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Abstract
In this paper, we construct a hypergroup by using a hypergroup (H, ◦)

and a polygroup (P, ·), and call it (H,Poly(P ))-hypergroup. The method of
constructing hypergroups in this paper is not present in the established tech-
niques of group theory. Moreover, we compare (H,Poly(P ))-hypergroups
with KH -hypergroups, complete hypergroups and extensions of polygroups
by polygroups.
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1. Introduction
The concept of a hypergroup was first introduced by Marty [1]. He introduced the
(semi)hypergroup as a natural generalization of a (semi)group in where the com-
bination of two elements becomes a non-empty set. Since then, many researches
have been done in hypergroups and other hyperstructures and many valuable books
have been written in this regard [2–8].

Corsini [9] introduced quasicanonical hypergroups and later, Bonansinga [10]
and Massouros [11] studied them. Also, Comer [12] introduced polygroups inde-
pendently. He explained how to make a polygroup by two polygroups. Recently,
Mosayebi, Hamidi and Ameri have studied the auto-Engel polygroup [13].
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De Salvo introduced KH -hypergroups [14, 15]. He also introduced (H,G)-
hypergroups [16]. In addition, the construction of other hyperstructures by the
method in [16] has been done by a number of researchers [17–20]. Extensions of
polygroups by polygroups was also constructed by Stephen D. Comer [21]. The
methods presented above for constructing supergroups are not applicable in group
theory. It is an idea for us to look for other similar methods.

In this paper, we introduce an extension of a hypergroup. We construct a
hypergroup by using a hypergroup (H, ◦) and a polygroup (P, ·). It is called an
(H,Poly(P ))-hypergroup. Through careful analysis, we have determined the req-
uisite conditions for an (H,Poly(P ))-hypergroup to exhibit a polygroup structure.
Also, we explain some new results. Finally, we compare (H,Poly(P ))-hypergroups
withKH -hypergroups, complete hypergroups and extension of polygroups by poly-
groups.
We mention the required definitions in hypergroups as follows (see [2, 3]).

Suppose that the set H contains at least one element and P ∗(H) is the power
set of H except the empty set. A hyperoperation or hypercomposition on H is
a map (binary hyperoperation) ◦ : H × H → P ∗(H). Then, (H, ◦) is called an
algebraic hypercompositional structure or hypergroupoid. For two subsets A,B of
H we define A ◦B as A ◦B =

⋃
{u ◦ u | u ∈ A, v ∈ B}.

(A)An (scalar) identity of the algebraic hypercompositional structure (H, ◦) is
an element e belong H such that u = u ◦ e = e ◦ u)u ∈ u ◦ e ∩ e ◦ u, for every
element u belong H.

If commutativity law holds, i.e. for all u, v ∈ H, we have u ◦ v = v ◦ u then the
algebraic hypercompositional structure (H, ◦) is named a commutative algebraic
hypercompositional structure.

If associativity law holds, i.e. for all u, v, w ∈ H, we have u◦(v◦w) = (u◦v)◦w
then the algebraic hypercompositional structure (H, ◦) is named a semihypergroup.

If reproductivity law holds, i.e. for all u ∈ H, we have u ◦H = H ◦u = H then
the semihypergroup (H, ◦) is named a hypergroup.

A reversible hypergroup is a hypergroup (H, ◦) with identity element, and a
unary operation ′ : H → H such that for all u, v, w ∈ H, u ∈ v ◦ w implies that
w ∈ v′ ◦ u and v ∈ u ◦ w′, (In fact v′ is an inverse of v, i. e. e ∈ v′ ◦ v ∩ v ◦ v′).

A semihypergroup (P, ·) with scalar identity e is called a polygroup if for all
u, v, w in P , u ∈ v · w implies v ∈ u · w−1 and w ∈ v−1 · u, where −1 is a unary
operation on P . (In fact the reversible laws hold). A canonical hypergroup is a
polygroup with the commutative law.
The (H,G)-hypergroup was defined by De Salvo as follows:

Definition 1.1. ([16]). Let (G, ·) and (H, ◦) be a group and a hypergroup, respec-
tively. Consider the non-empty set K and let {Ag}g∈G be the family of non-empty
subsets of K and a partition of K, where Ae = H( e is an identity element of G).
Now we can construct a new hyperoperation ∗ on K by:

x ∗ y =

{
x ◦ y, if (x, y) ∈ H2,
Aa·b, if (x, y) ∈ Aa ×Ab 6= H2.
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Then (K, ∗) is a new hypergroup and it is called an (H,G)-hypergroup.

