofiniteness of AS .

The results of this article are collected in Section 2. For an S-act AS , first
we give equivalent conditions under which ωA to be finitely generated, and also
for being pseudofinite. The equivalence of being finitely generated of AS , being
finitely generated of ωA and being pseudofinite of AS is proved in Theorem 2.7
where AS has a zero element.

Throughout the paper, S stands for a monoid. A (right) S-act AS , is a set A
with an S-action λ : A × S → A, denoting λ(a, s) := as, such that a(st) = (as)t
and a1 = a, for all a ∈ A and s, t ∈ S. In other words, an S-act, described above,
is a universal algebra (A, (λs)s∈S) where for each s ∈ S, λs : A → A is a unary
operation on AS such that λs ◦ λt = λst, and λ1 = idA.

For an S-act AS , a congruence ρ on AS is an equivalence relation on AS
with the additional property that, if aρa′ then (as)ρ(a′s) for a, a′ ∈ AS , s ∈ S.
The universal congruence A2 = A × A is denoted by ωA. Here ρ(H) for H ⊆
A×A denotes the congruence generated by H (i.e. the smallest congruence on AS
containing H). For any x, y ∈ H, xρ(H)y if and only if x = y or there is a sequence
x = p1s1, q1s1 = p2s2, q2s2 = p3s3, . . . , qnsn = y where for i = 1, . . . , n, (pi, qi) ∈
H ∪ H−1 and s1, s2, . . . , sn ∈ S. The above sequence is called an H-sequence of
length n. For more information and definitions concerning S-acts not mentioned
here, see [3].

2. Results

We begin with the following definition:

Definition 2.1. Let AS be an S-act with ωA being generated by a finite subset
H ⊆ A2. Then AS is called pseudofinite relative to H if there is n ∈ N such that
any a, b ∈ A are related with respect to an H-sequence of length at most n. Also
if AS is pseudofinite relative to X2 = X × X for X ⊆ A, then it is simply said
pseudofinite relative to X.

Clearly, if an S-act AS is pseudofinite relative to H, then ωA is finitely gener-
ated.

Theorem 2.2. A group S is finitely generated (as group) if and only if ωS is
finitely generated.

Proof. Let ωS be generated by a finite set H. So for each a ∈ S, (a, 1) ∈ ωS and
then a = 1 or there exists a sequence

a = p1s1, q1s1 = p2s2, q2s2 = p3s3, . . . , qnsn = 1,
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where for each 1 ≤ i ≤ n, (pi, qi) ∈ H ∪ H−1 and s1, s2, . . . , sn ∈ S. So a =
p1q
−1
1 p2q

−1
2 · · · pnq−1n which implies that the finite set {pq−1 | (p, q) ∈ H ∪H−1}

generates S. For the converse, let X = {p1, p2, . . . , pn} be a generating set for S
and a, b ∈ S. So from ab−1 = q1q2 · · · qk, in which for each 1 ≤ i ≤ k, qi ∈ X∪X−1,
we have the sequence

ab−1 = q1q2 · · · qk, 1(q2 · · · qk) = q2(q3 · · · qk), . . . , 1qk = qk1, 11 = 1,

and hence

a = q1(q2 · · · qkb), 1(q2 · · · qkb) = q2(q3 · · · qkb), . . . , 1(qkb) = qkb, 1b = b,

which gives that (a, b) ∈ ρ(X × {1}).

Let ρ1 and ρ2 be two congruences on an S-act AS . Then it is said that ρ2 is a
principal extension of ρ1 if ρ2 = ρ(ρ1 ∪ {(x, y)}) for some x, y ∈ A.

Lemma 2.3. For an S-act AS, the following are equivalent:

(i) ωA is finitely generated.

(ii) A finite chain ι = ϑ0 ⊂ ϑ1 ⊂ · · · ⊂ ϑn = ωA of congruences on AS exists in
such a way that for all 1 ≤ i ≤ n, each ϑi is a principal extension of ϑi−1.

(iii) ωA is generated by X2, for a finite subset X of AS.

(iv) There is a finite subset X of AS such that ωA = 〈{x} ×X〉, for any x ∈ X.

(v) For each u ∈ A, there is a finite subset X of AS with u ∈ X and ωA =
〈{u} ×X〉.

