Original Scientific Paper

On Hyper CI-algebras

Somayeh Borhani Nejad Rayeni* and Akbar Rezaei

Abstract

The concept of (*proper*) hyper CI-algebras, as a generalization of CIalgebras and hyper BE-algebras, is defined and some properties are presented. Also, the concepts of a hyper filter and a weak hyper filter over hyper CI-algebras are discussed. Moreover, the notion of a *commutative* hyper CI-algebra is described. Also, we find the number of commutative hyper CI-algebras of order less than 3.

Keywords: (Hyper) BE/CI-algebra, (Weak) hyper filter, Commutative.

2020 Mathematics Subject Classification: 06F35, 03G25.

How to cite this article

S. Borhani Nejad Rayeni and A. Rezaei, On hyper CI-algebras, *Math. Interdisc. Res.* 8 (1) (2023) 47-63.

1. Introduction

CI-algebra, defined by Meng [1], is an algebra $(X; \star, 1)$ of type (2, 0) that satisfies: (CI₁) $x \star (y \star z) = y \star (x \star z)$,

 $(CI_2) \quad x \star x = 1,$

(CI₃) $1 \star x = x$, for all $x, y, z \in X$.

The CI-algebra $(X; \star, 1)$ that satisfies the axiom (BE) $x \star 1 = 1$ is called a BEalgebra [2]. It is known that the hyper logical algebras have many applications to sciences. The hyper BE-algebras were defined in [3] as follows:

An algebra $(H; \diamond, 1)$, where H is a nonempty set, $\diamond : H \times H \to \mathcal{P}^*(H)$ a hyper operation and 1 a constant in H, is said to be a hyper BE-algebra, if it satisfies: (HBE₁) $x \diamond (y \diamond z) = y \diamond (x \diamond z)$, (HBE₂) $1 \in x \diamond x$ and $1 \in x \diamond 1$,

*Corresponding author (borhani@pnu.ac.ir) Academic Editor: Mojtaba Sedaghatjoo Received 21 June 2022, Accepted 7 November 2022 DOI: 10.22052/MIR.2022.246510.1359

O 2023 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

(HBE₃) $x \in 1 \diamond x$, (HBE₄) $1 \in 1 \diamond x$ implies x = 1, for all $x, y, z \in H$. Then Rezaei et al. investigated commutative hyper BE-algebras [4]. The notion of good hyper BE-algebras was introduced by Chen et al. [5]. Iranmanesh et al. studied various types of Hv-BE-algebras and discussed on them [6]. Beja et al. presented the notion of the doubt intuitionistic fuzzy hyper filters of hyper BEalgebras and their related properties [7]. Cheng et al. introduced state operators on hyper BE-algebras, state hyper filters and generated state hyper filters and obtained some important results [8]. Recently, Naghibi et al. introduced Hv-BEalgebra as a generalization of a (hyper) BE-algebra [9].

This study presents the concept of a (*commutative*) hyper CI-algebra, investigates some relations between hyper BE-algebra, and studies several properties of the hyper BE-algebra. Moreover, (*weak*) hyper filters are considered in a hyper CI-algebra.

2. On hyper CI-algebras

In this section, as a generalization of a CI-algebra and a hyper BE-algebra, we define the notion of hyper CI-algebra and investigate some results. In the following, H is a nonempty set, $\mathcal{P}(H)$ denotes the power set of H and $\mathcal{P}^*(H) = \mathcal{P}(H) - \{\emptyset\}$.

Definition 2.1. An algebra $\mathcal{H} = (H; \diamond, 1)$, where $\diamond : H \times H \to \mathcal{P}^*(H)$ is a hyper operation and 1 is a constant, is called a *hyper CI-algebra*, if for all $x, y, z \in H$, it satisfies:

 $\begin{array}{ll} (\mathrm{HCI}_1) & x \diamond (y \diamond z) = y \diamond (x \diamond z), \\ (\mathrm{HCI}_2) & 1 \in x \diamond x, \\ (\mathrm{HCI}_3) & x \in 1 \diamond x. \end{array}$

The relation " \leq " is defined by

$$x \preceq y \iff 1 \in x \diamond y.$$

Let G and K be two non-empty subsets of H. Define $G \diamond K = \bigcup_{a \in G, b \in K} a \diamond b$ and

 $G \preceq K \iff$ there exist $a \in G$ and $b \in K$ s.t. $a \preceq b$.

We refer to the hyper CI-algebra $\mathcal{H} = (H; \diamond, 1)$ by \mathcal{H} .

 \mathcal{H} is said to be *good* if for any $x, y, z \in H$, $x \leq y$ imply $z \diamond x \leq z \diamond y$. The following examples show that (HCI₁), (HCI₂) and (HCI₃) are independent.

Example 2.2. (i) Let $A \neq \emptyset$, α a constant element in $A, s, t \in A$, and let define " \diamond " on X by

$$s \diamond t = \begin{cases} \{\alpha, t\}; & \text{if } s = \alpha \\ A; & \text{otherwise.} \end{cases}$$

Then $(A; \diamond, \alpha)$ is a hyper CI-algebra.

(ii) Consider the algebra $(H_1 = \{1, \alpha, \beta, \gamma\}; \diamond_1, 1)$, where " \diamond_1 " is defined by Table 1. Then $(H_1; \diamond_1, 1)$ is a hyper CI-algebra, which is not good. Since $1 \leq \beta$,

Table 1: Hyper CI-algebra $(H_1; \diamond_1, 1)$

\diamond_1	1	α	β	γ
1	{1}	$\{\alpha\}$	$\{1, \beta\}$	$\{\alpha, \gamma\}$
α	$\{\alpha\}$	$\{1, \alpha\}$	$\{\alpha, \gamma\}$	H_1
β	{1}	$\{\alpha\}$	$\{1\}$	$\{1, \alpha\}$
γ	{1}	$\{1\}$	$\{\alpha\}$	$\{1, \alpha\}$

but $1 = \gamma \diamond_1 1 \not\preceq \gamma \diamond_1 \beta = \alpha$.

