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Abstract

This paper presents the visualization process of finding the roots of a
complex polynomial - which is called polynomiography - by the Caputo frac-
tional derivative. In this work, we substitute the variable-order Caputo
fractional derivative for classic derivative in Newton’s iterative method. To
investigate the proposed root-finding method, we apply it for two polynomi-
als p(z) = z5 − 1 and p(z) = −2z4 + z3 + z2 − 2z − 1 on the complex plane
and compute the MNI and CAI parameters. Presented examples show that
through the expressed process, we can obtain very interesting fractal pat-
terns. The obtained patterns show that the proposed method has potential
artistic application.
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1. Introduction

One of the important goals of computer-aided design is to produce beautiful and
new patterns, and this requires initiative and innovation. Nowadays, in carpet
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design and tapestry design, a designer has to be aware of new techniques to obtain
interesting patterns [1]. Polynomials, one of the fundamental subjects of mathe-
matics with diverse applications, along with the root-finding methods can be used
for the generation of interesting patterns. According to the Fundamental Theorem
of Algebra, any polynomial

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

of degree n, with real or complex coefficients, has n zeros. Polynomial root-
finding is one of the oldest mathematical problems. Historical documents show
that Sumerian (3000 B.C.) and Babylonians (2000 B.C.) dealt with it [1, 2]. The
iterative process

zi+1 = N(zi), (1)

is a common process to find the roots of complex polynomial P (z) and there are
many iterative methods in the literature, see for example [3–5]. The best-known
method for root-finding is Newton’s iterative method

N(zi) = zi −
P (zi)

P ′(zi)
, (2)

which was proposed in the 17th century. In 1879, Cayley investigated the behavior
of Newton’s method for equation z3− 1 = 0 in the complex plane, which is known
as Cayley’s problem. Finally, in 1919, Julia solved this problem.
Polynomiography, introduced by Kalantari, is an interesting subject in connection
with polynomial root-finding. Polynomiography is defined to be “ the art and
science of visualization in approximation of the zeros of a complex polynomial,
via fractal and non-fractal images, created using the mathematical convergence
properties of iteration functions "[2, 6]. The created pattern through polynomiog-
raphy, is called a polynomiograph. Polynomiography can be used for students
to be interested in concepts such as polynomials, series, convergence, and finding
roots with fractal images. Additionally, we can use it for the carpet industry and
visual arts.
After introducing polynomiography, the artistic applications of polynomiography
attracted scientists’ attention. In recent years, many scientists have proposed
various iteration processes from fixed point theory to generate different kinds of
patterns. Let us recall below some known iteration processes:
1) Mann iteration [7]

zi+1 = αN(zi) + (1− α)zi, 0 < α ≤ 1. (3)

2) Ishikawa iteration [8]{
vi = βN(zi) + (1− β)zi,

zi+1 = αN(vi) + (1− α)zi, 0 < α ≤ 1, 0 ≤ β ≤ 1.
(4)
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3) S− iteration [9]{
vi = βN(zi) + (1− β)zi

zi+1 = αN(vi) + (1− α)N(zi), 0 < α ≤ 1, 0 ≤ β ≤ 1.
(5)

In [10], eleven different iteration processes based on Newton’s classic method were
studied. Also, a review of 18 different iteration processes can be observed in [11].
To create different and interesting patterns, it is sufficient to change some pa-
rameters. For instance, Gdawiec in [12] changed the usual convergence test and
obtained very interesting and diverse patterns.
In most papers about polynomiography, the authors use constant parameters for
simplicity. In [1], some modifications of the root-finding method, proposed in [3],
were used with periodic parameters and authors investigated numerically some
properties of the proposed methods by the mean number of iterations (MNI) and
the convergence area index (CAI).
In [13], the classic derivative in the standard Newton method is replaced by the
fractional Riemann-Liouville and the Caputo derivatives which are named the
standard fractional Newton method and denoted by

zi+1 = zi −
P (zi)

DνP (zi)
. (6)

Instead of the Picard fractional Newton method, the Mann, Ishikawa and S it-
erations versions were also investigated in [14]. In recent years, some fractional
iterative methods have been proposed for solving nonlinear equation f(x) = 0.
For instance, by using the Caputo and the Riemann-Liouville derivatives, two
fractional Newton-type method

xi+1 = xi − Γ(ν + 1)
f(xi)

Dνf(xi)
, (7)

xi+1 = xi −
(

Γ(ν + 1)
f(xi)

Dνf(xi)

) 1
ν

, (8)

were introduced in [15, 16]. Also in [17], the authors have proposed several
Chebyshev-type schemes using the Caputo and the Riemann-Liouville derivatives.
Candelarion et al. [18], presented the Conformable fractional Newton-type method
for solving f(x) = 0, numerically.
Unlike the above works, in which fixed fractional derivatives have been used, we
are going to use the variable fractional Caputo derivative, to obtain new fractal
images.
This paper is organized as follows: in Section 2, the basics of polynomiography
are introduced. Next, in Section 3, some graphical examples and numerical results
are presented. Finally, section 4 ends this paper with some concluding remarks.
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2. Polynomiography