In Table 1, we can see the Cayley table of an (H,G)-hypergroup. When K =

Table 1: The structure of (H,G)-hypergroup.
∗ x11 · · · x1n1

x21 · · · x2n2
· · · xm1 · · · xmnm

x11 x11 ◦ x11 · · · x11 ◦ x1n1
A2 · · · A2 · · · Am · · · Am

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...
x1n1

x11 ◦ x11 · · · x11 ◦ x1n1
A2 · · · A2 · · · Am · · · Am

x21 A2 · · · A2 A2·2 · · · A2·2 · · · A2·m · · · A2·m
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x2n2
A2 · · · A2 A2·2 · · · A2·2 · · · A2·m · · · A2·m

xm1 Am · · · Am Am·2 · · · Am·2 · · · Am·m · · · Am·m
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

xmnm
Am · · · Am Am·2 · · · Am·2 · · · Am·m · · · Am·m⋃

gi∈GAi, Ai = {xi1, . . . , xini
}, i = 1, 2, . . . ,m.

Example 1.2. Let (G = {e, a, b}, ·) ∼= (Z3,+) and (H = {0, 1}, ◦) with 0 ◦ 0 =
0, 0 ◦ 1 = 1 ◦ 0 = 1 and 1 ◦ 1 = H. Set K = {0, 1, 2, 3, 4, 5} with Ae = H =
{0, 1}, Aa = {2} and Ab = {3, 4, 5}. Then (K, ∗) is an (H,G)-hypergroup. In
Table 2, we can see the Cayley table of the (H,G)-hypergroup (K, ∗).

Table 2: (H,G)-hypergroup of order 5.
∗ 0 1 2 3 4 5
0 {0} {1 } {2 { 3,4,5} {3,4,5 } {3,4,5}
1 {1} {0,1} {2} {3,4,5 } {3,4,5} {3,4,5}
2 {2} {2 } {3,4,5} {0,1} {0,1} {0,1}
3 {3,4,5} {3,4,5} {0,1} {2 } {2} {2}
4 {3,4,5} {3,4,5} {0,1} {2 } {2} {2}
5 {3,4,5} {3,4,5} {0,1} {2 } {2} {2}

2. (H,Poly(P ))-hypergroup
In this section, we provide the structure of an (H,Poly(P ))-hypergroup. Then we
present the structure and properties of this new kind of hyperstructures.

Definition 2.1. Let (P, ·) and (H, ◦) be a polygroup and a hypergroup, respec-
tively. Consider the non-empty set K and let {Ap}p∈P be the family of non-empty
subsets of K and a partition of K, where Ae = H( e is an identity element of poly-
group P ).
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Now we can construct a new hyperoperation ? on K by:

x ? y =

{
x ◦ y, if (x, y) ∈ H2,⋃
p∈a·bAp, if (x, y) ∈ Aa ×Ab 6= H2.

The new hyperstructure (K, ?) is named (H,Poly(P ))-hypergroupoid.

Theorem 2.2. The hyperstructure (K, ?) is a quasihypergroup.

Proof. We have K ? x ⊆ K,x ? K ⊆ K, for every x ∈ K. We show that for every
y ∈ K, y ⊆ x ? K. We have four cases:

(1) If x ∈ H and y ∈ H then y ∈ x ◦H ⊆ x ? K.

(2) If x ∈ H = Ae and y ∈ Ab, where b 6= e, then y ∈ x ? y ⊆ x ? K.

(3) If x ∈ Aa, where a 6= e, and y ∈ H = Ae then y ∈ x ? y ⊆ x ? K.

(4) If x ∈ Aa, and y ∈ Ab, where a 6= e 6= b, then there is an element c ∈ P such
that b ∈ a · c. So y ∈ Ab ⊆

⋃
p∈a·cAp ⊆ x ? K.

Therefore, we conclude that y ∈ x?K. The similar arguments imply that for every
y ∈ K, y ⊆ K ? x. This yields that K = K ? x, K ? x = K and (K, ?) is a
quasihypergroup.

Theorem 2.3. The hyperstructure (K, ?) is a semihypergroup.

Proof. We show that ? is associative. We have four cases:

(1) If x, y, z ∈ H then (x ? y) ? z = (x ◦ y) ◦ z = x ◦ (y ◦ z) = x ? (y ? z).

(2) If x, y ∈ H and z ∈ Ac, where c 6= e, then x ? y = x ◦ y ∈ H = Ae and
(x ? y) ? z = (x ◦ y) ? z =

⋃
p∈e·cAp = Ac. On the other hand x ? (y ? z) =

x ?
⋃
p∈e·cAp = x ? Ac = Ac and therefore x ? (y ? z) = (x ? y) ? z. Also, if

x, z ∈ H and y ∈ Ab, where b 6= e or If y, z ∈ H and x ∈ Aa, where a 6= e
the proofs is similar.

