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Dominating Set for Bipartite Graph Γ(v, k, l, 2)
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Abstract

A bipartite graph (X,Y ) in which X and Y are, respectively, the set of
all l-subsets and all k-subsets of a v-set V as vertices and two vertices being
adjacent if they have i elements in common, is denoted by Γ(v, k, l, i). In
this paper, using the structure of Steiner triple systems, we give dominating
sets for Γ(v, k, l, 2), where 4 ≤ k ≤ 6 and 3 ≤ l ≤ 5.
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1. Introduction
Let t, k, v and λ be positive integers such that 0 ≤ t ≤ k ≤ v. Moreover, let V
be a v-set and for a positive integer i let Pi(V ) be the set of all i-subsets of V .
The pair D = (V, β), where β is a subset of Pk(V ) (blocks) is called a t− (v, k, λ)
design such that every t-subset of V appears in exactly λ blocks [1]. The number
of blocks of D is denoted by b. A 2−(v, 3, 1) design is called a Steiner triple system
and is denoted by STS(v) [1]. Note that:

Theorem 1.1. [1] An STS(v) exists if and only if v
6≡ 1 or 3.

A modified Steiner triple system on V denoted by MSTS(v) is a proper subset of
P3(V ) such that each pair of elements of V occurs exactly once except for pairs
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(1, 2), (2, 3), · · · , (v − 2, v − 1), (v − 1, 1), which do not occur at all and we have
|MSTS(v)| = (v−1)(v−2)

6 . A graph is a pair G = (V,E), where E ⊆ P2(V ) in
which V and E, respectively, are called the vertex and edge set of G. Two vertices
u and v are adjacent if {u, v} ∈ E. We use the classic terminology given in [2]. A
dominating set for a graph G is a subset S ⊆ V (G) such that every vertex of G
either is in S or is adjacent to at least one element of S. The domination number
of G, is the minimum size of a dominating set for G and is denoted by γ(G)[2].

Theorem 1.2. [2] Let G be an n-vertex graph with minimum degree δ, then

γ(G) ≤ n(1 + ln(δ + 1))

δ + 1
.

Let v, k, l (k 6= l) be positive integers, i be a non-negative integer, v ≥ k, l and
k, l ≥ i. Define the bipartite graph Γ(v, k, l, i)[3] by V (Γ(v, k, l, i)) = Pk(V )∪Pl(V )
such that

{u,w} ∈ E(Γ(v, k, l, i))⇔ |u ∩ w| = i, u ∈ Pk(V ), w ∈ Pl(V ).

In this paper, using the structure of Steiner triple systems, we give dominating
sets for Γ(v, k, l, 2), where 4 ≤ k ≤ 6 and 3 ≤ l ≤ 5.

2. Results
Let v, k, l be positive integers. Then in bipartite graph G = Γ(v, k, l, 2) we consider
X = Pl(V ), Y = Pk(V ) and Ci = {a2i−1, a2i}, where V = {a1, a2, · · · , av} is the
assumed v-set. In general, our method is that first we give a subset of X which is
a dominating set for Y and we give a subset of Y which is a dominating set for X.
Then clearly the union of these sets is a dominating set for G. First note that:

Theorem 2.1. Let G = Γ(v, 4, 3, 2) and v ≥ 12. If v = 12m+ i, where 0 ≤ i ≤ 11,
then γ(G) ≤ 42m2 + 65m+ 25.

Proof. We separate the proof in two cases:

Case i. Let v be an odd integer.
1) If v

6≡ 1 or 5, then any MSTS(v) ⊂ X is a dominating set for Y , since any
vertex in Y such as B = {a1, a2, a3, a4} contains at least one non-consecutive pair,
therefore B is dominated by a block of MSTS(v).
2) If v

6≡ 3, then any STS(v) is a dominating set for Y, since any vertex in Y such
as B = {a1, a2, a3, a4} is dominated by a block of STS(v) containing exactly two
points in common with B. This dominating set is of size 24m2 + 38m+ 15.

