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Abstract

This article will prove the Barnes—Godunova—Levin (B-G-L) type in-
equalities for generalized Sugeno integrals. Also, we use some techniques
and properties of concave functions to prove theorems and to obtain new
results. We will present a more robust version of the B-G-L type inequality
for the operator .

Keywords: Sugeno integral, Generalized Sugeno integral, Concave function,
Barnes—Godunova—Levin type inequality.

2020 Mathematics Subject Classification: 26D15, 28 A25.

How to cite this article
M. Jaddi and A. Loghman, Barnes—Godunova—Levin type inequalities for
generalized Sugeno integral, Math. Interdisc. Res. 8 (2) (2023) 105 — 122.

1. Introduction

A famous nonadditive integral was introduced in 1974 by Sugeno. The generalized
Sugeno integral associates the value

/ pdp = sup[yApu(A N @y)],
A yeY

to each pair consisting of a monotone measure p on a set V and ¢ : V —
[0, 4+00]. Also A is a nonnegative, extended real-valued function on [0, +00[x [0, +0o0]
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that is non-decreasing in both arguments. The specific modes of the generalized
Sugeno integral are: the Shilkret integral [1], the seminormed fuzzy integral [2, 3],
the g-integral [4, 5] and the Sugeno integral [6]. In the Sugeno integral, the func-
tion A returns the minimum of its two arguments, if it returns the product, we
obtain the Shilkret integral.

In [7], Agahi et al. proved B-G-L inequality for Sugeno integral. Also, Ab-
baszadeh et al. proved B-G-L inequality for pseudo-integrals [8]. In this paper, we
are going to prove a generalization of the B-G-L type inequality for the generalized
Sugeno integral. The definition of generalized Sugeno integral and its properties
are given in Section 2. A generalization of B-G-L inequality for generalized Sugeno
integral is presented in Section 3. Finally, a generalized version of B-G-L type in-
equality based on an operation %, that is continuous and non-decreasing in both
arguments, is presented in Section 4.

2. Preliminaries

In this section, we will introduce the definitions and required theorems that will
be used to prove the main theorem and its related results.

Definition 2.1. (]9, 10]). Let A be a o-algebra of subsets of V and let u: A —
[0,00] be a nonnegative extended real-valued set function. We say that p is a
monotone measure if:

(FM1) 4(0) = 0:
(FM2) A,B € A and A C B imply u(A) < u(B) (monotonicity);

(FM3) {A}12 C A AL C Ay C .oy imply limy, s oo p(An) = p( U An) (conti-
nuity from below);
n=1

(FM4) {A} C A,... € Ay C Ay, p(A1) < oo, imply lim, 4o p(An) =
o0
u( N Ap) (continuity from above).
n=1

When 1 is a monotone measure, the triple (V, A, u) is called a monotone
measure space.

Let (V, A, ) be a monotone measure space and ®, be the class of all nonneg-
ative measurable functions defined on (V;A). For any given ¢ € &, we write
o, ={veV]pl) >a}, witha >0.

Definition 2.2. Let (V, A, ) be a monotone measure space. If ¢ € &, and
D € A, then we have:

i: The Shilkret integral of ¢ on D with respect to the monotone measure p is
defined by [1, 10]
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(V) [ di=sup(8 - w(D N 2)).
D B>0

ii: The Sugeno integral of ¢ on D for the monotone measure p is defined by
[6, 10, 11]

][ pdp = \/ (BA (DN ®p)).
b B>0

Where A, V denotes the operation inf and sup on [0, co[ respectively. Since
&3 = ) where 8 = +00, the equation

][Lpdu:: \/  (BAuDNg)),
D BE[0,+00]

can be accepted as the definition of Sugeno’s integral with the convention of
condition 0.00 = 00.0 = 0 if necessary.

Sogno’s integral is a well-known nonlinear integral [7, 10, 12], i.e., the equality

Faotw)dn=af pan+vf van

does not hold. In the following theorem, most of the initial properties of
Sugeno’s integral are presented [10, 11, 13].

