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Abstract

In this paper, we consider a Sturm-Liouville equation with non-separated
boundary conditions on a finite interval. We discuss some properties of
solutions of the Sturm-Liouville equation, where the potential function has
a singularity in the finite interval. We also calculate eigenvalues and prove
the uniqueness of Borg’s Theorem of this boundary value problem.
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1. Introduction

In this paper, we study the non-separated boundary value problem L = L(q, a,b)
of the form

@)+ 2D ) s gye) = @), a@eL0 ()
y(0)=0,  ay(1)+y'(1)+by'(0) =0, (2)
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where ¢(x), a, b are real. Also, ab = a+b and m > 0. The challenge of reconstruct-
ing an operator from its given spectral characteristics is termed an inverse problem
in spectral analysis. The inverse spectral problems often appear in mathematics,
electronics, quantum physics, and other branches of science. Sturm-Liouville equa-
tions without singularities were studied by many authors (see [1-5]).

The boundary value problems with one singular point in [6, 7| have been stud-
ied and authors have shown that the eigenvalues and norming constant uniquely
determine the potential function. In [8], we deal with second-order differential
operators having a singular potential. We provide a numerical algorithm for solv-
ing the inverse problem of spectral analysis and finding the potential function. In
[9, 10], authors consider differential equations having singularities at the end-points
of the interval, and investigate the inverse problems with separated boundary con-
ditions.

Researchers in the past have made great efforts to obtain the uniqueness theo-
rems for non-selfadjoint spectral problems with non-separated boundary conditions
on a finite interval. In [11], the first result in this field was obtained. After that
several uniqueness theorems for inverse selfadjoint problems with non-separated
boundary conditions were proved in [12] and [13, 14]. However, the results obtained
for non-selfadjoint problems were not direct generalizations of Borg’s uniqueness
theorem. Since 1949, many authors attempted to generalize Borg’s result for non-
selfadjoint problems with non-separated boundary conditions since 1949. But only
in [11], a generalization of Borg’s theorem for the case of inverse non-selfadjoint
problems with general boundary conditions, including non-separated ones, was ob-
tained. Freiling and Yurko in [15-17], studied inverse problems for some second-
order differential equations with non-separated boundary conditions and showed
that the operators can be recovered from their spectral characteristics. In [18],
the authors investigated a boundary value problem when one of the non-separated
boundary conditions contains a spectral parameter, and a uniqueness theorem
is given along with an algorithm developed for solving the inverse problem. In
[19], the authors stated that the Sturm-Liouville problem with general bound-
ary conditions cannot be uniquely reconstructed from spectra. However, a class of
non-separated boundary conditions is obtained for which two uniqueness theorems
for the solution of the inverse Sturm-Liouville problem are proved.

The uniqueness theorem has been proved using Borg’s theorem in various
sources. One such example can be found in reference [20], where the theorem
was applied based on the separable conditions of the problem. In reference [21],
Hikmet outlines a problem in which the potential function has a singular point,
and the conditions of the problem are also separable. In this case, the eigenvalues
of the problem are first obtained, and then Borg’s theorem is used to prove the
uniqueness theorem.

In this paper, we are interested to study the spectral problems associated with
singular differential equations with non-separated boundary conditions and prove
the uniqueness theorem. In [16], the uniqueness theorem has been investigated for
the inverse spectral problem with non-separated boundary conditions, but in this
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paper, we prove the uniqueness theorem using Borg’s theorem. In Section 2, by
using the Bessel function, we represent a solution of (1). This solution has features
that have been investigated by the author in [20], and we obtain eigenvalues of the
problem (3)-(4). In Section 3, we prove the Borg’s theorem of the boundary value
problem.

2. Solution and eigenvalues of L(0,a,b)

In this section, we consider the boundary value problem L(0, a,b) as follows:

@)+ M0y = xy), Q
y(0)=0,  ay(1)+y'(1) +by'(0) = 0. (4)

Now, we obtain the eigenvalues of L(0,a,b). We know that the eigenvalues of
this problem are real (see [19]). By [20], we assume that the solution to problem
(3)-(4), takes the form

—(mt1)
Pz, A) = A7 7 Oy (pa), (5)
where 1 = v/A and function 6, (s) is a solution of
1
—0"(s) + Ma(s) =0(s), s#0, Re(s)>0, s =z (6)