(iii) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_2, 1)$, where " \diamond_2 " is defined by Table 2. Then it is good.

Table 2: Hyper CI-algebra $(H_2; \diamond_2, 1)$

\diamond_2	1	α	β
1	{1}	$\{\alpha\}$	$\{\beta\}$
α	$\{\beta\}$	H_2	$\{\alpha, \beta\}$
β	$\{\beta\}$	H_2	H_2

(iv) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_3, 1)$, where " \diamond_3 " is defined by Table 3. Then $(H_2; \diamond_3, 1)$ satisfies (HCI₁) and (HCI₃). Since $\alpha \not\preceq \alpha$ and $\beta \not\preceq \beta$. Thus,

Table 3: Hyper CI-algebra $(H_2; \diamond_3, 1)$

\diamond_3	1	α	β
1	{1}	$\{1, \alpha\}$	$\{\alpha, \beta\}$
α	$\{1, \alpha\}$	$\{\alpha, \beta\}$	$\{1, \beta\}$
β	{1}	$\{\alpha\}$	$\{\beta\}$

 (HCI_2) does not hold.

(v) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_4, 1)$, where " \diamond_4 " is definded by Table 4. Then $(H_2; \diamond_4, 1)$ satisfies (HCI₂) and (HCI₃). Since

$$\{\alpha,\beta\} = \alpha \diamond_4 \{1,\beta\} = \alpha \diamond_4 (\beta \diamond_4 1) \neq \beta \diamond_4 (\alpha \diamond_4 1) = \beta \diamond_4 \alpha = \{\alpha\},\$$

 (HCI_1) is not valid.

Table 4: Hyper CI-algebra $(H_2; \diamond_4, 1)$

\diamond_4	1	α	β
1	{1}	$\{\alpha\}$	$\{\beta\}$
α	$\{\alpha\}$	$\{1, \beta\}$	$\{\beta\}$
β	$\{1, \beta\}$	$\{\alpha\}$	$\{1, \alpha\}$

Table 5: Hyper CI-algebra $(H_2; \diamond_5, 1)$

\diamond_5	1	α	β
1	{1}	$\{1, \alpha\}$	$\{\alpha\}$
α	$\{1, \alpha\}$	$\{1, \alpha\}$	$\{1, \alpha\}$
β	$\{1\}$	$\{1, \alpha\}$	$\{1, \alpha\}$

(vi) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_5, 1)$, where " \diamond_5 " is defined by Table 5. Then $(H_2; \diamond_5, 1)$ satisfies (HCI₃) and (HCI₁). Since $\alpha \notin \{\beta\} = 1 \diamond_5 \beta$, (HCI₃) does not hold.

Notice that every CI-algebra and hyper BE-algebra are hyper CI-algebra, but the converse is not true.

Example 2.3. In Example 2.2 (iii), (HBE₄) is not valid, since $\alpha \not\leq 1$.

 \mathcal{H} is *proper* if it is not a hyper BE-algebra.

Proposition 2.4. Let $(H; \diamond, 1)$ be a hyper BE-algebra, where $g \diamond H = H$, for all $g \in H$, and let $\alpha \notin H$. Define the hyper operation \rightarrow on H by

$$r \to k = \begin{cases} r \diamond k; & \text{if } r, k \in H, \\ \alpha; & \text{if } r = \alpha \text{ and } k \neq \alpha, \\ \alpha; & \text{if } r \neq \alpha \text{ and } k = \alpha, \\ H; & \text{if } r = k = \alpha, \end{cases}$$

for all $r, k \in H$. Then $(H \cup \{\alpha\}; \rightarrow, 1)$ is a hyper CI-algebra.

Proof. It is enough to prove (HCI₁). Assume $r, k \in H$, since $\alpha \to (r \to k) = \alpha = r \to \alpha = r \to (\alpha \to k)$, $r \to (k \to \alpha) = r \to \alpha = \alpha = k \to \alpha = k \to (r \to \alpha)$, $\alpha \to (r \to \alpha) = \alpha \to \alpha = H = r \diamond H = r \to H = r \to (\alpha \to \alpha)$. Thus, (HCI₁) is valid. The verification of (HCI₂) and (HCI₃) is trivial. This shows that $(H \cup \{\alpha\}; \to, 1)$ is a proper hyper CI-algebra, since $1 \notin \alpha \to 1 = \alpha$.

Proposition 2.5. If $k \leq r$, then $k \leq (k \diamond r) \diamond k$ and $r \leq (k \diamond r) \diamond r$.

Proof. Suppose $k \leq r$, then $1 \in g \diamond r$. Using (HBE₂) and (HBE₃), we get

$$1 \in 1 \diamond 1 \subseteq 1 \diamond (k \diamond k) \subseteq (k \diamond r) \diamond (k \diamond k) = k \diamond ((k \diamond r) \diamond k).$$

Therefore, $k \leq (k \diamond r) \diamond k$. Similarly, the second part is valid.

Theorem 2.6. Let G, K and F are nonempty subsets of H. Then

- (i) $G \diamond (K \diamond F) = K \diamond (G \diamond F),$
- (ii) $G \preceq G$,
- (iii) $G \subseteq 1 \diamond G$,
- (iv) $a \in G$ implies $a \preceq G$,
- (v) $k \leq g \diamond h$ implies $g \leq k \diamond h$,
- (vi) $k \in g \diamond h$ implies $g \preceq k \diamond h$, for all $g, h, k \in H$.