Theorem 2.3. Let (V,A, ) be a monotone measure space with E, F' € A and
p,9Y € ;. Then

1. f4 cdp = ¢ A p(E) for any constant ¢ € [0, +o0f,

2. if E C F, then §, pdu < f. ¢dp,

3. if p(E) < oo, then pu(EN®g) > < f, edu > B,

4. if ¢ <4p on E, then f, @dp <, dp,

5. fy edp < p(E),

6. W(EN®g) < B= £, edu < B,

7. f, pdp < B < there exists o < 8 such that u(EN®,) < 3,

8. . pdp > < there exists a > 3 such that u(E N ®,) > f.
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Remark 1. Let ®(8) = pu(E N ®g). From statements (2) and (3) of the previous
theorem, the following result is obtained, which is very important and widely used.

<I’(ﬁ)=ﬂ:>]i<pdu:ﬁ.

Therefore, the answer to the equation ®(8) = 5 will be the same numerical value
as Sugeno’s integral.

Let W = [0,00] (or W = [0,00)]), range(u) := u(A) and let x : W x W — W
be an operation. We say that % is non-decreasing if @ > b and ¢ > d implay that
axc>bxd.

Definition 2.4. ([14]). For ¢ : V. — W, ( u -measurable function), we define the
generalized Sugeno integral of ¢ on a set £ € A, by

/ PAp = sup [yAu(E N ©y)], (1)
E yeWw

where p is a monotone measure on A and A : W x u(A) — W is a non-decreasing
operator.

Theorem 2.5. ([14]). A generalized Sugeno integral satisfies the indicator prop-
erty (i.e., [ xpAp =p(E)) if and only if we have two conditions:

a: BA0 =0 for all 8 € [0, +00];
b: 1Aa = « for all @ € [0, +o0].

Here we have a monotone integral and it is homogeneous if and only if the function
A returns the product of its two arguments. That is, the Shilkret integral is the
homogeneous version of the generalized Sugeno integral.

Lemma 2.6. Let (V, A, i) be a monotone measure space, £ € A and ¢, : V —
W be two p-measurable functions:

(1) If ¢ <4y on E, then [, pAp < [ pAp.
Furthermore, if SA0 = 0 for any 8 € [0, +o00[, then
(2) [, cAp = cAp(E) for any constant ¢ € [0, +ool.

Proof. (1) Since ¢ < v on E, we have

P ={v |p(v) 2B} S{v [¢(v) =B} = Vg,

therefore,

ENndg CENYg,

and so, by the monotonicity of u, we have

wEN®g) < p(ENVp),
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for any 8 € [0, +oo[. On the other hand, since A is non-decreasing in the second
argument, we have

BAp(EN Og) < SAR(EN \I/g),
for any 8 € [0, +o0o[. Hence,

sup(BAu(E N ®g)) < sup(BAu(E N Wg)),

820 B>0
ie.,
/ pAp < / YAp.
E E
(2) As
vV, iff<e
Pg={veV]|c>p}=
0, ifp>e
it follows that
/ cAp = sup(BAp(EN®g)) = sup (BAu(E N 2g)) V sup(BAu(E N Pg))
E p>0 BE[0,c] B>c
= sup (BAW(E)) V sup(BA0) = (cAu(E)) v 0
BE[0,c] B>c
= cAu(E).

O

Definition 2.7. ([15, 16]). Functions ¢, : V' — W are called comonotone if, for
all u,v € V,

(p(u) — () (¥ (u) — ¥ (v)) = 0.
Obviously, ¢ and @ are comonotone if and only if for any two real numbers r and
s, either &, C U, or ¥, C ®,.

Lemma 2.8. Let (V, A, 1) be a monotone measure space. If ¢ and v are comono-
tone, then for any real numbers r and s,

w(®r NWs) = pu(®r) A p(Vs). (2)
Proof. Since ¢ and ¢ are comonotone, either ®, C ¥, or ¥, C ®,.. Therefore,
(D7) A p(Vs) < pu(Pr N W),
On the other hand, it is clear that u(®, N ¥,) < p(®,) A u(¥s). So we have,
w(Pr N W) = p(Pr) A p(Wss).
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Definition 2.9. ([17, 18]). A function T : [0,1] x [0,1] — [0,1] is said to be
t-norm, if satisfies the following conditions:

(L1): T(u,1)=T(1,u) =u for any u € [0,1].

(Lg): For any wj,us,vi,v2 € [0,1] with w3 < ws and v; < wvg, T(up,v1) <
T (uz,v9).

(L3): T is symmetry and T'(u,v) = T'(v,u) for any u,v € [0,1].