52

The integral form of the functions 6;(s) and 6](s), is based on Lemma 2.1 in [20],
as follows

01(s) =sin (s - %) - /SOO w sin (s — t) 04 (¢)dt, (7)
07(s) = cos (s - %) — /:o w cos (s — t) 01 (t)dt. (8)

By the Lemma 2.3 in [20], we have the following estimations

T

m+1
—_— exp (|Im(u)|z),
) e (mGole)

wm»mK(

e <K () e (o),

where K is a constant.
Based on the content stated above, we obtain the eigenvalues of L(0,a,b).
According to 9 (x, A) in (5) and boundary conditions (4), we can write

ath(1) +¢'(1) + b¢'(0) = 0, (9)
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and by placing Equation (5) in (9), we have
afy (p) + pby (1) + by (0) =

Now, we suppose g(u) is as follows

9(n) = abr(n) + pb () + bpd’(0). (10)
By substituting (7) and (8) in (10), we have
g(p) = asin (/L - mT) +bp cos (n;W> - a/oo m(nzij—l) sin(u — )01 (t)dt
+ pocos (u - %) - u/oo w cos(p — t)01(t)dt
“m(m+1
- bu/o % cos (1) 0u(t)dt. (11)

We compute each integral in (11) separately. The first one is calculated as follows:

a/oo MM D) o (4 — 1) 0y (1)t

t2

= asm,u/ mm—|—1 os(t)wﬁl(t)dt
m

IA
Q
| —|
w
=
=
z:\
H~
l\')
E:
=
|
o
o
w0
=
—
3
|
>
=
ILI

_ [sinu B cosu] _0 (1>’
7 7 [

a/:om(w;msin(u—t)ﬁl(t)dt:O (i) (12)

Now, we consider the second integral in (11). Using relations (7) and (12), we
have

—/J/OOMCOS( —t)01(t)dt

t2

R o) (1)
:7“ U:omerl s1n(u%)+51n<2t“n;))dt]+0 <u>

then we get
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in this case, we can write

—MAMWMCOS(M—t)Gl(t)dt: Msin(u—m) +O<1>.

2 2
By substituting (12) and (13) in (11), we get

9(p) = pcos (u - %) + by cos (%) + {a — m(m;rl)} sin (u - @)

—bﬂ/ MU D) cos (1) 01 (8t + O <1> . (14)
0 t 1%
If (1) = 0, we can obtain eigenvalues of L(0,a,b). When g(u) = 0, we get

cos (,u - m) +bcos (%) —b/oOO MCOS (t)61(t)dt+O (;) =0. (15)

2 2

To calculate the integral at (15), we split it into three parts

“ m(m+1) [ m(m+1)
/0 —z — cos (t) 91(t)dt—/0 —z  cos (t) 61(t)dt
+ / wcos () 62 (t)dt + /1 Oom(nzijl)cos O 6:()dt.  (16)

According to Lemma 2.1 of [20], the first integral in (16) is obtained. For the
second integral in (16), 6;(t) can be written as 6;(t) = sin (t — Z%) + O (1), in
this case we write

“ m(m+1) B m mim+1) . /may\ [1
/O T2 cos (8) 61 (8)dt = (m+1)e™ +m(m+1)— 22T 2 g (7) [ _ 1] ,

£ 2 2 ) |e
Then we have "
- b{(mﬁ—l)em-l—m(m—l—l)—WSiH(T) <1—1>}
+ cos (- %) + beos (%) +0 (;) — 0. (18)

In (18), we assume

A = cos (%) — [(m—l—l)em—I—m(m—i— 1) — Wsin (g) (1 - 1)} )

and we choose b so that —1 < bA < 1. Consequently, we obtain

cos (u - %) +cos (M) + O (i) —0, (19)
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where cos (M) = bA. With respect to (19), for n sufficiently large, there exist
roots of the form
u2:<2n+%)w+M, nezt.
Let n(x, A, ¢) be the solution of (1) with the following conditions
n0,Aq) =0, nLAg=-b  7(LAg=a  7(0rg=1 (20
Norming constant is defined as follows
kn(q) = ¢' (1, An, q). (21)

According to Lemmas 2.1 and 2.3 of [3], we consider ¢(z, A, ¢q) to be a solution
for (1). By the Lemma 3.2 of the reference [20], we can conclude the estimate of
solution ¢(z, A, q), of the form

X
1+ |l

m—+1
(A ) — (e, N)] < C ( ) oxp (M()[) B, N, (22)

T m
", M\, q) — ' (x, )] < - I E(z,)\).
o) = @] <0 (155 ) e (mGol) B )
For notational convenience define

 R(m,t)t
E(z,\) = exp( TJr |U|§| |dt> -1, (23)

from [20], R(m,t) =1, for m > 1.
Lemma 2.1. For a sufficiently large integer N, the functions ap(1, )+ ¢’ (1, \) +

b’ (0, A) and ap(1,\) + ' (1, ) + by’ (0, \) have the same number of roots in half
plane Rel(\) < [N + 2]*72,b # 0.