(3) If x ∈ Aa, y ∈ Ab and z ∈ H, where a 6= e 6= b, then x ? y =
⋃
p∈a·bAp and

(x ? y) ? z =
⋃
p∈a·b

Ap ? z =
⋃
p∈a·b

Ap.

On the other hand, we have

x ? (y ? z) = x ?
⋃
p∈b·e

Ap = x ? Ab =
⋃
p∈a·b

Ap.

Consequently, we get x ? (y ? z) = (x ? y) ? z.
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(4) If x ∈ Aa, y ∈ Ab and z ∈ Ac, where identity element e 6∈ {a, b, c}, then

(x ? y) ? z =
⋃
q∈a·b

Aq ? z =
⋃
q∈a·b

⋃
p∈q·c

Ap =
⋃

p∈(a·b)·c

Ap.

Also,
x ? (y ? z) = x ?

⋃
q∈b·c

Aq =
⋃
p∈a·q

⋃
q∈b·c

Ap =
⋃

p∈a·(b·c)

Ap.

Since (a · b) · c = (a · b) · c, it follows that x ? (y ? z) = (x ? y) ? z.

Therefore, the hyperstructure (K, ?) is a semihypergroup.

By Theorems 2.2 and 2.3, we immediately obtain the next result.

Corollary 2.4. The hyperstructure (K, ?) is a hypergroup.

Definition 2.5. The hypergroup (K, ?) is called an (H,Poly(P ))-hypergroup.

Example 2.6. Let P = {e, a, b} and (P, ·) denote the polygroup with the corre-
sponding Cayley table outlined in Table 3 and (H = {0, 1}, ◦) with 0◦0 = 0, 0◦1 =

Table 3: Polygroup of order 3.

· e a b
e {e} {a} {b}
a {a} {e, a} {b}
b {b} {b} {e, a, b}

1 ◦ 0 = 1 and 1 ◦ 1 = H. Set K = {0, 1, 2, 3, 4, 5} with Ae = H = {0, 1}, Aa = {2}
and Ab = {3, 4, 5}. Then (K, ?) is an (H,Poly(P ))-hypergroup of order 5. In
Table 4, we can see the Cayley table of the (H,Poly(P ))-hypergroup (K, ?).

Since every group is a polygroup, then

Corollary 2.7. If (P, ·) is a group, then (K, ?) = (K, ∗), where ∗ is defined in
Definition 1.1.

Proof. For every x, y ∈ K, we have

x ? y =

{
x ◦ y, if (x, y) ∈ H2,⋃
p∈a·bAp, if (x, y) ∈ Aa ×Ab 6= H2

=

{
x ◦ y, if (x, y) ∈ H2,
Aa·b, if (x, y) ∈ Aa ×Ab 6= H2

= x ∗ y.

This implies the result.
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Table 4: (H,Poly(P ))-hypergroup of order 5.

? 0 1 2 3 4 5
0 {0} {1} {2} {3,4,5} {2,4,5} {3,4,5}
1 {1} {0,1} {2} {3,4,5} {2,4,5} {3,4,5}
2 {2 } {2} {0,1,2 } {3,4,5} {2,4,5} {3,4,5}
3 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}
4 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}
5 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}

Theorem 2.8. The (H,Poly(P ))-hypergroup (K, ?) is a commutative hypergroup
if and only if (H, ◦) and (P, ·) are commutative.

Proof. If (H, ◦) and (P, ·) are commutative, then

x ? y =

{
x ◦ y, if (x, y) ∈ H2,⋃
p∈a·bAp, if (x, y) ∈ Aa ×Ab 6= H2

=

{
y ◦ x, if (x, y) ∈ H2,⋃
p∈b·aAp, if (x, y) ∈ Aa ×Ab 6= H2

= y ? x.

Conversely, since (K, ?) is commutative, for every x, y ∈ H,

x ◦ y = x ? y = y ? x = y ◦ x.

Hence, (H, ◦) is commutative. Moreover, if (P, ·) is not commutative, then there
are elements a, b ∈ P such that a · b 6= b · a and a · b − b · a 6= ∅. Suppose that
p ∈ a · b − b · a. Then Ap ⊆ x ? y and Ap 6⊆ y ? x and this contradicts the
commutativity of ?. This means that (P, ·) is commutative.

Theorem 2.9. The (H,Poly(P ))-hypergroup (K, ?) has an identity element if
and only if (H, ◦) has an identity element.

Proof. Let ε ∈ H be an identity element of the hypergroup (H, ◦). Then, for every
x ∈ K, we have one of the following two situations:

(1) If x ∈ H, then x ∈ x ◦ ε ∩ ε ◦ x = x ? ε ∩ ε ? x.

