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An Upper Bound for Min-Max Angle of Polygons
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Abstract

Let S be a set of n points in the plane, ∇(S) the set of all simple
polygons crossing S, γP the maximum angle of polygon P ∈ ∇(S) and
θ = minP∈∇(S)γP . In this paper, we prove that θ ≤ 2π− 2π

r.m
where m and r

are the number of edges and inner points of the convex hull of S, respectively.
We also propose an algorithm to construct a polygon with the upper bound
on its angles. Constructing a simple polygon with the angular constraint on
a given set of points in the plane can be used for path planning in robotics.
Moreover, we improve our upper bound on θ and prove that this is tight for
r = 1.
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1. Introduction

An optimal polygonization of a set of points in the plane is a classical problem
in computational geometry and has been applied to many fields such as image
processing [1, 2], pattern recognition [2, 3], geographic information system [4], etc.
Considering a set S of points in the plane, there are different numbers of simple
polygons on S. Enumerating and generating simple polygons on S have been the
focus of many studies [5–9].

?Corresponding author (E-mail: asaeedi@kashanu.ac.ir)
Academic Editor: Abbas Saadatmandi
Received 28 June 2022, Accepted 6 April 2023
DOI: 10.22052/MIR.2023.246534.1363

c© 2023 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.



248 S. Asaeedi et al. / An Upper Bound for Min-Max Angle of Polygons

The polygonization problem constructs a polygon with a special property on a
given set of points. There are many variants of this problem. The minimum and
maximum area polygonizations try to find a polygon with minimum and maximum
areas, respectively. These problems are NP-complete, as shown by Fekete [10, 11].
TSP and max-TSP construct a polygon with minimum and maximum perimeters,
respectively. There are many ongoing studies on approximation algorithms for
minimum and maximum area polygonizations [12, 13], TSP [14, 15], and max-
TSP [16]. Our problem is finding a polygon whose maximum angle is minimum
over all possible polygons.

Moreover, the researchers have investigated some properties of angles in the
above-mentioned problems. The Angular-Metric TSP [17] is the problem of find-
ing a tour on S that minimizes the sum of the direction changes at each point.
Fekete and Woeginger introduced the Angle-Restricted Tour problem [18]. For
A ⊆ (−π, π] set of angles, the Angle-Restricted Tour is the problem of finding a
simple or non-simple polygon on S where all angles of the polygon belong to A.
The concept of α-concave hull [19] refers to a simple polygon P with minimum
area covering a set of points such that all angels of P are less than or equal to
π + α. The α-concave hull is a generalization of minimum area polygonization as
well as a generalization of the convex hull.

Reflexivity, the smallest number of reflex vertices among all polygonizations of
a set of points, is considered as a convexity measurement for the points. Arkin
et al. [20] introduced the concept of reflexivity as ρ(n) and presented lower and
upper bounds for reflexivity of any set of n points. They proved that bn4 c ≤
ρ(n) ≤ dn2 e. Ackerman et al. [21] improved the upper bound and proposed an
algorithm to compute a polygon with at most the number of reflex vertices in
the time complexity of O(n log n). They showed that the reflexivity of any set
of n points is at most 3

7n + O(1). Lien and Amato [22] proposed the convexity
measurement volume(P )

volume(HP ) for a polyhedra P such that HP is the convex hull of P .
The last presented upper bound for min-max value of the angles in polygoniza-

tion is 2π − 2π
2r−1.m where m and r are the number of edges and inner points of

the convex hull of S, respectively [23]. Here we improved the upper bound to be
2π − 2π

r.m .
Javad et al. [24] presented the first polynomial time algorithm to compute

the convex hull of imprecise points in the plane such that each imprecise point
is modelled by a segment. Chan [25] presented output-sensitive algorithms to
compute the convex hull of points in 2D or 3D. Jarvis [26] introduced the first
hull on a set of points which allowed some concavities in the constructed shape.
Edelsbrunner [27] introduced the concept of α-shape as a generalization of convex
hull and Krasnoshchekov and Polishchuk [28] introduced Order-k α-shapes as a
generalization of α-shape. Here we present an algorithm to cover a set of points in
the plane. There are many studies for covering and separating point sets [29–31].