Proof. We assume

h(z) = ap(1, ) + ' (1, X) + 09" (0, \),

h(z) + k(2) = ap(1,\) + @' (1, ) + b’ (0, \).

Using Rouche’s theorem, we show that the functions h(z), h(z) + k(z) have the
same number of roots. By (22) and (23), we have

[k(2)] < lafe(1, A) = (1, M| + [¢'(L,A) = &' (1, A)] + [’ (0, A) = (0, M)]|, (24)
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and E(1,\) = exp ( 01 f‘f‘(:b)t‘l dt) — 1. Since by the Cauchy-Schwarz inequality

BN < o < |q<t>|2dt)é ( / 1 dt)é ,

then E(1,A) < il||q|| Thus,

[1

BE(1,)) < 1. (25)
According to (24) and (25), we have
[k(2)] < Clp= "] exp ([Im(w))).

By Lemma 2.4 of [20], there is a constant K; such that

mm

‘a [w(l,)\) — p~ D gin (M _ 7)} + {w'(l,)\) — "™ cos (,u - m)} ‘

+ ’bu—m {cos (%) - /Ooo cos () m(m—'—l)gl(t)dt)] ‘ 2

t2
< Kl exp ([Im(p)|o) (26)
Due to the inequality (26), we can write
mn mm
’au‘(’”“) sin (u - 7)) + ‘u‘m cos (u - 7) ‘ > Ko™ ™ exp (|Tm(p)]),
and using Rouche’s theorem, we conclude that the number of roots h(z) and
h(z) + k(z), are the same. O

From [20], we have the following Lemma:

Lemma 2.2. If g€ L2[0,1] then A\, = A0 +O(1), where \,, and \2 are eigenvalues
of problems L and L(0,a,b), respectively.

In the next section, we give a version of Borg’s theorem which is a statement
of the inverse problem of the singular Sturm-Liouville problem with nonseparated
boundary conditions.

3. The Borg’s theorem

In [22] and [2], Ambarzumyan and Borg respectively presented crucial findings
about the inverse problem of a regular Sturm-Liouville operator. In the following
years, results which are obtained in these works have been generalized to various
versions for Sturm-Liouville operator. The Borg’s theorem is a uniqueness theo-
rem in inverse eigenvalue problems. Regarding the result obtained in the previous
section, we prove the Borg’s theorem in this section. Firstly, we consider the fol-
lowing theorem.
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Theorem 3.1. Suppose that for alln > 1, A, (p,a,b) = \(q,a’, V") and k,(p) =
kn(q), then p =q.

Proof. We consider the function n(x, A, ¢) defined in (20). If A, = A, (q) then ¢
defined as follows

! 1a)‘na
80(% )‘na Q) = M’r](xv )\na Q)7 a ?é 0.

Now, first we place ¢ in (1) and considering m > 0, we can write ¢’ (z)+q(z)p(z) =
Ap(z). Then we take the derivative from the both sides of the obtained equation
with respect to \, at a result ¢ becomes ¢ = (—D?+q—\)dx¢, and by multiplying
o on the both sides of this equation, we can write

©* = —por¢” + ¢" O, (27)

by integrating both sides of (27), we have

/0 ©*(, N)da = [0 Oxp — O @'1(1,A) — [P Orgp — 0O @'1(0,A).  (28)

Inserting A = A, (q) in (28) and using the conditions of L, we have

1
/O 0?2, An(9))dz = @' (1, 0(0))Orp(L An(@) — (1, X0 (9)) 09" (1, An(g)). (29)
By placing ¢(1, A, (q)) in (29), we can write

| ean@ias = 22D 0,01 031000, 0) (30)
F2E (00 (0)00g! (1, (a).