(2) If x ∈ Aa, where a 6= e, then

x ∈ Aa ⊆ (
⋃
p∈a·e

Ap) ∩ (
⋃
p∈a·e

Ap) = x ? ε ∩ ε ? x.

Therefore, we deduce that ε ∈ K is an identity elements of (K, ?).
Now, let ε ∈ K be an identity elements of (K, ?). If ε ∈ H, then the proof is

obvious. If ε ∈ Ab, where b 6= e, then for every x ∈ H, x ∈ x?ε implies that e ∈ e·b
and so b ∈ e−1 · e = e. This is a contradiction and we deduce that ε ∈ H.
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Theorem 2.10. The (H,Poly(P ))-hypergroup (K, ?) is reversible if and only if
(H, ◦) is reversible.

Proof. It is straightforward.

Theorem 2.11. The (H,Poly(P ))-hypergroup (K, ?) has a scalar identity element
if and only if (H, ◦) has a scalar identity element and for every a ∈ P − {e},
| Aa |= 1.

Proof. If ε ∈ K is a scalar identity of (K, ?), then x = x ? ε = ε ? x. If x ∈ H,
then x ? ε = x ∈ H, hence ε ∈ H. So, ε ∈ K is a scalar identity of (H, ◦). For
every x ∈ Aa, where a 6= e, we have x = x ? ε =

⋃
p∈a·eAp = Aa. This yields that

Aa = {x}.
Conversely, if ε is a scalar identity of (H, ◦) and for every a ∈ P−{e}, | Aa |= 1,

then Aa = {x}. Therefore

x ◦ ε = x ◦ ε =
{
x, if x ∈ H,
Aa, if x ∈ Aa 6= H

= x.

This completes the proof.

Now, we present a new way to construct a polygroup from other polygroups.

Theorem 2.12. The (H,Poly(P ))-hypergroup (K, ?) is a polygroup if and only if
(H, ◦) is a polygroup and for every a ∈ P − {e}, | Aa |= 1.

Proof. If (K, ?,−1 , ε) is a polygroup, then by Theorem 2.11, we obtain ε ∈ H.
Moreover, for every a ∈ P − {e}, | Aa |= 1. For arbitrary elements x, y, z ∈ H,
x ∈ y ? z gives the result y ∈ x ? z−1 and z ∈ y−1 ? x. Since the restriction of
the hyperoperation ? on H is equal to hyperoperation ◦, it follows that x ∈ y ◦ z,
and so y ∈ x ◦ z−1 and z ∈ y−1 ◦ x. (Notice that by Theorem 2.10, for all x ∈ H,
x−1 ∈ H.) Hence, (H, ◦) is a polygroup.

Conversely, let (H, ◦) be a polygroup and for every a ∈ P −{e}, | Aa |= 1. Let
the unitary operation −I on K be as follows:

x−I =

{
x−1, if x ∈ H,
Aa−1 , if x ∈ Aa 6= H.

Moreover, x ∈ Aa if and only if x−I ∈ Aa−1 . Let x ∈ y ? z, where x, y, z ∈ K. We
have one of the following cases:

(1) If y, z ∈ H, then x ∈ H and (H, ◦) is a polygroup. So, we obtain x ∈ y ? z =
y ◦ z, which implies that y ∈ x ◦ z−1 = x ? z−I and z ∈ y−1 ◦ x = y−I ? x.

(2) If y ∈ Ab and z ∈ Ac and Ab × Ac 6= H2, then x ∈ y ? z =
⋃
a∈b·cAa. By

reversibility of polygroup (P, ·), a ∈ b ·c yields that b ∈ a ·c−1 and c ∈ b−1 ·a.
Therefore y ∈ x ? z−I and z ∈ y−I ? x.
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This shows that (K, ?,−I , ε) is a polygroup.

Definition 2.13. The polygroup (K, ?) is called an (H,Poly(P ))-polygroup.

Corollary 2.14. Let (H, ◦,−1 , ε) and (P, ·,−1 , e) be two polygroups, Ae = H and
for every a ∈ P − {e}, Aa = {a}. Then (H ∪ P, ?,−I , ε) is a polygroup.

Theorem 2.15. The (H,Poly(P ))-polygroup (K, ?) is a canonical hypergroup if
and only if (H, ◦) and (P, ·) are canonical hypergroups and for every a ∈ P − {e},
| Aa |= 1.

Proof. The result follows from Theorems 2.8 and 2.12.