Now we give a subset of Y as a dominating set for X. Let C = {C1, C2, · · · , C v−1
2
}.

Then the set P2(C) ⊂ Y is a dominating set for X of size 18m2 +27m+10. Hence
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the cardinality of a dominating set for G is (24m2+38m+15)+(18m2+27m+10) =
42m2 + 65m+ 25. In this case γ(G) ≤ 42m2 + 65m+ 25.

Case ii. Let v be an even integer. Let V
′

= V ∪ {x}, where x 6∈ V . Similar
to the Case i on V

′
we may consider either STS(v + 1) or MSTS(v + 1) and

then remove the blocks containing x. The remaining blocks dominate Y . Then
we give a subset of Y as the dominating set for X. Let C = {C1, C2, · · · , Cj}
and C

′
= {Cj+1, · · · , C v

2
}, where we consider j = v

4 if v
4≡ 0, else we consider

j = v−2
4 . The set P2(C) ∪ P2(C

′
) is a dominating set for X and its cardinality is

33m2 + 50m+ 19.

Theorem 2.2. Let G = Γ(v, 5, 3, 2) and v ≥ 11. If v = 12m+i, where 0 ≤ i ≤ 11,
then

γ(G) ≤ 48m2 + 64m+ 26.

Proof. Suppose that A and B be two subsets of V such that V = A∪B, |A∩B| = 0

or 1, |A| 6≡ 1 or 3 and |B| 6≡ 1 or 3. We may choose these two sets in a lot
of ways by considering v(mod 12). By Theorem 1.1 there exist STS(|A|) and
STS(|B|) and the set of all blocks of these designs is a dominating set for Y of
size 12m2 + 22m+ 13. Note that the maximum size of this dominating set occurs
when v = 12m+ 11 = (6m+ 3) + (6m+ 9) + (−1) and so A and B have a common
element. To give a dominating set for X, we may consider two cases:

Case i. Let v be an odd integer. Let C = {C1, C2, · · · , C v−3
2
}. We add av−1 to all

elements of P2(C) to get a set of five tuples over V . We do the same procedure with
av−2 to get a similar set of five tuples. Now by adding {a1, a2, a3, av−2, av−1} to the
union of these two later sets we have a dominating set forX of size 36m2+42m+13.

Case ii. Let v be an even integer. Let C = {C1, C2, · · · , C v−2
2
}. We add av to all

elements of P2(C) to get a set of five tuples over V . We do the same procedure
with av−1 to get a similar set of five tuples. The union of these two later sets is a
dominating set for X of size 36m2 + 42m+ 12.

Theorem 2.3. Let G = Γ(v, 6, 3, 2) and v ≥ 9. If v = 6m + i, where 0 ≤ i ≤ 5,
then

γ(G) ≤ 21m2 + 19m+ 6

2
.

Proof. Let v be an odd integer. If v
6≡ 1 or 5, then MSTS(v) is a dominating

set for Y and if v
6≡ 3 then STS(v) is a dominating set for Y . If v is an even

integer, consider V ′ = V −{av}, then |V ′| is an odd integer and as above we have
a dominating set for Y . This dominating set for Y is of size 6m2+7m+2. Now we
give a subset of Y as a dominating set of X. If v is even let C = {C2, C3, · · · , C v

2
}.

Then we add C1 to all elements of P2(C) to get a set of six tuples over V . The
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union of this set with A = {C2C3C4, C5C6C7, · · · } is a dominating set for X.
Note that if |C| is not a multiple of 3, then the last triple in A, in the above
arrangement, may build with any other one or any two other elements of C. If
v is an odd integer, let V ′ = V − {av} then |V ′| is even and as above we have a
dominating set for X which is of size 21m2+19m+6

2 .

Theorem 2.4. Let G = Γ(v, 5, 4, 2) and v ≥ 32. If v = 24m+i, where 0 ≤ i ≤ 23,
then

γ(G) ≤ 162m2 + 255m+ 102.