Finding a simple polygon on a set of points that do not construct sharp reflex
angles is applicable to path planning in robotics. Assume that a robot with a turn
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Table 1: Notations of symbols.
Notation Description

S A set of points in the plane
n cardinality of S
si ith point of S (1 ≤ i ≤ n)
CH convex hull of S
m number of vertices of CH
IP inner points of CH
r cardinality of IP
P a simple Polygon crossing S
VP vertices of P
EP edges of P
cj jth vertex of CH (1 ≤ j ≤ m)
ej jth edge of CH (1 ≤ j ≤ m)
sisj an edge of P with si and sj as its end points (1 ≤ i, j ≤ n, i 6= j)
∇(S) set of all simple polygons crossing S
α, β, γ, θ angles between 0 and 2π

angle constraint is used to visit a set of points. If the turn angle limitation is less
than or equal to the presented upper bound, we can plan a path for the robot to
cover the points. In addition, this bound is useful for designing a path for a robot
arm that does not have freedom of rotation.

The rest of the paper is as follows: in Section 2, notations and definitions are
presented, in Section 3, the upper bound is derived and in Section 4, we conclude
the paper by highlighting its achievements.

2. Preliminaries

Let S = {s1, s2, ..., sn} be a set of points in the plane and CH the convex hull
of S. The vertices and edges of CH are denoted by VCH = {c1, c2, ..., cm} and
ECH = {e1, e2, ..., em}, respectively. Furthermore, let IP = {a1, a2, ..., ar} be the
inner points of CH where r = n−m. The points of IP are inside the CH but not
on its boundary. We assume that r > 0, i.e., the points of S are not in the convex
position. Table 1 shows other notations that are used in the rest of the paper. A
polygon P crossing S is specified by a closed chain of vertices P = (p1, p2, ..., pn, p1)
such that S = VP = {p1, p2, ..., pn}.

Let e = AB be a line segment. The minor arc
_

AB with measure equal to α
is denoted by sαe , and the major arc

_

AB with measure equal to β = 2π − α is
denoted by Sβe . We denote the minor and major segments on e by mα

e and Mβ
e ,

respectively (see Figure 1). Moreover, we use the concept of Sweep Arc in our



250 S. Asaeedi et al. / An Upper Bound for Min-Max Angle of Polygons

algorithm which is defined in [23, Section 4].

Figure 1: sαe , Sβe , mα
e and Mβ

e are minor arc, major arc, minor segment and major
segment on e, respectively.

Definition 2.1. ([23, Section 4]). Let e = AB be an edge of polygon P . A sweep

arc on the edge e is a minor arc AB where
_

AB= 0 and expands to the major arc
AB where

_

AB= π. The direction of expansion is to the inside of the polygon.
Figure 2 depicts the sweep arc on the edge e.

Figure 2: A sweep arc on the edge e [23, Figure 6].

3. Min-max angle

In this section, we present two upper bounds for θ. Let us first present a lemma
followed by a theorem.

Lemma 3.1. Let l = c1c2 be a line segment and S a set of n points inside the
Mβmax

l , where βmax = 2π − 4π
m for an integer number m. Assume that t points

{s1, s2, ..., st} are met by the sweep arc on l and P = (c1, s1, s2, ..., st, c2, c1) is a
simple polygon such that all internal angles of ŝi are greater than or equal to 2π

t.m .
Let x be (t + 1)th point met by the sweep arc. There exists an edge ab of P such
that âxb is greater than or equal to 2π

(t+1).m .
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Proof. We prove the lemma by induction on t. When t = 0, the chain P =
(c1, s1, s2, ..., st, c2, c1) is a line segment of c1c2. Therefore, we consider both cases
t = 0 and t = 1 as the base cases.