Definition 2.16. ([22]). A transposition hypergroup is a hypergroup (H, ◦) such
that for arbitrary elements a, b, c, d ∈ H,

b�◦a ≈ c�◦d ⇒ a ◦ d ≈ b ◦ c,

where a�◦b = {x|a ∈ x ◦ b} and b�◦a = {x|a ∈ b ◦ x}. Every commutative
transposition hypergroup is called a join space.

Theorem 2.17. (H,Poly(P ))-hypergroup (K, ?) is a transposition hypergroup if
and only if (H, ◦) is a transposition hypergroup.

Proof. Let (H, ◦) be a transposition hypergroup and y�?x ≈ z�?u, where x ∈
Aa, y ∈ Ab, z ∈ Ac, u ∈ Ad. If a = b = e then c = d = e or z�?u ≈ H. If
c = d = e, then x, y, z, u ∈ H and (H, ◦) is a transposition hypergroup. Hence, we
have x ◦ z ≈ z ◦ u and therefore x ? z ≈ y ? u. If z�?u ≈ H, then there is h ∈ H,
such that z ∈ h ? u. Then Ac = Ad and so c = d. Therefore, we conclude that
Ac ⊆ (y�?x) ∩ (z�?u).

If c = d = e and y�?x ≈ H, by the similar way we obtain Ab ⊆ (y�?x) ∩
(z�?u).

Else, y�?x ≈ z�?u implies that t ∈ {v ∈ K|x ∈ y ? v} ∩ {w ∈ K|z ∈ w ? u}. If
t ∈ Af then a ∈ b ·f and c ∈ f ·d. This yields that f ∈ c ·d−1∩b−1 ·a. Since (P, ·) is
a polygroup, it follows that (P, ·) is a transposition hypergroup and c�·d = c ·d−1
and b�·a = b−1 · a. Now, c�·d ≈ b�·a implies a · d ≈ b · c.

But a · d ∩ b · c if and only if c�·d ≈ b�·a. This completes the proof of this
part.

Conversely, assume that (K, ?) is a transposition hypergroup and y�◦x ≈
z�◦u. Then, we obtain y�?x ≈ z�?u. So, x ? z ≈ y ? u, which implies that
x ◦ z ≈ y ◦ u.

Corollary 2.18. (H,Poly(P ))-hypergroup (K, ?) is a join space if and only if
(H, ◦) is a join space and (P, ·) is a canonical hypergroup.

Proof. The result follows from Theorems 2.8 and 2.17.
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Two relations β and γ in hyperstructures, especially in hypergroups, play the
role of congrunce relations in group and semigroup theory. Many mathematicians
explored and introduced this two relation, for instant see Koskas [23, 24], Corsini
[2], Freni [25–27], Vougiouklis [28] and others.

Consider ρ be a strongly regular relation on a (semi)hypergroup (H, ◦). Then
the quotient structure (H/ρ, ◦ρ) is a (semi)group where H/ρ = {ρ(u)|u ∈ H} and
◦ρ is an operation defined on H/ρ by

ρ(u) ◦ρ ρ(v) = ρ(w), for all w ∈ u ◦ v.

Now, we recall definitions of strongly regular relations γ and β on a (semi)hypergroup
[23, 25]. Koskas [23] introduced the relation β on a hypergroup by the following
formula:

uβv ⇔ ∃l ∈ N, w1, . . . , wn ∈ H such that u, v ∈
l∏

k=1

wk.

Moreover, in [25], Freni defined the relation γ as follows:

uγv ⇔ ∃l ∈ N,∃w1, . . . , wn ∈ H and ∃τ ∈ Sn : u ∈
l∏

k=1

wk and v ∈
l∏

k=1

wτ(k),

where Sn is the permutaion group on {1, 2, . . . , n}. It has been proven that β and
γ are the smallest equivalence relations on H such that H/β and H/γ∗ are a group
and an Abelian group. The group H/β and the Abelian group H/γ∗ are named
the fundamental group and commutative fundamental group, respectively.

Theorem 2.19. Let (K, ?) be an (H,Poly(P ))-hypergroup and K =
⋃
p∈P Ap.

For all n ≥ 1 and x1, x2, . . . , xn ∈ K we have one of the following two cases:

(1) There is a Q ⊆ P such that
∏n
k=1 xk =

⋃
p∈QAp;

(2) There is B ∈ P ∗(H) such that
∏n
k=1 xk = B;

Proof. Suppose that xk ∈ Aak , where 1 ≤ k ≤ n. If for every 1 ≤ k ≤ n, ak = e
then B =

∏n
k=1 xk ⊆ H and case (2) holds. Else

∏n
k=1 xk =

⋃
p∈

∏n
k=1 ak

Ap and
Q =

∏n
k=1 ak ⊆ P. Therefore, we conclude that the case (1) holds.

