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Abstract

Pseudo o-minimality is a generalization of o-minimality of linear orders
to partial orders. Recently Lei Chen, Niandong Shi and Guohua Wu pro-
vided pseudo o-minimality for the class of Stone algebras. In this note we use
the quantifier elimination property to show that the class of double Stone
algebras is pseudo o-minimal in their expanded language.
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1. Introduction
The o-minimal linear ordered structures, introduced by Van Den Dries in [1], have
been extensively studied in the last four decades, see [2, 3] for more details and
major results. In [4], Toffalori generalized the notion of o-minimality to partially
ordered structures and classified o-minimal Boolean algebras. Then Chen, Shi
and Wu using this generalization, introduced the notion of pseudo o-minimality
in Stone algebras [5]. They investigated definable sets in Stone algebras using
Schmitt’s results in [6]. In fact, Schmitt obtained the model completion theory
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STA∗ of the theory of Stone algebras, STA. He also showed that STA∗ is sub-
structure complete which follows that it has the quantifier elimination property.
For definitions and proofs, see [6]. The quantifier elimination property of STA∗

implies that STA∗ is pseudo o-minimal. In this paper, we first show that the the-
ory of double Stone algebras admits quantifier elimination. Then, we investigate
the definable sets in double Stone algebras, and examine the o-minimality feature
and some other model theoretic features for double Stone algebras. We prove that
the theory of double Stone algebras is pseudo o-minimal.

2. Preliminaries

For convenience, we recall some definitions from the literature that we need to use
here.

A partially ordered set (P,≤) is said to be a lattice if every subset {a, b} of P
has a least upper bound (which is denoted by a ∨ b and called the join of a and
b) and a greatest lower bound (which is denoted by a ∧ b and called the meet of
a and b) in P . It is said to be bounded if there exist two elements 0 and 1 in
P such that 0 ≤ a ≤ 1 for every a ∈ P . Note that for every a, b ∈ P , a ≤ b if
and only if a ∧ b = a, if and only if a ∨ b = b. The class of bounded distributive
lattices can be axiomatized by the axioms stating boundedness (∀a, 0 ≤ a ≤ 1),
absorption laws (∀a∀b, a ∧ (a ∨ b) = a and ∀a∀b, a ∨ (a ∧ b) = a) in addition to
associativity, commutativity, and distributivity laws of operations ∧ and ∨ in the
first order language {∧,∨, 0, 1}.

Let L be a bounded lattice with 0 and 1 as the least and greatest elements,
respectively. Then, L is said to be pseudo complemented if for every element
u ∈ L, the set {v ∈ L|u ∧ v = 0} has a maximum, say u∗, as pseudo complement
of u. A Stone algebra is a pseudo complemented distributive lattice S that holds
u∗ ∨ u∗∗ = 1 for every u ∈ S.

The order-minimal (abbreviated as o-minimal) structures are expansions of
ordered structures whose unary definable sets are definable with quantifier-free
formulas involving only the order relation. Our aim is to prove o-minimality or
some fragments of it for some subclasses of the class of Stone algebras. So we give
the definitions of algebras as first order structures in their appropriate languages.

Definition 2.1. A first order structure S∗ = (S,∧,∨, ∗, 0, 1. ≤) is called a Stone
algebra if (S,∧,∨, 0, 1) is a bounded distributive lattice and the operation ∗ of
pseudo complementation satisfies:

• ∀a (a ∧ a∗ = 0),

• ∀a ∀b (a ∧ b = 0→ b ≤ a∗),

• ∀a (a∗ ∨ a∗∗ = 1).
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Similarly, a first order structure S+ = (S,∧,∨,+, 0, 1,≤) is called a dual Stone
algebra if (S,∧,∨, 0, 1) is a bounded distributive lattice and the operation + of
dual pseudo complementation satisfies the axioms:

• ∀a (a ∨ a+ = 1),

• ∀a ∀b (a ∨ b = 1→ a+ ≤ b),

• ∀a (a+ ∧ a++ = 0).

Now by combining the above definitions, we have the definition of double Stone
algebra in the language L = {∧,∨, ∗,+, 0, 1,≤}. A first order structure S =
(S,∧,∨, ∗,+, 0, 1,≤) is called a double Stone algebra if (S,∧,∨, ∗, 0, 1,≤) is a
Stone algebra and (S,∧,∨,+, 0, 1,≤) is a dual Stone algebra.