To generate a polynomiograph, at first we consider polynomial P (z), an area A in
the complex plane (A ⊂ C) and a root-finding method

zi+1 = N(zi). (9)

We can replace the above iteration process with other iteration processes e.g.
Mann, Ishikawa and S iterations. Note that the aim of using other iterations in
polynomiography, is to create new interesting images. Now, z0 ∈ A is selected and
we proceed with the iteration process. The sequence {zi}∞i=0, which is named the
orbit of the starting point z0, either converges to a root of P (z) or not. If {zi}∞i=0

converges to a root z∗, we say that z0 is attracted to z∗. The basin of attraction
of z∗is the following set

{z0 ∈ A| lim
i→∞

zi = z∗}.

The iteration process is finished when the convergence test is satisfied or the max-
imum number of iterations is reached. We can colour the starting point z0 using
two basic colouring functions:
• Iteration colouring: We assign a colour to z0 according to the number of per-
formed iterations (see Algorithm 1).
• Basin of attarction: Each root of polynomial P (z) gets its own distinct colour
and we assign a colour to z0 according to the nearest root to the point at which
we have stopped iterating (see Algorithm 2).
In the above iterative processes, we need a stop criterion or a convergence test.
For root-finding methods the standard convergence tests are

|zi+1 − zi| < ε, |P (zi+1)| < ε,

where ε > 0 is a given accuracy and zi+1, zi are two successive points in iterative
process. In [12], Gdawiec proposed some different convergence tests, for instance∣∣0.01(zi+1 − zi)|+ |0.029|zi+1|2 − 0.03|zi|2

∣∣ < ε,∣∣∣∣ 0.05

|zi+1|2
− 0.045

|zi|2

∣∣∣∣ < ε,∣∣0.01z10
i+1 − 0.001z10

i

∣∣ < ε.

In [3], the convergence test ∣∣∣∣ 0.05

|zi+1|2
− 0.05

|zi|2

∣∣∣∣ < ε.
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was used for polynomiography.
Algorithm 1: Iteration colouring.
Input: P (z) ∈ C[Z] – polynomial, A ⊂ C – area, K – maximum number

of iterations, I – iteration method, N – root-finding method, T –
convergence test.

Output: Polynomiograph for the P (z) on the area A.

1 for z0 ∈ A do
2 i = 0
3 while i ≤ K do
4 zi+1 = I(N,P, zi)
5 if T (zi, zi+1) = true then
6 break

7 i = i+ 1

8 determine the colour for z0 according to i.

Algorithm 2: Basin of attraction.
Input: P (z) ∈ C[Z] – polynomial, A ⊂ C – area, K – maximum number

of iterations, I – iteration method, N – root-finding method, T –
convergence test, Each root of polynomial P (z) gets its own
distinc colour.

Output: Basin of attraction for the P (z) and the area A.

1 for z0 ∈ A do
2 i = 0
3 while i ≤ K do
4 zi+1 = I(N,P, zi)
5 if T (zi, zi+1) = true then
6 break

7 i = i+ 1

8 determine the colour for z0 according to the nearest root to the zi+1.

In the rest of this paper, in order to obtain different interesting patterns, we
will consider Equation (6) with the Caputo derivative of order ν ∈ (n−1, n], n ∈
N. Recall that for a real-valued function f(t), the Caputo derivative of order
ν ∈ (n− 1, n], n ∈ N, is defined as

Dν
Cf(t) =

{
1

Γ(n−ν)

∫ t
0

f(n)(s)
(t−s)ν+1−n ds, ν ∈ (n− 1, n),

dn

dtn f(t), ν = n.
(10)

The Caputo fractional derivative operation is linear and has the following proper-
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Table 1: Results obtained for some variable fractional Caputo derivatives for
Example 3.1.

CAI MNI

ν1(i) =
i+1.01
i+0.01

0.9978 13.5392

ν2(i) = 1 + 1
i2

0.9964 10.8949
ν3(i) =

1.5i+1.01
i+0.01

0.9650 34.3235

ν4(i) =
sin(i)+7
sin(2i)+5

0.9899 21.2924

ties:

Dν
Ct
m =

{
Γ(m+1)

Γ(m+1−ν) t
m−ν , m > n− 1,

0, m ≤ n− 1,
(11)

Dν
Cc = 0, (12)

where c is a constant. Fortunately, for analytic functions (e.g. polynomials, ex-
ponentials), the fractional Caputo derivative can be generalized to the complex
plane. Thus, for ν ∈ (n− 1, n) we have

Dν
Cz

m =
Γ(m+ 1)

Γ(m+ 1− ν)
zm−ν , (13)

where z ∈ C \ {c ∈ C : =(c) = 0 ∧ <(c) < 0}, m 6= −1,−2,−3, · · · and m >
n− 1 [13, 14].