Proof. (i) ⇒ (ii) and (v) ⇒ (i) are clear.
(ii) ⇒ (iii) By (ii), ϑn = ωA = 〈{(a1, b1), . . . , (an, bn)}〉. Consider the set

X = {a1, . . . , an, b1, . . . , bn}, so {(a1, b1), . . . , (an, bn)} ⊆ X ×X and hence we get
ωA ⊆ ρ(X ×X) ⊆ ωA.

(iii) ⇒ (iv) Let a, b ∈ A and x ∈ X. By (iii), there exist s1, . . . , sn ∈ S and
(p1, q1), . . . , (pn, qn) ∈ X2 such that a = p1s1, q1s1 = p2s2, . . . , qnsn = b and hence

a = p1s1, xs1 = xs1, q1s1 = p2s2, xs2 = xs2, . . . , qnsn = b,

in which (pi, x) ∈ X × {x} and (x, qi) ∈ {x} ×X.
(iv) ⇒ (v) Consider X1 = X ∪ {u}. By (iv), for each a, b ∈ A, there exist

s1, . . . , sn ∈ S and (p1, q1), . . . , (pn, qn) ∈ ({x} × X) ∪ (X × {x}) such that a =
p1s1, q1s1 = p2s2, . . . , qnsn = b. So

a = p1s1, us1 = us1, q1s1 = p2s2, us2 = us2, . . . , qnsn = b,

in which (pi, u) ∈ X1 × {u} and (u, qi) ∈ {u} ×X1. Thus ωA = 〈{u} ×X1〉.
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Lemma 2.4. Let AS be an S-act and ωA = 〈H〉 = 〈K1〉 for some H,K1 ⊆ A2

where H is finite. Then there exists a finite subset K2 of K1 for which ωA = 〈K2〉.
Further, if AS is pseudofinite relative to H, then it is pseudofinite relative to K2.

Proof. For (a, b) ∈ H, there is a K1-sequence of length n := n(a, b) such as a =
p1t1, q1t1 = p2t2, . . . , qntn = b, where (pi, qi) ∈ K1 ∪ K−11 and ti ∈ S. For each
(a, b) ∈ H, consider

K(a,b) = {(p1, q1), . . . , (pn(a,b), qn(a,b)), (q1, p1), . . . , (qn(a,b), pn(a,b))} ∩K1.

So K(a,b) ⊆ K1, |K(a,b)| < ∞ and (a, b) ∈ 〈K(a,b)〉. Let K2 :=
⋃

(a,b)∈H K(a,b).

Since H is finite, K2 is a finite subset of K1 and hence H ⊆ 〈K2〉. So ωA = 〈H〉 ⊆
〈K2〉 ⊆ ωA. Moreover, let x, y ∈ A. Then there is an H-sequence

x = p1s1, q1s1 = p2s2, . . . , qmsm = y,

where (pi, qi) ∈ H ∪ H−1 and si ∈ S. Using the first part of the proof, for each
(pi, qi) ∈ H, there is a K2-sequence of the length n(p, q) such as

pi = ui1ti1, wi1ti1 = ui2ti2, . . . , win(pi,qi)tin(pi,qi) = qi,

where (uij , wij) ∈ K2 ∪ (K2)−1 and tij ∈ S. So one gets a K2-sequence of length
n(pi, qi) connecting pisi to qisi. Consider m′ = mmax{n(pi, qi) | (pi, qi) ∈ H}.
Thus there is a K2-sequence from x to y of length at most m′.

Lemma 2.5. Let AS be a non-singleton S-act such that ωA = 〈H〉 for some
H ⊆ A2. Let C(H) = {x | ∃y ∈ A, (x, y) ∈ H ∪H−1}. Then

(i) there exists X ⊆ A such that ωA = 〈X2〉.
(ii) AS = 〈C(H)〉.

Proof. (i) Since H ⊆ C(H)2, it is enough to consider X = C(H).
(ii) Let a ∈ A. Consider b ∈ A with a 6= b. Since aρ(H)b, there exist

p1, . . . , pn, q1, . . . , qn ∈ A and w1, . . . , wn ∈ S, where for 1 ≤ i ≤ n, (pi, qi) ∈
H ∪H−1 and

a = p1w1, q1w1 = p2w2, q2w2 = p3w3, . . . , qnwn = b.

Hence, a = xw for some w ∈ S and x ∈ C(H).

Proposition 2.6. Let A′ be a subact of an S-act AS. Then ωA is finitely generated
if and only if AS has a finite generator X with ωA′ = ρ(X2)|A′×A′ . Moreover, A
is pseudofinite if and only if there is a positive integer n for which there exists an
X2-sequence of length at most n from a to b, for each a, b ∈ A′.