Two important structures are defined in a Stone algebra S = (S,∧,∨, ∗, 0, 1);
the skeleton Sk(S) = {a∗|a ∈ S} = {a ∈ S|a = a∗∗} of S is a Boolean subalgebra
of S, and the dense set D(S) = {a ∈ S|a∗ = 0} which is a sublattice of S and a
filter of S. The structures Sk(S) andD(S) together with the structure morphism σ
from Sk(S) into the lattice of filters of D(S) defined by σ(a) = {d ∈ D(S)| a∗ ≤ d}
for every a ∈ Sk(S), determines S upto isomorphism. For details, see [6].

Note that in the double Stone algebra S, the Stone algebra and its dual have
the same lattice structures.

Example 2.2.

1) Every Boolean algebra B = (B,∨,∧,′ , 0, 1) is a double Stone algebra. Both
of pseudocomplement and dual pseudocomplement operations ∗,+ are the
complement operation ′.

2) Every bounded chain C (a linearly ordered set with the least and greatest
elements) is a double Stone algebra. For x ∈ C, if x 6= 0, 1 then x∗ = 0 and
x+ = 1.

3) Given a Boolean algebra B = (B,∨,∧,′ , 0, 1), Moisil in [7] introduced n-
valued Lukasiewicz-Moisil algebra B[n] = {(b1, ...bn) ∈ Bn|b1 ≤ b2 ≤ ... ≤
bn}, where

(a1, ..., an) ∨ (b1, ..., bn) = (a1 ∨ b1, ..., an ∨ bn),
(a1, ..., an) ∧ (b1, ..., bn) = (a1 ∧ b1, ..., an ∧ bn),

(b1, ..., bn)
∗ = (b

′

n, ..., b
′

n),
(b1, ..., bn)

+ = (b
′

1, ..., b
′

1).

Also, the least element is (0, ..., 0), and the greatest element is (1, ..., 1).

It is easy to see that all the structures above are double Stone algebras. By the
following fact, we can construct many other examples. It is also worth mentioning
that every double Stone algebra can be embedded in a power of four elements
Boolean algebra, see [8].
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Fact 2.3. Let S1, ...,Sn are double Stone algebras. Then their product S1× ...×Sn
is a double Stone algebra, where the operations of the product are defined as the
following:

(u1, ..., un) ∨ (v1, ..., vn) = (u1 ∨ v1, ..., un ∨ vn),
(u1, ..., un) ∧ (v1, ..., vn) = (u1 ∧ v1, ..., un ∧ vn),

(u1, ..., un)
∗ = (u∗1, ..., u

∗
n),

(v1, ..., vn)
+ = (v+1 , ..., v

+
n ).

Proof. It is straightforward.

The following properties are immediately obtained from Definition 2.1. The
proofs are straightforward and similar to those for Stone algebras exist in the
literature, e.g. see ([9], chapter 7).

Lemma 2.4. The following properties are satisfied for every elements u and v in
a Stone algebra S:

i) u ≤ u∗∗, u ≤ v → v∗ ≤ u∗, u = v → u∗ = v∗,
u++ ≤ u, u ≤ v → v+ ≤ u+, u = v → u+ = v+.

ii) (u ∨ v)∗ = u∗ ∧ v∗, (u ∧ v)∗ = u∗ ∨ v∗,
(u ∨ v)+ = u+ ∧ v+, (u ∧ v)+ = u+ ∨ v+.

iii) u∗∗∗ = u∗,
u+++ = u+.

iv) 0∗ = 1, 1∗ = 0,
0+ = 1, 1+ = 0.

v) (u ∨ v)∗∗ = u∗∗ ∨ v∗∗, (u ∧ v)∗∗ = u∗∗ ∧ v∗∗,
(u ∨ v)++ = u++ ∨ v++, (u ∧ v)++ = u++ ∧ v++.

Lemma 2.5. For any u ∈ S:

i) u++ ≤ u∗∗,

ii) u+∗ = u++,

iii) u∗+ = u∗∗,

iv) u∗ ≤ u+.

Proof. i) By Lemma 2.4, u++ ≤ u and u ≤ u∗∗; thus u++ ≤ u∗∗.
ii) For every u ∈ S, u+ ∈ Sk(S). Since Sk(S) is a Boolean algebra, we have

u+ ∨ u+∗ = u+ ∨ u++ = 1 and u+ ∧ u+∗ = u+ ∧ u++ = 0. Then u+∗ = u++ by
uniqueness of complementation in Sk(S).

iii) It is similar to (ii).
iv) From Lemma 2.4, we have u++ ≤ u. So u∗ ≤ u++∗. On the other hand

u++∗ = u+++ = u+ by (ii). Thus, u∗ ≤ u+.
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Let S be a double Stone algebra. Let

Sk∗(S) = {u∗|u ∈ S} = {u ∈ S|u = u∗∗} and
Sk+(S) = {u+|u ∈ S} = {u ∈ S|u = u++}.