Base case (t = 0) Let x be the first point that the sweeping arc meets. We
construct the polygon by connecting x to c1 and c2. Since the maximum measure
of the arc is βmax, the internal angle of γ = ĉ1xc2 in the triangle 4c1xc2 is greater
than or equal to 2π

m (see Figure 3).

Figure 3: x̂ is greater than 2π
m [23, Figure 11].

Base case (t = 1) Let s1 be the first point that the sweeping arc meets and
x the second one. In addition, let e1 = c1s1 and e2 = s1c2 be two edges of
P = (c1, s1, c2, c1). The edges e1 and e2 divide the sweeping arc into 3 parts; the
arc B1 where e1 is visible but e2 is not visible from all the points on it, the arc B2

where e2 is visible but e1 is not visible from all the points on it, and finally the
arc B3 where e1 and e2 are both visible from all the points on it (see Figure 4).

Figure 4: The edges e1 and e2 divide the sweeping arc into 3 parts: B1, B2 and
B3. [23, Figure 12].

1. If x is placed on B1, the angle ĉ1xs1 is greater than γ = ĉ1xc2 and the angle
γ is greater than or equal to 2π

m . Hence, the angle ĉ1xs1 is greater than 2π
m .

So, we consider the edge c1s1 as the desired edge ab such that âxb is greater
than or equal to π

m .

2. If x is placed on B2, the angle ŝ1xc2 is greater than γ and the angle γ is
greater than or equal to 2π

m . Hence, the angle ŝ1xc2 is greater than 2π
m . So,
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we consider the edge s1c2 as the desired edge ab such that âxb is greater
than or equal to π

m .

3. If x is placed on B3, the maximum of ĉ1xs1 and ŝ1xc2 is greater than γ
2 .

Since γ is greater than 2π
m , the maximum of ĉ1xs1 and ŝ1xc2 is greater than

2π
2m . Hence, if ĉ1xs1 is greater than ŝ1xc2, the edge c1s1 is considered as ab,
otherwise, the edge s1c2 is considered as ab.

Induction assumption Let y be kth point that the sweeping arc meets. There
exists an edge ab of P = (c1, s1, s2, ..., sk−1, c2, c1) such that âyb is greater than or
equal to 2π

k.m .

Induction assumption Let x be (k + 1)th point that the sweeping arc meets
and P = (c1, s1, s2, ..., sk, c2, c1) be the polygon such that all internal angles of
ŝi are greater than or equal to 2π

k.m . We show that there exists an edge ab of P
such that âyb is greater than or equal to 2π

(k+1).m . Here, three cases need to be
examined:

1. All edges of P except c1c2 are visible from x. Let e1 = c1s1, e2 = s1s2, . . . ,
and ek+1 = skc2 be edges of P , βi the angle subtended by ei at the point x
and βM the maximum one. When angle γ is greater than or equal to 2π

m and
Σk+1
i=1 βi = γ, we have βM > 2π

(k+1).m . Let e be the edge that corresponds to

βM . So, the edge e is considered as ab such that âxb is greater than or equal
to 2π

(k+1).m (see Figure 5).

Figure 5: All edges ei are visible from x.

2. There exists an edge e = cd of P such that both endpoints of e are not visible
from x. We obtain a polygon P ′ from P by contracting [32] the edge e, i.e.,
P ′ = P/e. Since P ′ has k + 1 vertex points, by induction assumption, there
exists an edge e′ = ab of P ′ such that âxb is greater than or equal to 2π

k.m .
The polygon P ′′ is obtained from P by removing the edge ab and adding two
edges ax and xb. Since the two end points of e = cd are invisible from x,
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contracting and splitting e have no effect on the measure of the angle âxb.
Hence, the angle âxb in P ′′ is greater than or equal to 2π

(k+1).m (see Figure 6).