Proof. (i) Assume $x \in G \diamond (K \diamond F)$. Then there exist $a \in G$, $b \in K$ and $c \in F$ s.t. $x = a \diamond (b \diamond c)$. Using (HCI₁), we get $x = b \diamond (a \diamond c)$, and hence, $x \in K \diamond (G \diamond F)$. Thus, $G \diamond (K \diamond F) \subseteq K \diamond (G \diamond F)$. Similarly, $K \diamond (G \diamond F) \subseteq G \diamond (K \diamond F)$. Therefore, (i) is valid.

(ii) Since $G \neq \emptyset$, there is $a \in G$. Using (HCI₂), $1 \in a \diamond a$, for all $a \in G$. Hence, $G \preceq G$.

(iii) Let $a \in G$. By (HCI₃), $a \in 1 \diamond a \subseteq 1 \diamond G$. Thus, (iii) holds.

(iv) Using (HCI_2) , the proof is obvious.

(v) Let $k \leq g \diamond h$, then there exists $s \in g \diamond h$ s.t. $1 \in k \diamond s$. So, $1 \in k \diamond s \subseteq k \diamond (g \diamond h) = g \diamond (k \diamond h)$, by using (HCI₁). It shows that $g \leq k \diamond g$.

(vi) Suppose $k \in g \diamond h$. By (HCI₂) and (HCI₁), we have

$$1 \in k \diamond k \subseteq k \diamond (g \diamond h) = g \diamond (k \diamond h).$$

Thus, $g \leq k \diamond h$.

Proposition 2.7. The following hold:

- (i) $1 \diamond r \preceq r$,
- (*ii*) $r \leq 1 \diamond r$,
- (*iii*) $r \preceq 1 \diamond (1 \diamond (\cdots (1 \diamond r) \cdots)),$
- (iv) $t \leq (t \diamond r) \diamond r$, for all $r, t \in H$.

Proof. We prove just (iii), as other parts are easily proven. By (HCI_2) , (HCI_1) and Theorem 2.6 (iii), we get

$$\begin{split} 1 \in 1 \diamond 1 \subseteq 1 \diamond (r \diamond r) \subseteq 1 \diamond (1 \diamond (r \diamond r)) &\subseteq 1 \diamond (1 \diamond (\cdots (1 \diamond (r \diamond r)) \cdots)) \\ &= 1 \diamond (1 \diamond (\cdots (r \diamond (1 \diamond r)) \cdots)) \\ &\vdots \\ &= r \diamond (1 \diamond (1 \diamond (\cdots (1 \diamond r) \cdots))). \end{split}$$

This complete the proof.

Theorem 2.8. There exist 16 hyper CI-algebras of order 2 that are not isomorphic.

Proof. Set $\mathcal{H} = (\{1, \alpha\}; \diamond, 1)$. By (HCI₂), $1 \diamond 1 = \{1\}$ or $1 \diamond 1 = \{1, \alpha\}$, and also $\alpha \diamond \alpha = \{1\}$ or $\alpha \diamond \alpha = \{1, \alpha\}$. Also, by (HCI₃), $1 \diamond \alpha = \{\alpha\}$ or $1 \diamond \alpha = \{1, \alpha\}$. Also, by (HCI₁), we have

(1) $1 \diamond (\alpha \diamond 1) = \alpha \diamond (1 \diamond 1),$

(2) $1 \diamond (\alpha \diamond \alpha) = \alpha \diamond (1 \diamond \alpha).$

Case 1: Let $1 \diamond 1 = \{1\}$ and $1 \diamond \alpha = \{\alpha\}$. Hence, (1) and (2) hold and we get Tables 6-11.

Case 2: Let $1 \diamond 1 = \{1\}$ and $1 \diamond \alpha = \{1, \alpha\}$. Then according to (1), $\alpha \diamond 1 \neq \{\alpha\}$. Hence, $\alpha \diamond 1 = \{1\}$ or $\alpha \diamond 1 = \{1, \alpha\}$. If $\alpha \diamond 1 = \{1\}$, we get Tables 12 and 13. If $\alpha \diamond 1 = \{1, \alpha\}$ by (2) we imply $\alpha \diamond \alpha = \{1, \alpha\}$ and we get Table 14.

Case 3: Let $1 \diamond 1 = \{1, \alpha\}$ and $1 \diamond \alpha = \{\alpha\}$. Then by (1) and (2), $\alpha \diamond 1 \neq \{\alpha\}$ and $\alpha \diamond \alpha = \{1, \alpha\}$. Hence, $\alpha \diamond 1 = \{1\}$ or $\alpha \diamond 1 = \{1, \alpha\}$ and we get Tables 15 and 16.

Case 4: Let $1 \diamond 1 = \{1, \alpha\}$ and $1 \diamond \alpha = \{1, \alpha\}$. Then

(i) $\alpha \diamond \alpha = \{1\}$. Then by (1), $\alpha \diamond 1 \neq 1$. Hence, $\alpha \diamond 1 = \{\alpha\}$ or $\alpha \diamond 1 = \{1, \alpha\}$ and we get Tables 17 and 18.

(*ii*) $\alpha \diamond \alpha = \{1, \alpha\}$. Then (1) and (2) are valid and we get Tables 19-21.

It is easy to check that the resulting tables are not isomorphic. Therefore, there exist 16 hyper CI-algebras of order 2 in the form of Tables 6-21 below, that are not isomorphic.