(La): T(T(u,v),w) =T (u, T(v,w)) for any u,v,w € [0, 1].

Note that a function T : [0,1] x [0,1] — [0, 1] is said to be t-seminorm [2], if
it satisfies the conditions (L) and (Ls).

Example 2.10. The following functions are t-norms and symmetry:
1. M(u,v) = min{u,v}.
2. M(u,v) =u-wv.
3. Or(u,v) = max{u+v —1,0}.

Definition 2.11. (]2]). Let T be a t-seminorm and (V,A,u) be a monotone
measure. If ¢ € &, and D € A, then the seminormed Sugeno integral of ¢ on D
with respect to the monotone measure y is defined by

/ edp = sup T [y, u(DNDy)].
D, T y€0,1]

Definition 2.12. Let R be the set of real numbers. If J is a real interval and
¢ :J — R is a function, then ¢ is said to be concave (on J) provided:

w,v e J,Be0,1] = p(fu+ (1= B)v) > Bp(u) + (1 = Bp(v).

3. Results

The following inequality, known as the B-G-L inequality for classic measures, is a
well-known integral inequality for concave functions. (see [19, 20]):

1
s

</ab <Pr(fv)dﬂc>i (/ab W(w)dw) < B(r, s) /ab o(z)(z)dz, (3)

6(b—a)rts—?

=4+ and @, are nonnegative concave functions
(I+r) 7 (1+s)s

where r,s > 1, B(r, s) =
on [a,b).

According to the following example, in general, the classic B-G-L inequality is
not true for generalized Sugeno integral.
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Example 3.1. Let ¢, 1 be two real-valued functions defined as p(u) = ¥(u) = Yu
where u € [0,100]. Let m be the Lebesgue measure, A := A and r = s =4 in
inequality (3). Obviously,

. foloo A Am = foloo Y*Am = sup [y A (100 —y)] = 50,
y€[0,100]

. 0100 ey Am = sup [y A (100 — y?)] = 9.5125,
y€[0,10]

o B(4,4) = 0.26833.

Therefore:

(["stam) ([ )

and, consequently, inequality (3) is not true for the generalized Sugeno integral.

ENE

100
= 7.0711 > 2.5525 = B(4, 4)/ opAm,
0

We are trying to express this integral inequality for the generalized Sugeno
integral and a nonlinear measure p, when ¢ is a concave function. Throughout
this article, we consider B(0, 1) as the Borel o—algebra over [0, 1].

Theorem 3.2. Let r, s €]0,4o0c[. If ¢, : [0,1] = W are two nonnegative mea-
surable concave functions defined on ([0, 1],B(0, 1)) and p is an arbitrary monotone

measure such that both (fol ©"Ap)r and (fol ¢ Ap)* are finite, then
1. If ¢(0) < ¢(1) and 9(0) < 9(1), then

1 1 1 1
1 B 1 s (fl P"Ap)T —p(0) (fl Y Ap) s —4(0)
(Jo o am)” (Jo vean) a <M [Ml] s [wuw(ml])
1
< [y pvAp.

2. If 9(0) = p(1), $(0) = (1), BA0 = 0 for all B € [0,+00], [, ¢"Ap <
p((0,1]), fy ¥*Ap < pu([0,1]) and (1(]0,1]))7++ < ([0, 1)), then

(/OlsorAuy (/OlqpsAM)iA@(ow(o) < /OlwwAu.

3. If ¢(0) > (1) and ¥(0) > (1), then
1 1 1 1
1 oy Tl = (Jg #"Am) ™ —¢(0) (Jo ¥° A= —(0)
(fo v A”) (fo WA”) A (” [O’ -0 ] s [O’ - 50)

< [y pvAp.
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Proof. Let r,s €]0,+oc], fo ©"Ap)r = 1 and (fol Y Ap)s = 2. Since @, 1) :
[0,1] = W are two concave functions, for u € [0,1] we have

() = (1 = u).0 +w.1) > (1 — u)-p(0) + wip(1) = by (u),

PYu) =yP((1—u).0+wul) > (1 —u)(0) + u.ep(l) = la(u).