Figure 6: The edge e of P is invisible from x. Contracting e leads to constructing
P ′ from P . The polygon P ′′ is obtained from P and P ′.

3. There exists an edge e = cd of P such that one endpoint of e is not visible
from x (see Figure 7). We obtain a polygon P ′ = P/e from P by contracting
the edge e. Since P ′ has k+ 1 vertex points, by induction assumption, there
exists an edge e′ = ab of P ′ such that âxb is greater than or equal to 2π

k.m .
The polygon P ′′ is obtained from P by removing the edge ab and adding two
ax and xb edges.

Figure 7: The vertex s1 is visible and c1 is invisible from x.

If either a or b in P ′′ is an endpoint of e, contracting and splitting e have an
effect on the measure of the angle âxb (see Figure 8). In other words, the
angle âxb in P ′′ is not equal to the angle âxb in P ′. It is clear that the angle
âxb in P ′′ is greater than the angle âxb in P ′. Since the angle âxb in P ′ is
greater than or equal to 2π

k.m , the angle âxb in P ′′ is greater than or equal to
2π

(k+1).m .

In addition, if neither a nor b in P ′′ is an endpoints of e, contracting and
splitting e have no effect on the measure of the angle âxb (see Figure 9). In
other words, the angle âxb in P ′′ is equal to the angle âxb in P ′. Hence, the
angle âxb in P ′′ is greater than or equal to 2π

(k+1).m .
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Figure 8: âxb in polygon P ′′ is greater than âxb in polygon P ′.

Figure 9: âxb in polygon P ′′ is equal to âxb in polygon P ′.

Theorem 3.2. Let l = c1c2 be a line segment and S a set of n points inside the
Mβmax

l , such that βmax = 2π − 4π
m for an integer number m (see Figure 10.a).

There exists a chain (s1, s2, ..., sn) on S such that all internal angles of ŝi in the
polygon (c1, s1, s2, ..., sn, c2, c1) are greater than or equal to 2π

n.m (see Figure 10.b).

Figure 10: (a) S is a set of 6 points inside Mβmax

l . (b) ∀1 ≤ i ≤ 6, ŝi ≥ 2π
6m [23,

Figure 10].

Proof. We prove Theorem 3.2 by constructing the polygon (c1, s1, s2, ..., sn, c2, c1),
using the following algorithm which is a modified version of the one originally
presented in [23]:

Algorithm 1 (Modified Sweep Arc Algorithm)
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1. Sweep the arc
_
c1c2 from s0l to Sβmax

l .

2. Let x1 be the first point which is met by the sweep arc. Construct P =
(c1, x1, c2, c1) as the desired polygon.

3. Set i = 2.

4. Let P = (c1, s1, s2, ..., si−1, c2, c1) be the constructed polygon inside the
sweep arc and xi the ith point which is met by the sweep arc.

5. Assume that e1 = c1s1, e2 = s1s2, ... , and ei = si−1c2 are the edges of P .
If ej is visible from xi, set βj =The angle subtended by ej at the point xi,
otherwise set βj = 0.

6. Let βM = max1≤j≤i βj and e = ab be the edge that corresponds to βM .

7. Remove the edge e from P and add two edges axi and xib to construct the
desired polygon.

8. Set i = i+ 1. If i ≤ n, then go to 4, otherwise exit.

Based on Lemma 3.1, ∀j ∈ {1, 2, ..., i} the angles ŝj in P are greater than or equal
to 2π

i.m in step 4 of the algorithm. Therefore, when i = n, the angles ŝj in P will
be greater than or equal to 2π

n.m .

It is proved in [23, Lemma 3] that all angles of the mentioned polygon P are
greater than or equal to 2π

2n−1.m . Here, based on Theorem 3.2, we increase this
bound to 2π

n.m . This yields us the following corollaries:

Corollary 3.3. Let S be a set of points in the plane, CH the convex hull of S and
m and r the number of edges and inner points of CH, respectively. If we replace
algorithm 1 of [23, Theorem 2, Step 2.a of Algorithm 2] by the modified sweep arc
algorithm, the upper bound of 2π − 2π

r.m is achieved for θ.