Table	6:	Hyper	CI-algebra ($(H; \diamond_6,$	1)
	-	v 1 · ·		() 0)	

\diamond_6	1	α
1	{1}	$\{\alpha\}$
α	$\{1\}$	$\{1\}$

Table 7: Hyper CI-algebra $(H; \diamond_7, 1)$

\diamond_7	1	α
1	{1}	$\{\alpha\}$
α	{1}	Η

Table 8: Hyper CI-algebra $(H; \diamond_8, 1)$

\diamond_8	1	α
1	{1}	$\{\alpha\}$
α	$\{\alpha\}$	$\{1\}$

Theorem 2.9. Let $(K; \diamond, 1_K)$ and $(G; \bullet, 1_G)$ be two hyper CI-algebras. Then $(K \times G; \odot, 1_K \times 1_G)$ is a hyper CI-algebra, where $K \times G$ is Cartesian product K and G, and \odot is defined by $(k_1, g_1) \odot (k_2, g_2) = (k_1 \diamond k_2, g_1 \bullet g_2)$, for all $k_1, k_2 \in K$ and $g_1, g_2 \in G$.

Definition 2.10. Let $g \in H$. \mathcal{H} is said to satisfy the

- diagonal (briefly, D-hyper), if $g \diamond g = \{1\}$,
- row (briefly, R-hyper), if $1 \diamond g = \{g\}$.

Theorem 2.11. Let $g \in H$ and \mathcal{H} satisfy D-hyper. If $g \diamond 1 = \{g\}$, then \mathcal{H} satisfy R-hyper.

Proof. It is enough to prove, $1 \diamond g = \{g\}$. Assume $h \in 1 \diamond g$, then

$$h \in 1 \diamond g = 1 \diamond (g \diamond 1) = g \diamond (1 \diamond 1) = g \diamond 1 = \{g\}.$$

Therefore, \mathcal{H} satisfy R-hyper.

3. Hyper filters of hyper CI-algebras

In this section, we describe the concepts of weak hyper filter and hyper filter of \mathcal{H} and prove some properties in this respect.

Definition 3.1. Let $F \subseteq H$ and $1 \in F$. Then F is said to be

- (i) a hyper filter of \mathcal{H} if $x \in F$ and $x \diamond y \approx F$ imply $y \in F$,
- (ii) a weak hyper filter of \mathcal{H} if $x \in F$ and $x \diamond y \subseteq F$ imply $y \in F$, for all $x, y \in H$, where $x \diamond y \approx F$ means that $x \diamond y \cap F \neq \emptyset$.

Denote the set of all (weak) hyper filters of \mathcal{H} by $\mathcal{HF}(\mathcal{H})$ (resp. $\mathcal{WHF}(\mathcal{H})$).

Table 9: Hyper CI-algebra $(H; \diamond_9, 1)$

\diamond_9	1	α
1	{1}	$\{\alpha\}$
α	$\{\alpha\}$	Η

Table 10: Hyper CI-algebra $(H; \diamond_{10}, 1)$

\diamond_{10}	1	α
1	{1}	$\{\alpha\}$
α	Η	$\{1\}$

Example 3.2. (i) In Example 2.2 (iii), $F = \{1, \beta\} \in \mathcal{WHF}(\mathcal{H})$.

(ii) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_{22}, 1)$ where, " \diamond_{22} " is defined by Table 22. Then $F = \{1, \alpha\} \in \mathcal{HF}(\mathcal{H})$.

Proposition 3.3. Let $F \in \mathcal{HF}(\mathcal{H})$, then

- (i) $F \in \mathcal{WHF}(\mathcal{H}),$
- (*ii*) if $x \in F$ and $x \diamond A \approx F$ imply $A \approx F$, for $x \in H$ and $A \subseteq H$.

Example 3.4. In Example 2.2 (iii), $\{1, \alpha\} \in \mathcal{WHF}(\mathcal{H})$, but $\{1, \alpha\} \in \mathcal{HF}(\mathcal{H})$, since $\{\alpha, \beta\} = \alpha \diamond_2 \beta \approx \{1, \alpha\}$ and $\alpha \in \{1, \alpha\}$, but $\beta \notin \{1, \alpha\}$.

Theorem 3.5. Let $F \subseteq H$ and $1 \in F$, then

- (i) $F \in \mathcal{HF}(\mathcal{H})$ if and only if $F \leq g \diamond h$ and $g \in F$ implies $h \in F$, for all $g, h \in H$.
- (ii) if $g \diamond h \preceq F$ and $g \in F$ implies $h \in F$, for all $g, h \in H$, then $F \in \mathcal{HF}(\mathcal{H})$.

Proof. (i) Assume $F \in \mathcal{HF}(\mathcal{H})$, $F \leq g \diamond h$ and $g \in F$, then there exist $x \in F$ and $y \in g \diamond h$ s.t. $x \leq y$. It follows that $1 \in x \diamond y$. Thus, $1 \in x \diamond y \cap F \neq \emptyset$. Hence $h \in F$. The converse implication is obvious.

(ii) By Proposition 3.3 (i), it is enough to prove $F \in \mathcal{HF}(\mathcal{H})$. Let $g, h \in \mathcal{H}$ s.t. $t \in g \diamond h \cap F$ and $g \in F$. This shows that $1 \in t \diamond t \subseteq (g \diamond h) \diamond F$ and therefore, $g \diamond h \preceq F$. By assumption $h \in F$. Therefore, $F \in \mathcal{HF}(\mathcal{H})$.

Let $g, h \in H$. Define

 $\tilde{U}(g,h) = \{t \in H \mid t = 1 \text{ or } g \preceq h \diamond t\} \text{ and } \tilde{U}(g) = \{t \in H \mid t = 1 \text{ or } g \preceq t\}.$

Example 3.6. In Example 3.2 (ii), $\tilde{U}(\alpha) = \{1, \alpha\}$, $\tilde{U}(\beta) = \{1, \beta\}$ and $\tilde{U}(\alpha, \beta) = \{1, \beta\}$.