Proof. Let ωA be generated by a finite set H. So X = C(H) is a finite set in which
X2 generates ωA by Lemma 2.5. Clearly, ωA′ = ρ(X2)|A′×A′ and it follows from
Lemma 2.5 that C(H) is a generating subset of AS . For the converse, consider
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some u ∈ A′ and Y = X ∪{u}. Then for any a ∈ A, there is x ∈ X with a = xt for
some t ∈ S which implies a = xtρ(Y 2)ut. From the hypothesis ωA′ = ρ(X2)|A′×A′

we get utρ(Y 2)u. Hence, aρ(Y 2)u, so that ωA = ρ(Y 2). Using Lemma 2.4, the
second assertion holds.

As a corollary of Proposition 2.6, we have the following:

Theorem 2.7. For an S-act A with zero, the following are equivalent:
(i) A is finitely generated.
(ii) ωA is finitely generated.
(iii) A is pseudofinite.

Proof. Clearly, {0} forms a subact of A, and hence (i) and (ii) are equivalent by
Proposition 2.6.

(i)⇒ (iii) Let X be a finite generating subset of AS and a, b ∈ A. So there
exist x1, x2 ∈ X and s1, s2 ∈ S such that a = x1s1, 0s1 = 0s2 and b = x2s2. This
implies that AS is pseudofinite relative to the finite set X × {0}.

(iii) ⇒ (ii) This is obvious.

Proposition 2.8. Let B be a homomorphic image of an S-act AS. If ωA is finitely
generated, then so is ωB. Moreover, if AS is pseudofinite, then so is B.

Proof. Suppose that ωA = ρ(X) for some finite subset X of A2 and ϕ : A→ B is
an epimorphism. For any b, b′ ∈ B, there exists a, a′ ∈ A such that ϕ(a) = b and
ϕ(a′) = b′. Since aρ(X)a′, one gets a = a′ or there exists a sequence

a = p1w1, q1w1 = p2w2, . . . , qnwn = a′,

where wi ∈ S and (pi, qi) ∈ X ∪X−1 for all 1 ≤ i ≤ n. So

b = ϕ(a) = ϕ(p1)w1, ϕ(q1)w1 = ϕ(p2)w2, . . . , ϕ(qn)wn = ϕ(a′) = b′,

which means that ωB = ρ(ϕ(X)) where ϕ(X) = {(ϕ(a), ϕ(a′)) | (a, a′) ∈ X}.
Clearly, if A is pseudofinite relative to X, then B is pseudofinite relative to ϕ(X).

Corollary 2.9. Let A and B be S-acts. If ωA×B is finitely generated (pseudofinite),
then both ωA and ωB are finitely generated (pseudofinite).

Proof. It follows from Proposition 2.8 by applying the projection morphisms.

Now let A be an S-act and B be a T -act. Then A×B is an S × T -act by the
action

µ : (A×B)× (S × T ) −→ A×B
µ((a, b), (s, t)) = (as, bt).
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Proposition 2.10. Let A be an S-act and B be a T -act. If ωA and ωB are finitely
generated (pseudofinite), then ωA×B is finitely generated (A×B is a pseudofinite
S × T -act).

Proof. Let ωA = ρ(X2) and ωB = ρ(Y 2) for some finite subsetsX ⊆ A and Y ⊆ B,
respectively. For any (a, b), (a′, b′) ∈ A × B we have a = a′ or a = p1w1, q1w1 =
p2w2, . . . , qmwm = a′ where m ∈ N, wi ∈ S and (pi, qi) ∈ X2 for all 1 ≤ i ≤ m,
and b = b′ or b = p′1w

′
1, q
′
1w
′
1 = p′2w

′
2, . . . , q

′
nw
′
n = b′ where n ∈ N0, w′i ∈ S and

(p′i, q
′
i) ∈ Y 2 for all 1 ≤ i ≤ n. If n ≥ m, consider wm+1 = wm+2 = · · · = wn = wm

and pm+1 = pm+2 = · · · = pn = qm and qm+1 = qm+2 = · · · = qn = qm. Then

(a, a′) = (p1w1, p
′
1w
′
1), (q1w1, q

′
1w
′
1) = (p2w2, p

′
2w
′
2), . . . , (qnwn, q

′
nw
′
n) = (b, b′),

so that

(a, a′) = (p1, p
′
1)(w1, w

′
1), (q1, q

′
1)(w1, w

′
1) = (p2, p

′
2)(w2, w

′
2), . . . ,

(qn, q
′
n)(wn, w

′
n) = (b, b′).