(1) If (0) < ¢(1) and 1(0) < ©(1), then I; and l; are comonotone. Therefore
by Lemma 2.6 (1) and Lemma 2.8, we have

/O pu)p(u)Ap = / Iy (w)la(u)Ap = sup (BAR([0,1] N {1y (u)l2(w) > 5}))
= 2Au((0,1] N {h(u ) ( ) = m172})
> nAu((0,1] 0 {h(u) =3} N {la(u) =72}
= A0, 1N {h(w) = v}) Ap((0,1] N {la(u) = 72}))
= 7172A(u([ AT = u).9(0) + u.p(1) = 11})
A 101 = u).9(0) + wip(1) = 72}))

> - 0))

n (e ”“{“ 7<2>_ (<>>}>)

- wer (= | e [ ])
(2) If 9(0) = (1), $(0) = (1), BAO = 0 for all B € [0, +00] and [, ¢"Ap <
u([0,1]), fo ¥*Ap < p([0,1]) and (p([0,1])7++ < ([0, 1]), then

|

-

i)

S

B>

=
/-\

=)

=
/—’H

pu) = (1 —u).0+u.l) = ¢(0) = i (u),

() = 9((1 = u).0 + u.1) = $(0) = ().

Thus, by Lemma 2.6 and since A is non-decreasing, we have

Y

/0 1y ()l () At = / P(0)5(0) At = (0)(0) Agu([0, 1))

©(0)(0)A(u([0,1])) 7+
©(0)%(0)A((1([0,1]))7-(u([0,1])) %)
©(0)(0)Av17y2.

/0 () (u) A

A2 AV
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(3) If (0) > (1) and 1(0) > (1), then I; and l; are comonotone. Therefore
by Lemma 2.6 (1) and Lemma 2.8, we have

/0 ou)p(u)Ap > /O li(u)la(u)Ap = ;up (BAR([0, 1] N {lx (u)l2(u) > B}))
> 2 Ap((0, 1] N {l (u)l2(v) > v172})
> m728u((0, 1N {li(w) >y} N {l2(w) > 92})
= 2 A((0, 1] N {li(w) > y1}) A p([0,1] N {l2(u) > 12}))
= va(u([ 7110{(1— u).(0) + u.p(1) > 1})
A N {(1 = u).(0) + urp(1) > 72}))
_ n—(0)
= A (“( { = 50— l0) )

72 — ¥(0)
: ( ”{“ B(1) - o>}>>
_ 71— ¢(0) 72 — ¥(0)
= A (“ {0’ (1) so<o>} o {O’ o) = ¢<0>D ’
and this is the desired result. O

Remark 2. The above theorem is valid if we replace t-seminorm of T" with A.

Corollary 3.3. Let r,s €]0,+oo[. If ¢,¢ : [0,1] — W are two nonnegative
measurable concave functions and p is the Lebesgue measure on R such that both
(fol ©"Ap)* and (fol ¥ Ap)* are finite, then

1. If ¢(0) < ¢(1) and ¥(0) < ¥(1), then
oA (s A e Am T —(0) U 4° A —(0)
(Joer o)™ (fy veam)™a ((1— W) A (1 M))
< [y oo

2. If ¢(0) = p(1), 1(0) = 9(1), BA0 =0 for all § € [0,+o0[, [; ¢"Ap <1 and
fol S Ap < 1, then

1 1
T

(/o1<an Au) | (/olws A”) CAp(0)(0) < /Olgﬁl/JAu.

3. If p(0) > (1) and ¥(0) > (1), then
N A T o™ Ap) T —p(0) U 4*Aw)* —(0)
(Jo e am)" (Jy i) A ((M) " (wmwm))

< [y wvAp.
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In the following, we will present a more general case of Theorem 3.2 and we
will also prove it.

Theorem 3.4. Let r,s €]0, +o0[. If ¢,v : [¢,d] — W are two nonnegative mea-
surable concave functions defined on ([¢,d],B(c,d)) and p is an arbitrary monotone

measure such that both (f ©"Ap)* and (fcd ¢ Ap)* are finite, then
1. If p(c) < p(d) and ¥(c) < 9(d), then

(['v) ([ )

A (M[(I ¢ 8) (4= )+ ep(d) ~ dgle) d]

p(d) = e(c)

A

(9 8p) (4= ) + e(d) — (o)
o{d) — 91e) |

d
< / PYApu.

2. If o(c) = gp(d) P(c) = 1/}() ﬁAO—Oforallﬁe[O—i—oo f<pTAu<
u([e, d)) andf v Ap < u([e, d]), then

d
( ¢ Au) ( P* Au) Aw(C)w(C)S/ PP Ap.