We define the following function

S()\) _ [90($7 )‘7 (]) - 90(1'7 )\»P)HW(% )‘7 Q) - 77(957 )\710)}
ap(L,A,q) + ¢'(1, A, ) + b¢'(0, A, q)

Now, we will look at the residues S. We define

AN = ap(1, A q) +¢'(1,A,¢) + b'(0, A, q),
so {\,} are roots of the function A(\). Then we define the residues function S

[(p(ajv /\n7 Q) - @(x7 )‘nap)][n<xa )‘n7 Q> - 77(377 )‘nvp)]
adxp (L, Ans @) + 2@ (1, Ans @) + 029" (0, Anyq)

R,S =
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By using (21) and with respect to the assumption of the theorem, we can write
@' (1, An,p) = @' (1, Ay, ¢). In this case

[o(x, Ay q) — (2, A, p))?

R,S = "0
Jo ©*(@,An(q))dz + B

where B = 9[50’(1, Ay )OAE' (0, Ay @) — 0" (0, A, Q)00 (1, A,y @)]. The residues for
when B > Oaare R,S > 0.

By utilizing Lemmas 3.2 and 3.3 from [20], it can be asserted that S()) is bounded.
On the other hands in S()), the roots of the denominator give us eigenvalues. In
this case, if v, = u?l—i—% then we get lim)y|—,,, AS(A) = 0. Then, it can be concluded
that the sum of the nonnegative residues R, is zero so that, limy_, o 25:1 R, =0.
Since the eigenfunction for p and ¢ are the same, therefore p = ¢ almost every-
where. O

Now, we will state and prove the main theorem of this section.

Theorem 3.2. (non-separated Borg’s theorem).
Suppose that for all n > 1, we have A\, (p, aj,b;) = A\n(q,a;,b;) for j =1,2 and for
linearly independent vectors (a1,b1) and (az,bs). Then we conclude that p = q.

Proof. We know that a;jp(1, ) + ¢'(1,X) + b;¢’(0,A) is the entire function with
an order of % By Hadamard theorem [23], we understand that it has zeroes in
the forms {\,, ;} which are the eigenvalues. Suppose that 0 is not an eigenvalue,
then we have

). (1)

A
An,j

a; (L, A) + @' (1,A) + b/ (0,0) =T, || (1 -

where T are constants compared to A. Now, we consider b # 0. Let & =
[2k7 + m]?, so & > 0. On the other hand p = /&, so can say Im&, = 0. With
respect to Lemma 2.4 of [20], we write

P(a, A) ~ p~ " sin (uw - %) : (32)
o) e ), w

and by using Lemma 3.2 of [20], we get

90(377)‘7(]) Nw(%)\% (34)

(pl(xv)‘vq) ~ ¢/($»)\) (35>
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For the case x = 0, ¢’(0,\) is as follows

mm

P (0,N) = "01(0) =™ [cos (7) - /000 cos (t) m(nzij—l)el (t)ydt|, (36)
then we see ¢'(0, A) is bounded. The goal is to obtain the following limit
Jim &7 [a;0(1,60) + ¢/ (1,6) + by (0, 6)): (37)
By placing relations (32)-(36) in (37), we have

lim €8 aj0(1,6) +¢'(1,6) +b;¢/(0,6)] = 1+Cb, (38)

LB Sk
LT )

n

We assume that p and ¢ are distinct. According to (38), T; values for j = 1,2
are determined from the eigenvalues sequence. On the other hand, according to
the assumption of the theorem, we can conclude that 7} are equal for the different
j. We know when p # g, in this case, T; values would be different, leading to a
contradiction. As a result, we have p = q. O

Various methods for solving inverse spectral problems have been developed,
including Borg’s method, the transformations operator method, the spectral maps
method, and others. In this study, we focused on uniqueness theorems and pre-
sented Borg’s theorem for the Sturm-Liouville problem with a singular potential.
We have also provided a simple and short proof of Borg’s theorem.

4. Conclusion

This paper focused on the Sturm-Liouville problem where the potential function
has a singular point. We established boundary conditions for the equation and
identified the Sturm-Liouville problem with non-separated boundary conditions.
We demonstrated that by utilizing the solutions presented for the equation and
following the problem’s terms, we could obtain eigenvalues. Additionally, we dis-
cussed the Borg’s theorem. The key contribution of this paper is the novel result
obtained for the Sturm-Liouville problem with non-separated boundary conditions.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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