A similar argument holds for the case n < m. Thus ωA×B = ρ(X × Y )2. The
statement on pseudofinite also holds, for, max{m,n} is no less than the length of
the (X × Y )2-sequence.

Suppose that K and L are non-empty sets and P is a matrix of order |K|× |L|
with entries pij taken from a semigroup S. The Rees matrix semigroup S̄ =
N [S;K,L;P ] is the set (K × S × L) with the binary operation (i, s, j)(k, t, l) =
(i, spjkt, l). Now for an S-act A, the set A = K ×A× L is an S̄-act by the action
(i, a, j)(k, s, l) = (i, apjks, l) and we call it the Rees matrix induced action. Under
these notations, we have the following:

Theorem 2.11. ωA is finitely generated if and only if K and L are finite and
there exists a finite set V ⊆ A such that for each a ∈ A there is v ∈ V such that
aρ(H)v in which

H = {(apjµ, bpji) | j ∈ L, i, µ ∈ K, a, b ∈ V }.

Proof. Let ωA be finitely generated. Using Lemma 2.3, suppose that ωA = 〈U2〉
where U ⊆ A is finite and the projection images K ′ = πI(U), L′ = πJ(U) and
V = πA(U) are finite subsets of K,A and L, respectively. If A is finite, then
one can take A = U and V = A and the result is complete. Otherwise, consider
(i, a, j), (t, b, z) ∈ A be distinct. Then we have the chain

(i, a, j) = (i1, a1, j1)(α1, s1, β1), (t1, b1, z1)(α1, s1, β1) = (i2, a2, j2)(α2, s2, β2), . . . ,

(tn, bn, zn)(αn, sn, βn) = (t, b, z),

where n ∈ N and wi = (αi, si, βi) ∈ S̄ and ((ik, ak, jk), (tk, bk, zk)) ∈ U2 for all
1 ≤ k ≤ n. Clearly, i = i1 ∈ K ′, so that K ⊆ K ′ and hence K = K ′ is finite.
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Also if L is infinite, then one can consider distinct elements j and z of L\L′. Then
we have j = β1, β1 = β2, . . . , βn = z, and so j = z, which is impossible. Hence,
L is finite. On the other hand, consider i = t, j = z and b ∈ V . Then there
exists an H-sequence from an arbitrary a ∈ A to an element b′ ∈ V . Indeed, for
each 1 ≤ k ≤ n,, if wk ∈ S̄, so b = b′, or the index k be a least with wk = 1,
aρ(H)ak = b′ ∈ V.

Conversely, let W = {a ∈ A | (a, b) ∈ H for some b ∈ A}. We show that
ωA = 〈R2〉 where R = K×(V ∪W )×L, which is finite. Let (i, a, j), (i′, a′, j′) ∈ A.
Since for each x, y ∈ R, (x, y) ∈ R2, it suffices to show that each element of A is
R2-related to an element of R. If (i, a, j) ∈ R, then we are done and otherwise,
the element a is connected to b ∈ V via an H-sequence

a = a1w1, b1w1 = a2w2, . . . , bnwn = b.

Consider the notation as (al, bl) = (ulpµljl , vlpiljl) ∈ H for all 1 ≤ l ≤ n. If each
wl belongs to S̄, then there is an R2-sequence

(i, a, j) = (i, u1, j1)(µ1, t1, j), (i, v1, j1)(µ1, t1, j) = (i, u2, j2)(µ2, t2, j), . . . ,

(i, vn, jn)(µn, tn, j) = (i, b, j),

where (ui, vi) ∈ V 2 and ti ∈ S1.
Also, if there is 1 ≤ k ≤ n with wk = 1, there exists an R2-sequence

(i, a, j) = (i, u1, j1)(µ1, t1, j), (i, v1, j1)(µ1, t1, j) = (i, u2, j2)(µ2, t2, j), . . . ,

(i, vk−1, jk−1)(µk−1, tk−1, j) = (i, uk, j),

in which uk ∈ W . In both cases, (i, a, j) is R2-related to an element of R. Sim-
ilarly, (i′, a′, j′) is also R2-related to an element of R, which the proof is com-
plete.
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