Proof. We consider two cases:

Case i. Let v be an odd integer. Let C = {C1, C2, · · · , C v−1
2
}. We add av to all

elements of P2(C) to get a set of five tuples over V . This set is a dominating set for
X. Now we give a dominating set for Y . Consider the set C as above and partition it
into three subsets as A1, A2 and A3 such that one of the following conditions hold:

1) If v−1
2

3≡ 0, we may consider |A1| = |A2| = |A3|.

2) If v−1
2

3≡ 1, we may consider |A1| = |A2| = |A3| − 1.

3) If v−1
2

3≡ 2, we may consider |A1| = |A2| − 1 = |A3| − 1.

The set
⋃3

i=1 P2(Ai) is a dominating set for Y . The union of these dominating
sets for X and Y is a dominating set for G of size 96m2 + 164m+ 70.

Case ii. Let v be an even integer. Let C = {C1, C2, · · · , C v−2
2
}. We add av to all

elements of P2(C) to get a set of five tuples over V . We do the same procedure
with av−1 to get a similar set of five tuples. The union of these two later sets
and {{a1, a2, av−2, av−1, av}, {a3, a4, av−4, av−1, av}} give a dominating set for X.
Now we give a dominating set for Y . Let C

′
= C ∪{C v

2
}. We partition the set C

′

into four subsets as A1, A2, A3 and A4 such that:

1) If v
2

4≡ 0, we may consider |A1| = |A2| = |A3| = |A4|,

2) If v
2

4≡ 1, we may consider |A1| = |A2| = |A3| = |A4| − 1,

3) If v
2

4≡ 2, we may consider |A1| = |A2| = |A3| − 1 = |A4| − 1,

4) If v
2

4≡ 3, we may consider |A1| = |A2| − 1 = |A3| − 1 = |A4| − 1.

The set
⋃4

i=1 P2(Ai) is a dominating set for Y . The union of these dominating
sets for X and Y is a dominating set for G of size 162m2 + 255m+ 102.

Theorem 2.5. Let G = Γ(v, 6, 4, 2) and v ≥ 41. If v = 8m + i, where i is odd
and 1 ≤ i ≤ 7, then

γ(G) ≤ 6m2 +m+ 4.
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Proof. Since v is an odd integer we may consider C = {C1, C2, · · · , C v−1
2
} and

partition it into four subsets as A1, A2, A3 and A4 such that max |(|Ai|−|Aj |)| 6 1,
where 1 ≤ i, j ≤ 4. The set

⋃4
i=1 P2(Ai) is a dominating set for Y . Then we give

a dominating set for X. Let C
′

= C −{C v−1
2
} and partition it into two subsets as

A1 and A2 such that either |A1| = |A2| or |A1| = |A2| − 1. We add two elements
av−1 and av to all blocks of

⋃2
i=1 P2(Ai). The union of this set and the following

set is a dominating set for X:
{{av, av−2, a1, a2, a3, a4}, {av−1, av−2, a1, a2, a3, a4}, {av, av−2, a5, a6, a7, a8},
{av−1, av−2, a5, a6, a7, a8}}.

Theorem 2.6. Let G = Γ(v, 6, 4, 2) and v ≥ 41. If v = 30m + i, where i is even
and 1 ≤ i ≤ 29, then

γ(G) ≤ 60m2 + 92m+ 35.

Proof. Since v is an even integer we may consider C = {C1, C2, · · · , C v
2
} and

partition it into five subsets as A1, A2, A3, A4 and A5, such that max |(|Ai| −
|Aj |)| 6 1, where 1 ≤ i, j ≤ 5. The set

⋃5
i=1 P2(Ai) is a dominating set for Y .

Then we give a dominating set for X. We partition the set C \ {C v
2
} into three

subsets as A1, A2 and A3 such that max |(|Ai| − |Aj |)| 6 1, where 1 ≤ i, j ≤ 3.
We add two elements av−1 and av to all elements of

⋃3
i=1 P2(Ai). This set is a

dominating set for X.