Theorem 2.20. Let (K, ?) be an (H,Poly(P ))-hypergroup and K =
⋃
p∈P Ap.

For all (x, y) ∈ Aa ×Ab, where a, b ∈ P, we have

xβKy ⇐⇒ aβP b.

and so K/βK ∼= P/βP .

Proof. If a = b = e, then there are two elements p, q ∈ P such that e ∈ p · q and so
H ⊆ u? v, where u ∈ Ap and v ∈ Aq. It implies that xβKy. If xβKy and x, y ∈ Ae
then a = e and b = e and eβP e.
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Now, let (a, b) 6= (e, e), x ∈ Aa and y ∈ Ab. xβKy if and only if there are
x1, x2, . . . , xn ∈ K such that {x, y} ⊆ x1 ? x2 ? . . . ? xn =

⋃
p∈a1·a2·...·an Ap, where

xi ∈ Aai . Since x ∈ Aa and y ∈ Ab then Aa and AB are subset of
⋃
p∈a1·a2·...·an Ap.

This imply that {a, b} ⊆ a1 · a2 · . . . · an and so aβP b.
aβP b implies that a, b ∈ a1 · a2 · . . . · an, for some a1, a2, . . . , an ∈ P. Then for

every xi ∈ Aai we have Aa, Ab ⊆ x1 ? x2 ? . . . ? xn and so xβKy.
Define ψ : K/βK → P/βP by ψ(βK(x)) = βP (a), where x ∈ Aa for some

a ∈ P. With a bit calculation, we can see that ψ is an isomorphism and the proof
is completed.

Theorem 2.21. Let (K, ?) be an (H,Poly(P ))-hypergroup and K =
⋃
p∈P Ap.

For all (x, y) ∈ Aa ×Ab, where a, b ∈ P, we have

xγKy ⇐⇒ aγP b.

and so K/γK ∼= P/γP .

Proof. See proof of Theorem 2.19.

Corollary 2.22. Let (K, ?) be an (H,Poly(P ))-hypergroup and (P, ◦) be a canon-
ical hypergroup. Then K/γK ∼= P/βP .

Corollary 2.23. Let (K, ?) be an (H,Poly(P ))-hypergroup. Then

(1) If (P, ◦) is a group, then K/βK ∼= P.

(2) If (P, ◦) is a group, then K/γK ∼= P/P ′, where P ′ is the derived subgroup of
P .

(3) If (P, ◦) is an abelian group, then K/γK ∼= P.

3. Comparison with other subclasses of hypergroups
In this section, we compare (H,Poly(P ))-hypergroups with (H,G)-hypergroups,
KH -hypergroup and Extension of polygroups by polygroups . First, we introduce
some concepts in the theory of hyperstructures.

Definition 3.1. Given two hypergroups (A, ◦) and(B, •), we say that the hyper-
group (B, •) is an enlargement of (A, ◦) if

(1) A ⊆ B;

(2) For every element x, y belong A, we have the set x • y includes x ◦ y.

Definition 3.2. ([29]). Let (H, ◦) be An Hv-group. We called (H, ◦) is an Hb-
group if we can find a group (H, �) such that for all elements x, y ∈ H, x�y ∈ x◦y. If
Hb-group (H, ◦) is a hypergroup(polygroup) then (H, ◦) is called �-hypergroup(�-
polygroup).
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Theorem 3.3. Let (P, ·) be a �-polygroup ((P, �) is a group). Then the hyper-
group (H,Poly(P ))-group (K, ?) is an enlargement of the hypergroup (H,P )-group
(K, ∗).

Proof. This holds since � ⊆ · so ∗ ⊆ ?.

We recall the definitions of KH -hypergroups, complete hypergroups and exten-
sion of polygroups by polygroups:

Definition 3.4. ([14]). KH-hypergroups and complete hypergroups
Let (H, ◦) be a hypergroup and Aa ⊆ K, where a ∈ H, be non-empty subsets

and {Aa | a ∈ h} be a partition of set K. We obtain a hypergroup (K,⊗) when ⊗
is the following hyperoperation:

x⊗ y =
⋃
c∈a◦b

Ac, for all x ∈ Aa, y ∈ Ab.

The hypergroup (K,⊗) is called a KH -hypergroup, made by the hypergroup H.
If (K,⊗) is a KH -hypergroup and (H, ◦) is a group then we say that (K,⊗) is

a complete hypergroup.

For the first time, Comer [21] made a larger polygroup from two smaller poly-
groups.