3. Numerical results
In this section, we perform a series of experiments for two polynomials. Algorithm
1 for the polynomiographs generation has been implemented in Matlab and all
polynomiographs have been generated on a computer with the following specifi-
cation: Intel i3-4130 (@3.4 GHz) processor, 4 GB RAM and Windows 8 (64-bit).
Also, we can compute the MNI and CAI parameters for these examples as follows:

CAI =
Nc
N
,

MNI =
Sc
Nc

,

where Nc is the number of convergent points in the polynomiograph and N is the
number of all points in the polynomiograph, obviously 0 ≤ CAI ≤ 1 and Sc is the
sum of the needed iterations for convergent points.
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ν1(i) = i+1.01
i+0.01 ν2(i) = 1 + 1

i2

ν3(i) = 1.5i+1.01
i+0.01 ν4(i) = sin(i)+7

sin(2i)+5

Figure 1: Polynomiographs for some variable fractional Caputo derivatives for
Example 3.1.

Example 3.1. Let us to consider P (z) = z5 − 1, k = 50 and convergence test
|P (zi+1)| < 10−4. After considering area A = [−2 , 2] × [−2 , 2] ⊂ C, we apply
the following fractional Caputo Newton method:

zi+1 = zi −
P (zi)

D
ν(i)
C P (zi)

⇒ zi+1 = zi −
Γ(6− ν(i))(z5

i − 1)

Γ(6) z
5−ν(i)
i

, (14)

where ν(i) < 5.

To produce points, we use ∆x = ∆y = 0.01 for partitioning area A and the
obtained grid points are selected as z0. Examples of polynomiographs for some
variable fractional Caputo derivatives, are presented in Figure 1 and the numerical
results obtained for MNI and CAI are shown in Table 1 .
From Table 1 we see that the change of the νn(i) has a great influence on the

MNI parameter, whereas has a small impact on CAI values. Moreover, the pat-
terns obtained through ν1(i) and ν2(i) are more similar to non-fractional standard
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Newton’s method and the patterns obtained from ν3(i) and ν4(i) are more irreg-
ular and intriguing.
If for ν1(i) = i+1.01

i+0.01 we use A = [−60 , 5] × [−20 , 20], we will obtain the shown
polynomiograph in Figure 2. Now for P (z), we apply A = [0 , 60]× [−20 , 20] and

Figure 2: Polynomiograph obtained for ν1(i) and A = [−60 , 5]× [−20 , 20].

ν5(i) = i3−4i2+5
25(i2+1) + 1

15 . The correspondig polynomigraph and basin of attarction,
are observed in Figure 3.
Note that in numerical results, if we reach the maximum number of iterations
k, we assume that the generated sequence does not converge to any root of the
polynomial P (z). As seen in the polynomiographs, some points do not converge
to any root.

Example 3.2. Consider P (z) = −2z4+z3+z2−2z−1, A = [1 , 2]×[−0.5 , 0.5], k =
15, ∆x = ∆y = 0.005 and convergence test |P (zi+1)| < 0.001.

Figure 4 presents the polynomiographs obtained by some variable fractional
Caputo derivatives. The values of the MNI and CAI parameters, corresponding
to this example are shown in Table 2. Unlike to previous example, the change of
the νn(i) has a great influence on the CAI measure. For ν7(i) we have CAI= 1,
thus for all starting points, the method has converged to the roots and as seen,
the polynomiography for ν7(i) is regular. But for ν6(i), CAI= 0.3576, so in the
considered area, there are many starting points that do not converge to the roots.
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Figure 3: Polynomiograph (up) and basin of attraction (down) obtained for P (z) =
z5 − 1, ν5(i) and A = [0 , 60]× [−20 , 20].

Table 2: Results obtained for some variable fractional Caputo derivatives, for
Example 3.2.

CAI MNI

ν1(i) =
i+1.01
i+0.01

0.8971 11.6678

ν4(i) =
sin(i)+7
sin(2i)+5

0.5449 12.9274

ν6(i) = 1 + sin(i)2 0.3576 13.0734

ν7(i) =
t2+1
t2+8

1 10.8313

4. Conclusion
In this study, based on the Picard fractional Newton’s method with variable Ca-
puto derivative, we obtained some polynomiographs. Via MNI and CAI parame-
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ν1(i) = i+1.01
i+0.01 ν4(i) = sin(i)+7

sin(2i)+5

ν6(i) = 1 + sin(i)2 ν7(i) = t2+1
t2+8

Figure 4: Polynomiographs for some variable fractional Caputo derivatives, for
Example 3.2.

ters, we investigated the effect of the Caputo fractional derivative on the rate of
convergence of points. We can use other types of iteration processes, e.g. Mann,
Ishikawa, S−iterations and also other types of fractional derivatives. In the future
work, we will attempt to use Riemann-Liouville fractional derivatives in a iterative
method with periodic parameters.
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