These subalgebras of S are Boolean algebras and by Lemma 2.5, Sk∗(S) = Sk+(S).
The Boolean algebra Sk(S) := Sk∗(S) is named the skeletone of the Stone algebra
S. It plays an essential role in the study of double Stone algebras. Also two others
sets are defined in the structure S: a dense set of S, D∗(S) = {u ∈ S|u∗ = 0} which
is a filter of S, and a dual dense set of S, D+(S) = {u ∈ S|u+ = 1} which is an ideal
of S. The set DD(S) = {u ∈ S|u∗ = 0, u+ = 1} is called the doubly dense set of S.
DD(S) is nonempty and forms a relatively complemented sublattice of S. Using
the above lemmas, one can easily show that every element u ∈ S can be written as
the meet of an element of Sk(S) and an element ofD∗(S), namely u = u∗∗∧(u∨u∗);
moreover, u ∈ S is the joint of u++ ∈ Sk(S) and (u ∧ u+) ∈ D+(S).

3. Quantifier elimination

In this section, we show that the theory of double Stone algebras admits the quan-
tifier elimination property. This model theoretic property helps us to characterize
the definable sets in models of the theory of double Stone algebras.

Definition 3.1.

i) Let T be a theory in a first-order language L. Then T is said to have the
quantifier elimination property if for every formula φ in L, there exists a
quantifier-free formula ψ in L which is equivalent to φ under T.

ii) Let K be an elementary class, i.e., K is the class of all models of a fixed
first-order theory. For example the class of Stone algebras, as well as, the
class of double Stone algebras are elementary classes in their languages. An
elementary classK is said to have quantifier elimination property if its theory
admits the quantifier elimination property.

iii) The theory T is said to have the amalgamation property if for any models
K, L, M of T and elementary embeddings i : K → L and j : K → M, there
is a model N of T and embeddings f : L → N and g : M → N such that
f ◦ i = g ◦ j.

iv) The theory T is said to be model-complete if every embedding between two
models of T is elementary. It is easy to see that if T has quantifier elimination
property then it is model-complete. The theory T ′ is the model-completion
of T if T ′ is model-complete, every model of T can be extended to a model
of T ′, and every model of T ′ can be extended to a model of T .
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v) A model M of a theory T is said to be existentially closed if it satisfies every
existential formula which is satisfied in a model N of T that is an extension
of M.

Peter H. Schmitt in [6] determined the model completion STA∗ of the theory
of Stone algebras, STA. Then, he showed that STA∗ has quantifier elimination
property. Lei Chen, Niandong Shi and Guohua Wu used this result to show that
models of STA∗ and so all Stone algebras are pseudo o-minimal.

Davey in [10] used duality theory and checked it on bounded distributive lattice
ordered algebras and showed that every double Stone algebra is a Hom-set endowed
with a Boolean topology and the continuous action of the endomorphism monoid
of an appropriate algebra:

• Suppose A = ISP (A) is the class of intended algebras and B ∈ A. In this
case the Hom-set A(B,A) (the set of all morphisms from B to A for some
given algebra A of the class A) is a Boolean space (regarded as subspace of
AB). Denote the dual of algebra B by B∗ = A(B,A).

• B∗ is an object of category Z of partially ordered Boolean spaces whose
End(A) (the monoid A(A,A) of endomorphisms of A) act continuously on
it.

• Therefore the functor D : A→ Z with D(B) = B∗ = A(B,A) is obtained.

• Then by defining Z-structure on A, the Hom-set Z(B∗, A) is called B∗∗

and we have ηB : B → B∗∗ = Z(A(B,A), A) as an isomorphism between
bounded distributive lattice ordered algebras B and the Hom-set endowed
with a Boolean topology and the continuous action of its endomorphism
monoid B∗∗ = D(B∗).

• Then the functor E : Z → A with E(φ)µ = µφ maps each boolean space X
in Z to an algebra in A, i.e E(X) ∈ A.

Theorem 3.2. (Clarc and Krauss [11]) (D,E) is a full duality between ISP (S)
and IScP (S).