Theorem 2.7. Let G = Γ(v, 6, 5, 2) and v ≥ 41. If v = 30m+ i, 1 ≤ i ≤ 29, then

γ(G) ≤ 12m2 + 14m+ 9.

Proof. We consider two cases:

Case i.
Let v be an odd integer. Let C = {C1, C2, · · · , C v−1

2
} and partition it into three

subsets as A1, A2 and A3 such that max |(|Ai|− |Aj |)| 6 1, where 1 ≤ i, j ≤ 3. We
add av to all elements of P2(Ai) for 1 ≤ i ≤ 3. This set is a dominating set for Y .
As shown in the following, we present a dominating set for X:

1) If v
12≡ 1, 5, we add a point as x to V and consider C v+1

2
= {av, x}. Let

C = {C1, C2, · · · , C v−1
2
, C v+1

2
}. Since v+1

2

6≡ 1 or 3, consider an STS on C and
remove the blocks containing C v+1

2
. The set of remaining blocks is a dominating

set for X.

2) If v
12≡ 3, 7, 11, let C = {C1, C2, · · · , C v−1

2
}. If v−1

2

6≡ 3, consider an STS on

C and if v−1
2

6≡ 1, 5, consider an MSTS on C. In either case we have a dominating
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set for X.

3) If v
12≡ 9, let C = {C1, C2, · · · , C v−3

2
}. Since v−3

2

6≡ 3, we may consider an
STS on C. The union of all blocks of this STS and the following set is a dominating
set for X:

{{a1, a2, a3, av−2, av−1, av}, {a5, a6, a7, av−2, av−1, av},

{a9, a10, a11, av−2, av−1, av}, {a13, a14, a15, av−2, av−1, av}}.
To sum up, we have a dominating set for G of size 12m2 + 14m+ 4.

Case ii. Let v be an even integer. Consider C = {C1, C2, · · · , C v−2
2
} and

partition it into three subsets A1, A2 and A3, such that max |(|Ai| − |Aj |)| 6 1
for 1 ≤ i, j ≤ 3. Let A1 = {C1, C2, C3, · · · }, A2 = {Cl, Cl+1, Cl+2, · · · } and
A3 = {Cs, Cs+1, Cs+2, · · · }.

We add av to all elements of
⋃3

i=1 P2(Ai). The union of this set and the
following set gives a dominating set for Y :

{{a1, a2, a3, av−1, av}, {a5, a6, a7, av−1, av}, {a2l, a2l+1, a2l+2, av−1, av},

{a2l+5, a2l+6, a2l+7, av−1, av}, {a2s+1, a2s+2, a2s+3, av−1, av}}.
In the following we present a dominating set for X:
1) If v

12≡ 0, 4, we add two points as x and y to V and consider C v+2
2

= {x, y}. Let

C = {C1, C2, · · · , C v+2
2
}. Since that v+2

2

6≡ 1, 3, we may consider an STS on C and
remove the blocks containing C v+2

2
. The set of remaining blocks is a dominating

set for X.
2) If v

12≡ 2, 10, let C = {C1, C2, · · · , C v
2
}. Since v

2

6≡ 1, 5, we may consider an
MSTS on C. This set is a dominating set for X .
3) If v

12≡ 6, let C = {C1, C2, · · · , C v
2
}. Given that v

2

6≡ 3, we can conclude that
the set of all blocks in an STS on C forms a dominating set for X.
4) If v

12≡ 8, let C = {C1, C2, · · · , C v−2
2
}. Since v−2

2

6≡ 3, then an STS on C is a
dominating set for X.
In conclusion, we have determined a dominating set for G with a size of 12m2 +
14m+ 9.

We should note that the bounds given in this paper for γ(G) are sharper than the
bound given in Theorem 1.2.
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