Table 11: Hyper CI-algebra $(H; \diamond_{11}, 1)$

\diamond_{11}	1	α
1	{1}	$\{\alpha\}$
α	Η	Η

Table 12: Hyper CI-algebra $(H; \diamond_{12}, 1)$

\diamond_{12}	1	α
1	{1}	Η
α	{1}	$\{1\}$

Proposition 3.7. The following hold:

- (i) $1 \in \tilde{U}(g)$,
- $(ii) \quad g \in \tilde{U}(g),$
- $(iii) \quad g \in \tilde{U}(g,1),$
- $(iv) \quad \tilde{U}(g) \subseteq \tilde{U}(1,g),$
- $(v) \quad \tilde{U}(g,h) = \tilde{U}(h,g),$
- (vi) if $h \leq 1$, then $\tilde{U}(g) \subseteq \tilde{U}(g,h)$,
- (vii) if $\tilde{U}(g) \in \mathcal{HF}(\mathcal{H})$, then $\tilde{U}(g,h) \subseteq \tilde{U}(g)$; for all $g,h \in H$.

Theorem 3.8. Let $\emptyset \neq F \subseteq H$, then $F \in \mathcal{HF}(\mathcal{H})$ if and only if $\tilde{U}(g,h) \subseteq F$, for all $g, h \in F$.

Proof. Assume $F \in \mathcal{HF}(\mathcal{H})$, $g, h \in F$ and $t \in \tilde{U}(g, h)$. Then t = 1 or $g \leq h \diamond t$. If t = 1, then $t \in F$. If $g \leq h \diamond t$, then $1 \in g \diamond (h \diamond t)$ and $g \diamond (h \diamond x) \approx F$. By Proposition 3.3 (ii) and $g \in F$, $h \diamond t \approx F$. As a result, since $F \in \mathcal{HF}(\mathcal{H})$ and $h \in F$, $t \in F$, we obtain $\tilde{U}(g, h) \subseteq F$.

Now, let $\tilde{U}(g,h) \subseteq F$ for all $g,h \in F$. Let $t \diamond s \approx F$ and $t \in F$. Hence, there exists $z \in (t \diamond s) \cap F$. Thus, $1 \in z \diamond z \subseteq z \diamond (t \diamond s) \subseteq \tilde{U}(z,t) \subseteq F$, and consequently $F \in \mathcal{HF}(\mathcal{H})$.

Theorem 3.9. Let $F \in \mathcal{HF}(\mathcal{H})$, then $F = \bigcup_{g,h \in F} \tilde{U}(g,h)$.

Table 13: Hyper CI-algebra $(H; \diamond_{13}, 1)$

\diamond_{13}	1	α
1	{1}	Η
α	{1}	Η

Table 14: Hyper CI-algebra $(H; \diamond_{14}, 1)$

\diamond_{14}	1	α
1	{1}	Η
α	Η	Η

Proof. By Theorem 3.8, $\tilde{U}(g,h) \subseteq F$ for all $g,h \in H$. Then $\bigcup_{g,h \in F} \tilde{U}(g,h) \subseteq F$. Now, let $t \in F$. By Proposition 3.7 (i) and (ii), $t \in \tilde{U}(t) \subseteq \tilde{U}(1,t) \subseteq \bigcup_{g,h \in F} \tilde{U}(g,h)$. Hence, $F \subseteq \bigcup_{g,h \in F} \tilde{U}(g,h)$. Thus, $F = \bigcup_{g,h \in F} \tilde{U}(g,h)$.

Theorem 3.10. Let $F \in \mathcal{HF}(\mathcal{H})$, then $F = \bigcup_{g \in F} \tilde{U}(g)$.

Proof. Let $t \in \bigcup_{g \in F} \tilde{U}(g)$, then $t \in \tilde{U}(g)$. This shows that $g \preceq t$ and $1 \in g \diamond t$. Hence $a \diamond t \cap F \neq \emptyset$. Thus, $t \in F$ and it implies $\tilde{U}(g) \subseteq F$. \Box

Proposition 3.11. (i) If \mathcal{H} satisfy D-hyper, then $\{1\}$ is closed,

(*ii*) {1}, $H \in \mathcal{HF}(\mathcal{H}) \cap \mathcal{WHF}(\mathcal{H})$.

In general $\{1\}$ is not closed, see $(H; \diamond_{15}, 1)$.

Proposition 3.12. If $F_i \in \mathcal{HF}(\mathcal{H})$, for all $i \in \Lambda$, then $\bigcap_{i \in \Lambda} F_i \in \mathcal{HF}(\mathcal{H})$.

The union of two weak hyper filters of \mathcal{H} , may not be a weak hyper filter.

Example 3.13. In Example 2.2 (ii), we have $F_1 = \{1, \alpha\}, F_2 = \{1, \beta\} \in \mathcal{WHF}(\mathcal{H})$, but $F_1 \cup F_2 = \{1, \alpha, \beta\} \notin \mathcal{WHF}(\mathcal{H})$, since $y \diamond_1 \gamma = \{1, \alpha\} \subseteq F_1 \cup F_2$, but $\gamma \notin F_1 \cup F_2$.

Given $\emptyset \neq G \subseteq H$, the hyper filter generated by G is the least hyper filter of \mathcal{H} which contains G and denote by [G). Obviously, $[1) = \{1\}$ and [H) = H.