Definition 3.5. ([21]). Extensions of polygroups by polygroups
Let A = (A, ◦, e,−1 ) be a polygroup with identity e and B = (B, ·, e,−1 ) be

an other polygroup with identity e such that A ∩ B = {e}. Then we construct a
polygroup A[B] = (M,�, e,−I ), whereM = A∪B, x−I := x−1, x�e = e�x = x,
for all x ∈M . For all x, y ∈M − {e} the hyperoperation · is defined as follows:

x� y =


x ◦ y, if x, y ∈ A,
x, if x ∈ B and y ∈ A,
y, if x ∈ A and y ∈ B,
x · y, if x, y ∈ B and x 6= y−1,
x · y ∪A, if x, y ∈ B and x 6= y−1.

Then the hyperstructure A[B] = (M,�, e,−I ) made by the above method has a
polygroup structure and it is called polygroup extension A by B.

Example 3.6. Let (G = {e, a, b}, ·) ∼= (Z3,+) and (H = {0, 1}, ◦) with 0 ◦ 0 =
0, 0 ◦ 1 = 1 ◦ 0 = 1 and 1 ◦ 1 = H. Set K = {0, 1, 2, 3, 4, 5} with Ae = H =
{0, 1}, Aa = {2} and Ab = {3, 4, 5} then we obtain the complete hypergroup (K,⊗)
denote the hypergroup with the corresponding Cayley table outlined in Table 5. It
can be seen with a little care that (K,�) is an enlargement of (H,G)-hypergroup
(K, ∗) in Example 1.2.
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Table 5: Complete hypergroup.

⊗ 0 1 2 3 4 5
0 {0,1} {0,1} {2} {3,4,5} {3,4,5} {3,4,5 }
1 {0,1} {0,1} {2} {3,4,5} {3,4,5} {3,4,5 }
2 {2} {2} {3,4,5} {0,1} {0,1} {0,1}
3 {3,4,5} {3,4,5 } {0,1} {2} {2} {2}
4 {3,4,5} {3,4,5 } {0,1} {2} {2} {2}
5 {3,4,5} {3,4,5 } {0,1} {2} {2} {2}

Table 6: Polygroup of order 2.

◦ 0 1
0 {0} {1}
1 {1} {0,1}

Example 3.7. Let H = {0, 1} and (H, ◦) denote the hypergroup(polygroup)
with the corresponding Cayley table outlined in Table 6. Also, let P = {e, a, b}
and (P, ·) denote the polygroup with the corresponding Cayley table outlined
in Table 7. Let K = {0, 1, 2, 3, 4, 5} and set Ae = H = {0, 1}, Aa = {2} and
Ab = {3, 4, 5} then we obtain the (H,Poly(P ))-hypergroup (K, ?) denote the
hypergroup with the corresponding Cayley table outlined in Table 8.

Example 3.8. Let (H, ◦) denote the hypergroup with the corresponding Cayley
table outlined 6 and (P, ·) denote the polygroup with the corresponding Cayley
table outlined in Table 7. Let K = {0, 1, 2, 3, 4, 5} and set Ae = H = {0, 1}, Aa =
{2} and Ab = {3, 4, 5} then we obtain the KP -hypergroup (K,⊗) by denote the
hypergroup with the corresponding Cayley table outlined in Table 9.

Example 3.9. Let H = {e, 1} and (H, ◦) denote the hypergroup(polygroup)
with the corresponding Cayley table outlined in Table 10. and let (P, ·) denote
the polygroup with the corresponding Cayley table outlined in Table 7. Then
M = {e, 1, a, b} and extension of polygroup H by the polygroup P is denote the
polygroup with the corresponding Cayley table outlined in Table 11.

Theorem 3.10. Let (H, ◦) and (P, ·) be a hypergroup and a polygroup, respectively.
Set K =

⋃
a∈P Aa with Ae = H, where e is an identity element of (P, ·). Then the

KP -hypergroup (K,⊗) is an enlargement of the (H,Poly(P ))-hypergroup (K, ?).

Proof. For every x, y ∈ K we have one of two following cases:

(1) If x, y ∈ H then x ◦ y ∈ H and so x ? y ⊆ x⊗ y.
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Table 7: Polygroup of order 3.

· e a b
e {e} {a} {b}
a {a} {e,a} {b}
b {b} {b} {e,a,b}

Table 8: (H,Poly(P ))-hypergroup.

? 0 1 2 3 4 5
0 {0} {1} {2} {3,4,5} {2,4,5} {3,4,5}
1 {1} {0,1} {2} {3,4,5} {2,4,5} {3,4,5}
2 {2} {2} {0,1,2} {3,4,5} {2,4,5} {3,4,5}
3 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}
4 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}
5 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}

(2) If x, y ∈ Aa ⊗Ab 6= H2, then x ? y =
⋃
p∈a·bAp = x⊗ y.

This yields that (K,⊗) is an enlargement of (K, ?).