Davey also proved that the class of double Stone algebras is an equational
class whose members are given by ISP4 where 4 = ({0, a, b, 1},∧,∨, ∗,+, 0, 1) is
4-chain. If S = E(X) is a double Stone algebra, then:

Sk(S) = {σ ∈ S|σ∗∗ = σ} = {σ ∈ S|σ−1{a, b} = ∅},

is the skeleton of S, and

DD(S) = {δ ∈ S|δ∗ = 0 and δ+ = 0} = {δ ∈ S|δ−1{0, 1} = ∅},

is the sublattice of doubly dense elements of S.
The following two theorems provides the tools to continue.
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Theorem 3.3. (Hodges, 1993[12]) Let L be a first-order language and T a theory
in L. The following are equivalent.

i) T has the quantifier elimination property.

ii) T is model-complete and T∀ has the amalgamation property.

Theorem 3.4. (Clark [13]) For a double Stone algebra S = E(X), the following
are equivalent:

i) S is existentially closed.

ii) S satisfies the following ∀∃-axioms:
(DS1) DD(S) is nonempty and form a relatively complemented sublattice of
S.
(DS2) For every γ, δ ∈ DD(S), there is an element σ ∈ S such that (γ ∧ δ)∨
(δ ∧ σ∗) = γ ∨ δ.
(DS3) DD(S) contains no covers.
(DS4) If δ∗ = 0 and δ < 1, then there is an element γ > δ such that γ+ = δ+.
(DS5) If δ+ = 1 and δ > 0, then there is an element γ < δ such that γ∗ = δ∗.

We denote the theory of double Stone algebras by DBS. This theory is the
complete theory of a double Stone algebra S, i.e. the set of all sentences true in S,
together with the additional axioms described by DS1, ..., DS5, in Theorem 3.4.

Theorem 3.5. The theory DBS admits quantifier elimination.

Proof. Since every model of DBS is existentially closed, the theory DBS is model
complete and has the amalgamation property by [14]. Hence, by Theorem 3.3,
DBS has the quantifier elimination property.

4. Pseudo o-minimality
In [4], Carlo Toffalori generalized the notion of order-minimality of linear orders
to the partially ordered structures. Let A = (A,≤, ...) be a structure partially
ordered by ≤. A is said to be quasi o-minimal if and only if the only subsets of
A definable in A are the finite Boolean combinations of sets defined by formulas
a ≤ ν or ν ≤ b with a and b in A. By Theorem 2.3 of [4], every Boolean algebra
with only finitely many atoms is quasi o-minimal.

Using the idea of [4], Lei Chen, Niandong Shi and Guohua Wu in [5] de-
fined pseudo o-minimality in lattice-ordered structures. Here, we define pseudo
o-minimality in lattice-ordered structures using their comparability graphs.

Let A = (A,≤,∧,∨, ...) be a lattice-ordered structure. The comparability
graph of A is a undirected graph G = (A,E) such that an undirected edge u − v
is in E if and only if u and v are different and comparable, i.e. u 6= v and u ≤ v
or v ≤ u. A set X ⊆ A is said to be connected if for every different elements
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u, v ∈ X there exists a path in the corresponding graph G connecting u and v. A
set Y ⊆ A is said to be strongly connected if for any u, v ∈ Y , either u ∧ v ∈ Y or
u∨ v ∈ Y . It is clear that every strongly connected set is connected too. If A is a
Stone algebra, then Sk(A) and D(A) are strongly connected.

Definition 4.1. A lattice-ordered structure A = (A,≤,∧,∨, ...) is said to be
pseudo o-minimal if every definable subset of A is a Boolean combination of finitely
many strongly connected subsets of A. A theory T is called pseudo o-minimal if
every model of T is pseudo o-minimal.

We use the quantifier elimination provided in the last section to show that the
theory DBS of double Stone algebras is pseudo o-minimal. In the following, by a
term or formula of DBS, we mean a term or formula in the first order language
of the theory DBS. Also equivalence between formulas is under the theory DBS.

Lemma 4.2. Every atomic formula of DBS is equivalent to a conjunction of the
formulas τ ≤ ν, where τ ∈ {a, u ∧ a, u∗ ∧ a, u+ ∧ a, u∗∗ ∧ a, u++ ∧ a, u ∧ u+ ∧ a}
and ν ∈ {b, u ∨ b, u∗ ∨ b, u+ ∨ b, u∗∗ ∨ b, u++ ∨ b, u ∨ u∗ ∨ b}, where a, b are terms
of DBS and do not contain variable u.

Proof. By Lemma 2.4, Lemma 2.5, and distributivity, every atomic formula is
equivalent to a conjunction of formulas ∧mj=1τj ≤ ∨nk=1νk such that τjs and νks
are one of uj , uj , u∗∗j , a, uk, u

+
k , u

++
k , b, where a and b are constants.