3. If o(c) > ¢(d) and 9(c) > 1(d), then

(/o) (1)

1
r

R (H [ Uit (d =) + cpld) - M@]

p(d) — w(c)

A

) [ (0 ap) (0= ) + evld) - d¢<c>] )

¥(d) —1(c)
d
/ ePAp.

Proof. Let r,s €]0,+oc], (fcd ©"Ap)r =~ and (fcdqps Ap)s = 7. Since @, :
[e,d] — W are two concave functions, for u € [¢,d] we have

IN
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o) = (1= 5=+ (5904 2 (1- 522wt (525 ol = o),

v =0 (0= =00+ (5=94) = (1- 525 )i+ (522 i) = 1w

d
(1) If p(c) < p(d) and 9(c) < 1(d), then [ and Iy are comonotone. Therefore
by Lemma 2.6 (1) and Lemma 2.8, we have

d d
/ p(u)p(u)Ap > / li(u)la(u)Ap = sup (BAu([e,d] N {li(w)lz(uw) > B}))

c c BeW
> mv2Ap(le, d 0 {li(u)l2(u) > y172})
> myelAu(le, d N {l(u) >y} N {l2(u) > 72})
= A, d N {li(u) > 7}) Ap(le,d N {la(u) > v2}))
~ et (s (fed 0 1——§>.w<c>+<““’ (@) 2 m})
A on(ledn{o- 5900+ G2 }))
B Y1 (d — C)Jrcsﬁ( ) v(c)
= s (g (lean {uz PO OO )

|
N (PR R ELTIEAEANY

o - v

B n(d— &) + ep(d) — dp()

= mnA “[1 (@) — o0 ’d]
)+ ep(d)

>

g [%(d_;(d) =Te) dw}’dD |

(2) If () = ¢(d), ¥(c) = (d), BAO = 0 for all 5 € [0, +o00] and [? ¢ Apu <
u([e, d]) and fcd v Ap < u([e, d]), then

o) = (1= =)+ (z—).d) = p(e) = li (),

() = o %)+ (5=0)d) 2 9(e) = au).

(1-
Thus, by Lemma 2.6 (1), (2) and since A is non-decreasing, we have
d

d d
/@(U)w(U)Au > /11() ()Au=/ p(c)y(c)Ap = (c)p(c)Ap([c, d))

C

> p()p(e)A(mne) e

P(e)p(e)A ( / ' w"Au> - ( / ' ww) "
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(3) If p(c) > p(d) and ¥(c) > ¥(d), then l; and Il are comonotone. Therefore by
Lemma 2.6 (1) and Lemma 2.8, we have

v

d
/ b (w)ly () A = sup (BAu([e,d] O {13 (u)la(u) > BY))
c BeW

Y1v28u([e, dl N {li(u)l2(u) > y172})
Y1v2Au([e, d] N {li(u) > 71} N {la(u) > 72})
Y172 (p([e, d] N {I(u) > 71 }) A ple, d] N {la(u) > y2}))

d
/ () () A

v v

2
[l
D
V)
>
=
P
)
&
D
—
—
=
|
<
|
o
B
—
&
Jr
ISR
I
ola
S
—~
QL
S~—
=2
=
——
~_

o(d) — (o)

_ 71(d = ¢) + cp(d) — dp(c)

= nd (o BT
Yo(d — ¢) + ev(d) — dip(c)

: { W(d) — (o) D ’

and this is the desired result. O

A

Corollary 3.5. Let r,s €]0,4+o00[. If v, : [¢,d] — W are two nonnegative
measurable concave functions and y is the Lebesgue measure on R such that both

(fcd ¢"Ap)r and (fcd ¥ Ap)*+ are finite, then

1. If p(c) < p(d) and ¥(c) < 9(d), then

(1) (1)

( U AR) ([ 0) + epld) - d@(C))

p(d) — e(c)

( U An) (= o) + v - dw<c>) )

¥(d) = ¥(c)

IN
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2. If p(c) = p(d), ¥(c) = ¥(d), BAO = 0 for all B € [0, +00], [* ¢"Ap <1 and
fcd Y*Ap < 1, then

(/cd v A”) - (/d »* AM) T Ap(e)p(e) < /cd CUAL.