Table 15: Hyper CI-algebra $(H; \diamond_{15}, 1)$

\diamond_{15}	1	α
1	Η	$\{\alpha\}$
α	{1}	Η

Table 16: Hyper CI-algebra $(H; \diamond_{16}, 1)$

\diamond_{16}	1	α
1	Η	$\{\alpha\}$
α	Η	Η

Theorem 3.14. Let
$$\mathcal{H}$$
 be good and $\emptyset \neq G \subseteq H$. Then
 $[G] = \{t \in H : t = 1 \text{ or } 1 \in r_1 \diamond (r_2 \diamond (...(r_n \diamond t)...)), \exists r_1, r_2, ..., r_n \in G, n \in \mathbb{N}\}$

Proof. We take

$$T := \{ t \in H : t = 1 \text{ or } 1 \in r_1 \diamond (r_2 \diamond (...(r_n \diamond t)...)), \exists r_1, r_2, ..., r_n \in G, n \in \mathbb{N} \}.$$

It is enough to prove that T is the least hyper filter of \mathcal{H} containing G. Given $r \in G, 1 \in r \diamond r$, we get $r \in T$. Hence, $G \subseteq T$. Clearly, $1 \in T$, since $1 \in 1 \diamond 1$. Let $a \diamond b \approx T$ and $a \in T$. Also, suppose $z \in a \diamond b \cap T$. If z = 1, then $1 \in a \diamond b$ and since $a \in T$, we obtain $b \in T$. If $z \neq 1$, since $z \in T$, then there exist $r_1, r_2, ..., r_n \in G$, s.t.

 $1 \in r_1 \diamond (r_2 \diamond (... (r_n \diamond z)...))$. Since $z \in a \diamond b$, one has

$$1 \in r_1 \diamond (r_2 \diamond (\dots (r_n \diamond z) \dots)) \subseteq r_1 \diamond (r_2 \diamond (\dots (r_n \diamond (a \diamond b)) \dots),$$

and so $1 \in r_1 \diamond (r_2 \diamond (...(r_n \diamond (a \diamond b))...))$. If a = 1, since $1 \in r_1 \diamond (r_2 \diamond (...(r_n \diamond (1 \diamond b))...))$ and $b \in 1 \diamond b$, we obtain $b \in T$.

If $a \neq 1$ and $a \in T$, then there exist $h_1, h_2, ..., h_m \in G$ s.t.

$$1 \in h_1 \diamond (h_2 \diamond (\dots (h_m \diamond a) \dots)).$$

On the other hand, using (HCI_1) , we get

 $1 \in r_1 \diamond (r_2 \diamond (\dots (r_n \diamond (a \diamond b)) \dots) = a \diamond (r_1 \diamond (r_2 \diamond (\dots (r_n \diamond b)) \dots).$

Hence, $a \leq (r_1 \diamond (r_2 \diamond (... (r_n \diamond b))...)$. Since \mathcal{H} is good, we obtain

$$h_1 \diamond (h_2 \diamond (\dots (h_m \diamond a) \dots)) \preceq h_1 \diamond (h_2 \diamond (\dots (h_m \dots \diamond (r_1 \diamond (r_2 \diamond (\dots (r_n \diamond b))) \dots))) \ldots)$$

Since, $1 \in h_1 \diamond (h_2 \diamond (... (h_m \diamond a)...))$, we have

Table 17: Hyper CI-algebra $(H; \diamond_{17}, 1)$

\diamond_{17}	1	α
1	Н	Η
α	$\{\alpha\}$	$\{1\}$

Table 18: Hyper CI-algebra $(H; \diamond_{18}, 1)$

\diamond_{18}	1	α
1	Η	Η
α	Η	$\{1\}$

Therefore, $b \in T$, and so $T \in \mathcal{HF}(\mathcal{H})$.

Now, let $F \in \mathcal{HF}(\mathcal{H})$ and $G \subseteq F$. We show that $T \subseteq F$. Let $t \in T$. If t = 1, then $t \in F$. If $t \neq 1$, then there exist $r_1, r_2, ..., r_n \in G$, s.t. $1 \in r_1 \diamond (r_2 \diamond (...(r_n \diamond t)...))$. Then $r_1 \diamond (r_2 \diamond (...(r_n \diamond t)...)) \cap F \neq \emptyset$. Since $r_1 \in G \subseteq F$ and $F \in \mathcal{HF}(\mathcal{H})$, by Proposition 3.3 (ii), we get $r_2 \diamond (...(r_n \diamond t)...) \cap F \neq \emptyset$. Using Proposition 3.3 (ii), n times, we have $x \in F$. Thus, [G] = T.

In Theorem 3.14 the condition good is necessary, see the following example.

Example 3.15. We take $T = \{t \in H_1 : t = 1 \text{ or } 1 \in 1 \diamond_2 (1 \diamond_2 (...(1 \diamond_2 t)...))\}$, in Example 2.2 (ii). Then $T = \{1, \beta\}$, but $[1) = \{1\} \neq \{1, \beta\} = T$.

Corollary 3.16. If \mathcal{H} is good and $g \in H$, then

$$[g) = \{t \in H : t = 1 \text{ or } 1 \in g \diamond (g \diamond (\dots (g \diamond t) \dots))\}.$$

Theorem 3.17. Let \mathcal{H} be good, $F \in \mathcal{HF}(\mathcal{H})$ and $g \in H - F$. Then

 $[F \cup \{g\}) = \{t \in H : t = 1 \text{ or } g \diamond (g \diamond (\dots (g \diamond t) \dots)) \cap F \neq \emptyset\}.$

Proof. Similar to [5, Theorem 3. 2].

Definition 3.18. Let $\emptyset \neq I \subseteq H$. Then I is said to be a hyper ideal of \mathcal{H} , if

- (I₁) $g \in H$ and $i \in I$, then $g \diamond i \subseteq I$,
- (I₂) $g \in H$ and $i, j \in I$, then $(i \diamond (j \diamond g)) \diamond g \subseteq I$.