Remark 1. Based on Corollary 3.3, in the case of r = 1, 2π − 2π
n−1 is an upper

bound for θ over all simple polygons crossing S. It is noteworthy that this bound
is tight in this case. The tightness is achieved when the inner point is at the center
of a regular n-gons, as illustrated in Figure 11.

The following corollary improved the upper bound to 2π− 2π
d.m where d is Depth

of Angular Onion Peeling on S which is defined in [23].

Definition 3.4. ([23]). Let us increase the measure of all sweeping arcs concur-
rently from 0 to the first hit (or βmax, if a sweeping arc does not hit any point). All
the inner points that are hit by sweeping arcs form layer 1 of the points. The next
layers are formed by deleting the points of the prior computed layer from inner
points and continuous increasing of all sweeping arcs measures up to the next hit.
The process continues until all inner points are hit. The process of peeling away
the layers, described above, is defined as Angular Onion Peeling and the number
of layers is called Depth of Angular Onion Peeling on these points.
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Figure 11: Maximum angle of each polygon crossing these points is equal to 2π− 2π
6

[23, Figure 9].

Corollary 3.5. Let S be a set of points in the plane, CH the convex hull of S, m
the cardinality of edges of CH and d the depth of angular onion peeling on S. If
we replace algorithm 1 of [23, Theorem 3, Step 2.b of Algorithm 3] by the modified
sweep arc algorithm, the upper bound 2π − 2π

d.m is achieved for θ.

Since the time complexity of the modified sweep arc algorithm is O(r), those
of both modified algorithms 2 and 3 are O(n log n+ rm). Note that the modified
algorithms 2 and 3 are those proposed in [23] in which the algorithm 1 is replaced by
the modified sweep arc algorithm. Based on Corollary 3.3, the modified algorithm
2 constructs a polygon such that its internal angles are less than or equal to
2π − 2π

r.m . Based on Corollary 3.5, this bound is improved to 2π − 2π
d.m using

modified algorithm 3. When S is a set of n points in the plane and the convex
hull of S has n − 1 edges, the depth of angular onion peeling on S is equal to 1.
Hence, the upper bound for θ is equal to 2π − 2π

1.(n−1) , which confirms Remark 1.
Computing α-concave hull on a set S of points is an NP-complete problem [19].

For all α > θ, α-concave hull crosses all points of S. So, the polygon computed
by modified algorithm 3 is an α-polygon [19] which approximates α-concave hull
of S. The following corollary shows the relation between α-concave hull and the
computed upper bound.

Corollary 3.6. Let S be a set of points in the plane, CH the convex hull of S,
m the cardinality of edges of CH and d the depth of angular onion peeling on S,
for all α > 2π − 2π

d.m , there always exists an α-concave hull P on S such that P
crosses all points of S.

Coverage path planning is a fundamental problem in the field of robotics. There
are many limitation factors in order to plan a path for a robot to cover (or visit)
all points of a set of points, such as robot rotation angle. The following corollary
presents the essential relation between path planning in robotics and our upper
bounds on θ.

Corollary 3.7. Let S be a set of n points in the plane, CH the convex hull of S,
m the cardinality of edges of CH and d the depth of angular onion peeling on S.
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If the robot rotation angle is greater than 2π − 2π
d.m , there always exists a path for

the robot to cover S. As stated before, this path can be found in O(n log n + rm)
time complexity.

4. Conclusion
The major problem investigated in this paper is that of finding a simple polygon
with the angular constraint on a given set of points in the plane. We derived the
upper bounds for min-max value of angles over all simple polygons crossing the
given set of points. We also presented algorithms to compute the polygons thereby
satisfying the derived upper bounds. In addition to the theoretical results, this
bound is an important achievement in the field of robotics.
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