Corollary 4.3. Each atomic formula of DBS is equivalent to a finite conjunction
of the following formulas:

a ≤ b a ≤ u ∨ b a ≤ u∗ ∨ b
a ≤ u+ ∨ b a ≤ u∗∗ ∨ b a ≤ u++ ∨ b
a ≤ u ∨ u∗ ∨ b u ∧ a ≤ b u ∧ a ≤ u ∨ b
u ∧ a ≤ u∗ ∨ b u ∧ a ≤ u+ ∨ b u ∧ a ≤ u∗∗ ∨ b
u ∧ a ≤ u++ ∨ b u ∧ a ≤ u ∨ u∗ ∨ b u∗ ∧ a ≤ b
u∗ ∧ a ≤ u ∨ b u∗ ∧ a ≤ u∗ ∨ b u∗ ∧ a ≤ u+b
u∗ ∧ a ≤ u∗∗ ∨ b u∗ ∧ a ≤ u++ ∨ b u∗ ∧ a ≤ u ∨ u∗ ∨ b
u+ ∧ a ≤ b u+ ∧ a ≤ u ∨ b u+ ∧ a ≤ u∗ ∨ b
u+ ∧ a ≤ u+ ∨ b u+ ∧ a ≤ u∗∗ ∨ b u+ ∧ a ≤ u++ ∨ b
u+ ∧ a ≤ u ∨ u∗ ∨ b u∗∗ ∧ a ≤ b u∗∗ ∧ a ≤ u ∨ b
u∗∗ ∧ a ≤ u∗ ∨ b u∗∗ ∧ a ≤ u+ ∨ b u∗∗ ∧ a ≤ u∗∗ ∨ b
u∗∗ ∧ a ≤ u++ ∨ b u∗∗ ∧ a ≤ u ∨ u∗ ∨ b u++ ∧ a ≤ b
u++ ∧ a ≤ u ∨ b u++ ∧ a ≤ u∗ ∨ b u++ ∧ a ≤ u+ ∨ b
u++ ∧ a ≤ u∗∗ ∨ b u++ ∧ a ≤ u++ ∨ b u++ ∧ a ≤ u ∨ u∗ ∨ b
u ∧ u+ ∧ a ≤ b u ∧ u+ ∧ a ≤ u ∨ b u ∧ u+ ∧ a ≤ u∗ ∨ b
u ∧ u+ ∧ a ≤ u+ ∨ b u ∧ u+ ∧ a ≤ u∗∗ ∨ b u ∧ u+ ∧ a ≤ u++ ∨ b
u ∧ u+ ∧ a ≤ u ∨ u∗ ∨ b

Theorem 4.4. All the sets defined by formulas in Corollary 4.3, are strongly
connected sets in a double Stone algebra.
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Proof. We can easily prove all cases by computational operations and by using
the properties listed in Lemma 2.4. For instance, we examine the set defined
by formula u ∧ u+ ∧ a ≤ u∗∗ ∨ b. Suppose S is a double Stone algebra and
S1 = {u|u ∧ u+ ∧ a ≤ u∗∗ ∨ b} ⊆ S. Let u, v ∈ S1:

(u ∨ v) ∧ (u ∨ v)+ ∧ a = (u ∨ v) ∧ ((u ∨ v)+ ∧ a)
= (u ∨ v) ∧ ((u+ ∧ v+) ∧ a)
= (u ∧ u+ ∧ v+ ∧ a) ∨ (v ∧ u+ ∧ v+ ∧ a)
= ((u ∧ u+ ∧ a) ∧ v+) ∨ ((v ∧ v+ ∧ a) ∧ u+)
≤ (u ∧ u+ ∧ a) ∨ (v ∧ v+ ∧ a)
≤ (u∗∗ ∨ b) ∨ (v∗∗ ∨ b)
= (u∗∗ ∨ v∗∗) ∨ b = (u ∨ v)∗∗ ∨ b.

Thus, u ∨ v ∈ S1. Therefore, S1 is a strongly connected subset in S.

Theorem 4.5. The theory DBS is a pseudo o-minimal theory.

Proof. Let S = (S,∧,∨∗,+, 0, 1) be a double Stone algebra and a model of DBS.
Since DBS has the quantifier elimination property by Theorem 3.5, every formula
in DBS is equivalent to a Boolean combination of atomic formulas in DBS. But,
by Corollary 4.3, every atomic formula in DBS is equivalent to a conjunction of
forty nine formulas listed there. Thus by Theorem 4.4, every unary definable set
in every model of DBS is a Boolean combination of strongly connected sets.
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