Corollary 3.11. Let (H, ◦) be a hypergroup, (G, ·) be a group and K =
⋃
a∈P Aa,

where Ae = H. Then the complete hypergroup (K,⊗) is an enlargement of the
(H,G)-hypergroup (K, ∗).

Theorem 3.12. Let (H, ◦) be a hypergroup. If the polygroup (P, ·) is an en-
largement of the polygroup (P ′, ·′) then the (H,Poly(P ))-hypergroup (K, ?) is an
enlargement of (H,Poly(P ′))-hypergroup (K, ?′).

Proof. For every x, y ∈ K we have one of two following cases:

(1) If x, y ∈ H then x ? y = x ◦ y = x ?′ y.

(2) If (x, y) ∈ Aa ×Ab 6= H2, then x ?′ y =
⋃
p∈a·′bAp ⊆

⋃
p∈a·bAp = x ? y.

Therefore, we conclude that (K, ?) is an enlargement of (K, ?′).

Theorem 3.13. Every (H,Poly(P ))-hypergroup (K, ?) is an enlargement of the
hypergroup H.

Proof. It follows from H ⊆ H and ◦ ⊆ ?.

Theorem 3.14. The (A,Poly(B))-hypergroup (K, ?) is an enlargement of the
polygroup A[B] = (M,�, e,−1 ) where for all a ∈ B − {e}, a ∈ Aa.
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Table 9: KP -hypergroup.

⊗ 0 1 2 3 4 5
0 {0,1} {0,1} {2} {3,4,5} {2,4,5} {3,4,5}
1 {0,1} {0,1} {2} {3,4,5} {2,4,5} {3,4,5}
2 {2} {2} {0,1,2} {3,4,5} {2,4,5} {3,4,5}
3 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}
4 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}
5 {3,4,5} {3,4,5} {3,4,5 } {0,1,2,3,4,5 } {0,1,2,3,4,5} {0,1,2,3,4,5}

Table 10: Polygroup of order 2.

◦ e 1
e {e} {1}
1 {1} {e,1}

Proof. We have A ∪B ⊆ K. Moreover, for all a, b ∈ B, we have x ? y =
⋃
p∈a·bAp

and so a · b ⊆ a ? b. Now, we have the following cases:

(1) If x, y ∈ A, then x� y = x ◦ y = x ? y.

(2) If x ∈ A = Ae and y ∈ B, then y = x� y ∈ Ay ⊆
⋃
p∈e·y Ap = x ? y.

(3) If x ∈ B and y ∈ A, then x = x� y ∈ Ax ⊆
⋃
p∈x·eAp = x ? y.

(4) If x, y ∈ B and x 6= y−1, then x� y = x · y ⊆ Ax·y ⊆ x ? y.

(5) If x, y ∈ A and x = y−1, then x�y = A∪{e} = A = Ae ⊆⊆
⋃
p∈x·eAp = x?y,

because e ∈ x · y.

Therefore for all x, y ∈ A ∪ B, x � b ⊆ x ? y and so the hypergroup(K, ?) is an
enlargement of the polygroup A[B].

Theorem 3.15. Let (B, ·, e,−1 ) be a group and Ax = {x}, for all x ∈ B − {e}.
Then (K, ?) = (M,�).

Proof. We have M = A ∪B = K. Moreover, we can consider the following cases:

(1) If x, y ∈ A, then x� y = x ◦ y = x ? y.

(2) If x ∈ A = Ae and y ∈ B, then x� y = y = Ay = Ae·y = x ? y.

(3) If x ∈ B and y ∈ A = Ae, then x� y = x = Ax = Ax·e = x ? y.

(4) If x, y ∈ B and x 6= y−1, then x� y = x · y = Ax·y = x ? y.
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Table 11: Extension of polygroup by polygroup.

� e 1 a b
e {e} {1} {a} {b}
1 {1} {e,1} {a} {b}
a {a} {a} {e,1,a} {b}
b {b} {b} {b} {e,1,a,b}

(5) If x, y ∈ A and x = y−1, then x � y = A ∪ {e} = A = Ae = Ax·y = x ? y,
because e = x · y.

Therefore (K, ?) = (M,�)..

4. Conclusions
In this paper, we proposed and characterized new classes of hypergroups named
the (H,Poly(P ))-hypergroups, thus, it is an generalization of (H,G)-hypergroups
explored by De Salvo[16]. We compared (H,Poly(P ))-hypergroups with KH -
hypergroups, complete hypergroups and extension of polygroups by polygroups.

Our future objective is to expand this study to encompass other hyperstruc-
tures. Also, it can be interesting to define and introduce the reducibility for
(H,Poly(P ))-hypergroups like in [17, 30].
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