3. If p(c) > ¢(d) and ¥(c) > 1(d), then

() (/o)

A [ [Uderdm @) +epld) —dp(e)
o(d) — ¢(c)

Sm

1
s

R ((fi v*Ap)" (d =)+ eh(d) — di(e) _ ) )

¥(d) —(c)
d
< / PYAp.

By putting W = [0, +oo[ and A := M in Corollaries 3.3 and 3.5, we get the
results of Agahi et al. [7].
Remark 3. By replacing IT with A in Theorems 3.2 and 3.4 one can obtain many
other B-G-L type inequalities. Examples are:

o If p,7) : [0,1] — [0, +o0[ are two nonnegative measurable concave functions
1
and p is the Lebesgue measure on R such that both ((N) fol gp"dx) " and
((N) fol Pp* da:) % are finite, then

1. If ¢(0) < (1) and ¥(0) < 9(1), then

<(N) /01 @Tda:> ' ((N) /01 wsdx)i . - ((N) Iy tp”'dx) — (0)

©(1) = ¢(0)

3=

(V) i vedz)” =00

AU R iy

< V) /01 pydz.
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2. 1 9(0) = (1), 4(0) = ¥(1), (M) Jo ¢"de < 1 and (N) [y ¢*da < 1,
then

(0 [ o dsc)'i (0 [ v czac)i OO < [ v

3. If p(0) > ¢(1) and ¥(0) > (1), then

e oo - (St

(V) i wrda)” — w<0>)

A

P(1) —(0)
< (N)/O EYAp.

o If ©,7) : [c,d] — W are two nonnegative measurable concave functions

and p is the Lebesgue measure on R such that both ((N) fcd Lp”d:p) " and
((N) fcd P® d$) 5 are finite, then

1. If o(c) < p(d) and ¥(c , then

J 3
( > ( n )
N) [t rdn) (d =) + epld) — dp(o
e(d) — ¢(c)

f wdx “(d—¢) + ep(d) — dip(c)
(d) —(c)

tpwdar

C

2. 1; 0(c) = (), ¥(c) = p(d), (N) [T¢rde <1 and (N) [T¢ide < 1,
then

((N) / "o dm> i ((N) / Ty dx) e < ) / " vz,
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3. If p(e) > ) and ¥(c) > ¥(d), then

: N
( OICIED

N) [ grda)” (d — o) +ep(d) —dple)
¢(d) — p(c)

[lurdr)’ (@ = 0) + ew(d) — dule) C))

P(d) = (c)

< wl)dx

C

4. An inequality associated with B-G-L

We supply a generalized version of the B-G-L type inequality for generalized
Sugeno integrals.

Theorem 4.1. Let r,s €]0,+o00[. If v,¢ : [¢,d] = W are two nonnegative
measurable concave functions defined on ([, d], B(c, d)), p is an arbitrary monotone

measure such that both (fcd ©"Ap) and (fcd ¢ Ap)* are finite and if there is an
operation x : W2 — W such that = is non-decreasing and continuous in both
arguments, then

1. If p(c) < ¢(d) and ¥(c) < 1(d), then

() (/o))

(0" Ap) T (d— ) + ep(d) — dip(c)
A (“ [ o — (0 ’d]

0 A (d - ¢) + cod) — dib(c)
how [ o) — 9(0) d])

d
< / o *x PAp.

2. 1f p(c) = w(d), ¥(c) = (d), BAO = 0 for all B € [0,+ool, [*¢ Ap <
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p(fe,d)) and [*4*Ap < pi([e, d]), then

</cd 4 AM) - * (/cdws A/“L>Tis Ap(c)ip(c) < /Cdgo*wAu.

3. If p(c) > p(d) and ¥(c) > (d), then

(L) (o)

1
-

([Lo"Ap) " (d— ) + ep(d) — di(c)

A c,

! o(d) = ¢(0)

d on NF
e A0 (=0 + el — dute)
’ ¥(d) —(c)

d

< / o *xPAp.
Proof. The proof is routine and goes verbatim as in Theorem 3.4. O

By putting W = [0,4o00[ and A := M in Theorem 4.1, we get the result of
Agahi and et al. [7].

5. Conclusions

This paper presented the B-G-L type inequalities for the generalized Sugeno inte-
gral when the function under consideration is concave. For further investigation,
we will investigate the B-G-L type inequalities for the generalized Sugeno integral
when the function under consideration is (8 — m)-concave.
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