Example 3.19. (i) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_{23}, 1)$, where " \diamond_{23} " is defined by Table 23. Then $I = \{1, \alpha\} \in \mathcal{HI}(\mathcal{H})$.

(ii) Consider Example 3.2 (ii) and take $I = \{1, \beta\}$. Then (I_1) is valid, but does not satisfy (I_2) , since $(\beta \diamond_{22} (\beta \diamond_{22} \alpha)) \diamond_{22} = \{1, \alpha\} \not\subseteq I$.

	\diamond_{19}	1	α
	1	Η	Η
_	α	{1}	Η

Table 20: Hyper CI-algebra $(H; \diamond_{20}, 1)$

\$ ₂₀	1	α
1	Н	Η
α	$\{\alpha\}$	Η

(iii) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_{24}, 1)$, where " \diamond_{24} " is defined by Table 24. Then $I = \{1, \alpha\}$ satisfies (I₂), but does not satisfy (I₁), since $\beta \diamond_{24} \alpha = \{\beta\} \not\subseteq I$.

Denote the set of all hyper ideals of \mathcal{H} by $\mathcal{HI}(\mathcal{H})$.

Proposition 3.20. Let $I \in \mathcal{HI}(\mathcal{H})$.

- (i) $1 \in I$,
- (*ii*) $I \in \mathcal{HF}(\mathcal{H})$.

Proof. (i) Assume $i \in I$. Since $I \in \mathcal{HI}(\mathcal{H})$ and $1 \in i \diamond i \subseteq I$, we get $1 \in I$. (ii) Suppose $I \in \mathcal{HI}(\mathcal{H})$, then $I \neq \emptyset$. Let $i \in I$, then $1 \in i \diamond i \subseteq I$. Therefore, $1 \in I$. Now, suppose $g, h \in H$ s.t. $g \diamond h \cap I \neq \emptyset$ and $g \in I$. Let $s \in g \diamond h \cap I$. By (HCI₃) and (I₂), we have

$$h \in 1 \diamond h \subseteq (s \diamond s) \diamond h \subseteq (s \diamond (g \diamond h)) \diamond h \subseteq I.$$

Thus, $I \in \mathcal{HF}(\mathcal{H})$.

Every hyper filter is not a hyper ideal, as the following example shows:

Example 3.21. In Example 3.2 (ii), $F = \{1, \alpha\} \in \mathcal{HF}(\mathcal{H})$, but does not an hyper ideal, since $\beta \diamond_{22} \alpha = \{\beta\} \not\subseteq F$.

4. On commutative hyper CI-algebras

Now, we consider the commutative hyper CI-algebras, and enumerate them of order 2.

Definition 4.1. \mathcal{H} is said to be *commutative* if $(h \diamond g) \diamond g = (g \diamond h) \diamond h$, for all $g, h \in H$.

Table 21: Hyper CI-algebra $(H; \diamond_{21}, 1)$

\diamond_{21}	1	α
1	Η	Η
α	Η	Η

Table 22: Hyper CI-algebra $(H_2; \diamond_{22}, 1)$

\diamond_{22}	1	α	β
1	{1}	$\{1, \alpha\}$	$\{\beta\}$
α	{1}	$\{1\}$	$\{\beta\}$
β	$\{\beta\}$	$\{\beta\}$	$\{1\}$

Example 4.2. (i) In Example 2.2 (i), $(A; \diamond, c)$ is commutative. (ii) Consider the algebra $(H_2 = \{1, \alpha, \beta\}; \diamond_{25}, 1)$, where " \diamond_{25} " is defined by Table 25. Then $(H_2; \diamond_{25}, 1)$ is commutative.

Proposition 4.3. Let \mathcal{H} be commutative and satisfies (HBE₄). Then \mathcal{H} is a hyper BE-algebra.

Proof. Assume $H = \{1, g\}$. It is enough to prove $1 \in g \diamond 1$. On the contrary, suppose $1 \notin g \diamond 1$. Therefore, $g \diamond 1 = g$. On the other hand, by (HCI₂), (HCI₃) and commutative law, we obtain

$$1 \in g \diamond g \subseteq (1 \diamond g) \diamond g = (g \diamond 1) \diamond 1 = g \diamond 1,$$

which is a contradiction. Therefore, $1 \in g \diamond 1$ and so \mathcal{H} is a hyper BE-algebra. \Box

The Proposition 4.3 is valid for the commutative hyper CI-algebra of order 2, and also (HBE_4) is necessary.

Example 4.4. (i) Consider $H = \{1, g, h\}$ and define " \diamond_{26} " by Table 26. Then $(H; \diamond_{26}, 1)$ is commutative of order 3 and satisfies (HBE₄), but not a hyper BE-algebra, since $1 \not\leq g$.

(ii) Consider Table 18. Then $(H; \diamond_{18}, 1)$ is commutative, but does not satisfy (HBE_4) .

Proposition 4.5. Let \mathcal{H} satisfy R-hyper and be commutative. Then $g \diamond h = h \diamond g = \{1\}$ implies g = h.

Proposition 4.6. Let \mathcal{H} be commutative. Then $(g \diamond 1) \preceq 1$, for all $g \in \mathcal{H}$.

Notice that in Proposition 4.6 we can not remove the commutative law.

Table 23: Hyper CI-algebra $(H_2; \diamond_{23}, 1)$

\$ ₂₃	1	α	β
1	{1}	$\{\alpha\}$	$\{\beta\}$
α	$\{1, \alpha\}$	$\{1\}$	$\{\beta\}$
β	$\{1, \alpha\}$	$\{1\}$	$\{1, \alpha\}$

Table 24: Hyper CI-algebra $(H_2; \diamond_{24}, 1)$

\diamond_{24}	1	α	β
1	{1}	$\{\alpha\}$	$\{\beta\}$
α	$\{1, \alpha\}$	$\{1\}$	$\{\beta\}$
β	$\{\beta\}$	$\{\beta\}$	$\{1, \alpha\}$

Example 4.7. In Example 2.2 (iii), $(H; \diamond_2, 1)$ is not commutative, since H = $(1\diamond_2 x)\diamond_2 x \neq (x\diamond_2 1)\diamond_2 1 = \{y\}$. Also, we have $1 \notin (y\diamond_2 1)\diamond_2 1 = \{y\}$, and $y = (y \diamond_2 1) \not\preceq 1.$

Theorem 4.8. Let \mathcal{H} be commutative. If for all $g \in H$, $g \preceq 1$ then $g \diamond h \preceq$ $(h \diamond k) \diamond (g \diamond k)$, for all $g, h, k \in H$.

Proof. Given $t \in k \diamond h$, we have

$$\begin{split} 1 \in t \diamond 1 \subseteq (k \diamond h) \diamond 1 \subseteq (k \diamond h) \diamond [(g \diamond h) \diamond (g \diamond h)] &= (g \diamond h) \diamond [(k \diamond h) \diamond (g \diamond h)] \\ &= (g \diamond h) \diamond [g \diamond ((k \diamond h) \diamond h)] \\ &= (g \diamond h) \diamond [g \diamond ((k \diamond h) \diamond h)] \\ &= (g \diamond h) \diamond [g \diamond ((h \diamond k) \diamond k))] \\ &= (g \diamond h) \diamond [(h \diamond k) \diamond (g \diamond k)]. \end{split}$$

It follows that $g \diamond h \preceq (h \diamond k) \diamond (g \diamond k)$.

It follows that $g \diamond h \preceq (h \diamond k) \diamond (g \diamond k)$.

Theorem 4.9. There exist 7 commutative hyper CI-algebras of order 2 that are not isomorphic.

Proof. Using Theorem 2.8, there are 16 hyper CI-algebras $(H; \diamond_i, 1)$ of order 2, for $i \in \{6, 7, \dots, 13\}$. One can see that the hyper operations $\diamond_6, \diamond_{11}, \diamond_{14}, \diamond_{15}, \diamond_{16}, \diamond_{16},$ \diamond_{18} and \diamond_{21} satisfy the commutative law.

5. Conclusions

We have defined the notion of a (proper) hyper CI-algebra, and presented some results in this respect. Also, (weak) hyper filters in this structure are studied. It is

Table 25: Hyper CI-algebra (H_2 ; \diamond_{25} , 1)

\diamond_{25}	1	α	β
1	{1}	$\{1, \alpha\}$	$\{\beta\}$
α	H_2	H_2	$\{\beta\}$
β	$\{1, \alpha\}$	H_2	H_2

Table 26: Hyper CI-algebra $(H; \diamond_{26}, 1)$

\diamond_{26}	1	α	β
1	{1}	$\{\alpha\}$	$\{\beta\}$
α	$\{\beta\}$	$\{1, \beta\}$	$\{1\}$
β	$\{1, \beta\}$	$\{\beta\}$	$\{1, \beta\}$

shown that there exist 16 hyper CI-algebra, and 7 commutative hyper CI-algebra of order less than 3, up to isomorphism. In future work, we will investigate among filters of hyper CI-algebras and characterize hyper CI-algebras in cases |H| = 3 and 4.

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

References

- [1] B. L. Meng, CI-algebras, Sci. Math. Jpn. 71 (1) (2010) 11 17.
- [2] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (1) (2007) 113 - 116, https://doi.org/10.32219/isms.66.1_113.
- [3] A. Radfar, A. Rezaei and A. B. Saeid, Hyper BE-algebras, Novi Sad J. Math. 44 (2) (2014) 137 – 147.
- [4] A. Rezaei, A. Radfar and A. B. Saeid, On commutative hyper BE-algebras, Facta Univ. Ser. Math. Inform. 30 (4) (2015) 389 - 399.
- [5] X. Y. Cheng, J. T. Wang and W. Wang, Some results in hyper BE-algebras, *Adv. Intell. Syst. Comput.* 877 (2019) 388-395, https://doi.org/10.1007/978-3-030-02116-0_45.
- [6] F. Iranmanesh, M. Ghadiri and A. Borumand Saeid, On Hv-BE-algebras, Miskolc Math. Notes 21 (2) (2020) 897 – 909.

- [7] T. Bej, M. Pal and B. Davvaz, Doubt intuitionistic fuzzy hyper filters in hyper BE-algebras, J. Intell. Fuzzy Syst. 37 (4) (2019) 5157 - 5166, https://doi.org/10.3233/JIFS-18824.
- [8] X. Y. Cheng and X. L. Xin, State hyper BE-algebras, J. Algebr. Hyperstruct. Log. Algebras 2 (3) (2021) 1 - 12, https://doi.org/10.52547/HATEF.JAHLA.2.3.1.
- [9] R. Naghibi, S. M. Anvariyeh and S. Mirvakili, Construction of an Hv-BE-algebra from a BE-algebra based on "Begins lemma", J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 28 (3) (2021) 217 – 234, https://doi.org/10.7468/jksmeb.2021.28.3.217.

Somayeh Borhani Nejad Rayeni Department of Mathematics, Payame Noor University, P.O.Box 19395-4697, Tehran, Iran e-mail: borhani@pnu.ac.ir

Akbar Rezaei Department of Mathematics, Payame Noor University, P.O.Box 19395-4697, Tehran, Iran e-mail: rezaei@pnu.ac.ir