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Row Stochastic Matrices and Linear Preservers
of Matrix Majorization T : Rm → Rn
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Abstract

A nonnegative square and real matrix R is a row stochastic matrix if the
sum of the entries of each row is equal to one. Let x, y ∈ Rn. The vector
x is said to be matrix majorized by y and denoted by x ≺r y if x = yR
for some row stochastic matrix R. In the present paper, we characterize the
linear preservers of matrix majorization T : Rm → Rn.
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1. Introduction

The concept of majorization plays an important role in applied mathematics and
linear algebra. Various extensions of this concept have also been studied (see
[1–4]).

One can see the concepts of left and right majorization from each other by
getting transpose on the equations, because if a matrix A is doubly stochastic
then the matrix At is doubly stochastic too, where At is the transpose of the
matrix A. But when we use the row stochastic matrices, we can not obtain the
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left and right majorizations from each other. So in this case the left and right
concepts are investigated in different manners (see [5–13]).

Here, we focus on right and left matrix majorization. Dahl defined the right
matrix majorization as follows [14].

Definition 1.1. A nonnegative square and real matrix A is a row stochastic
matrix if the sum of the entries of each row is equal to one.

Definition 1.2. Let A,B ∈ Mn,m. The matrix A is said to be right matrix
majorized by B and write A ≺r B, if A = BR for some row stochastic matrix R.
If A ≺r B ≺r A, we denote A ∼r B.

In [4], M. Pería et al. introduced the left matrix majorization as follows:

Definition 1.3. Let A,B ∈ Mn,m. The matrix A is said to be left matrix ma-
jorized by B and write A ≺l B, if A = RB for some row stochastic matrix R.

In [11], the authors did not completely find the linear preservers of left matrix
majorization T : Rp → Rn. In [12], the authors completely characterized the
linear preservers of this relation T : Rp → Rn. In [9], the authors completely
characterized the linear preservers of right matrix majorization on matrices were
studied. Also, in [2] the authors characterized the linear operators that strongly
preserve the right matrix majorization.

In this paper, the structure of all linear operators T : Rm → Rn, preserving
right matrix majorization are characterized. Some of our notation is explained
next.

Let Mn,m be the algebra of all n-by-m real matrices. Let Rn (Rn) be 1-by-
n (n-by-1) real vectors, and the notation P(m) for the collection of all m-by-m
permutation matrices.

A matrix R = [rij ] ∈ Mn,m is called a row stochastic matrix if rij ≥ 0 and∑n
j=1 rij = 1, for all i (1 ≤ i ≤ n). The collection of all m × m-row stochastic

matrices is denoted by RS(m). A matrix R is called standard row stochastic,
if each row has exactly a nonzero entry, +1, and other entries are zero. The
collection of all standard m-row stochastic m-by-m matrices is denoted by R(m).
Clearly, P(m) ⊆ R(m). The standard basis of Rn is denoted by {ε1, . . . , εn}, and
e = (1, 1, . . . , 1)t ∈ Rn. Span{S} is denoted by the intersection of all subspaces of
V that contain S, where V is a vector space over a field F . If S is nonempty, then

Span{S} =

{
k∑

i=1

αivi|v1, . . . , vk ∈ S, α1, . . . , αk ∈ S, and k ∈ N

}
.

For each a ∈ Rn define A := a(m) ∈Mn,m the matrix which each its row is a.
Let u ∈ R. Define

u+ :=

{
u, if u ≥ 0,

0, if u < 0,
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and

u− :=

{
0, if u ≥ 0,

−u, if u < 0.

For all x = (x1, . . . , xn) ∈ Rn we denote tr(x) :=
∑n

i=1 xi, tr+(x) :=
∑n

i=1 x
+
i ,

and tr−(x) :=
∑n

i=1 x
−
i .

Let A = [aij ] ∈ Mn,m. We say that A ≥ 0 if aij ≥ 0, for each i, j (1 ≤ i ≤
n, 1 ≤ j ≤ m). Define |A| = [|aij |]. The ith row of A is denoted by aRi . Also,
the jth column of A is denoted by aCj , and Col(A) = {aC1 , . . . ,aCm}. Define
c+(A) = {j : aCj ≥ 0} and c−(A) = {j : aCj ≤ 0}.
Let [T ] be the matrix representation of a linear operator T : Rm → Rn with respect
to the standard basis. In this case, Tx = xA, where A = [T ].
A linear operator T : Rm → Rn preserves a relation ∼, if x ∼ y concludes that
Tx ∼ Ty.

This work continues in three further sections. Section 2 studies some conditions
for ≺r and a linear operator T to preserve ≺r on Rm. Section 3 characterizes the
structure of all linear operators T : R2 → Rn preserving matrix majorization. In
Section 4 we obtain all linear preservers of ≺r from Rm to Rn.

2. Matrix majorization on Rm

In this section, we study some properties of the relation ≺r.

Definition 2.1. For each x ∈ Rn define x̃ := tr+(x)e1 + tr−(x)e2.

If x ≺r y ≺r x, we write x ∼ y.

Lemma 2.2. If x ∈ Rn, then x ∼ x̃.

Proof. Let x ∈ Rn we defne the matrix R by

R =


R1

R2

...
Rn

 ,
where

Ri :=

{
e1, xi ≥ 0,

e2, xi < 0.
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We observe that x̃ = xR, and R ∈ RS(n). So x̃ ≺r x.
Without loss of generality suppose that x1 ≥ x2 ≥ · · · ≥ xn, where x1, . . . , xk > 0,
and xl, . . . , xn < 0. Consider matrix S as follows

S =


S1

S2

...
Sn

 ,
where S1 :=

(
x1

tr+(x) , . . . ,
xk

tr+(x) , 0, . . . , 0
)
, S2 :=

(
0, . . . , 0, xl

tr−(x) , . . . ,
xn

tr−(x)

)
,

and Si := ε1, for each i (3 ≤ i ≤ n). In this case, x = x̃S and S ∈ RS(n), and
then x ≺r x̃. Therefore, x̃ ∼ x.

Let x = (x1, . . . , xn) ∈ Rn. Define ‖x‖ :=
∑n

i=1 |xi|. Clearly, ‖.‖ is a norm on
Rn. The following proposition provides a criterion for matrix majorization on Rn.

Proposition 2.3. Let x, y ∈ Rn. Then the following conditions are equivalent:
1) x ≺r y,
2) tr+(x) + tr−(x) = tr+(y) + tr−(y) and tr+(x) ≤ tr+(y),
3) tr+(x) + tr−(x) = tr+(y) + tr−(y) and tr−(x) ≥ tr−(y),
4) tr(x) = tr(y) and ‖x‖ ≤ ‖y‖.

Proof. As x ≺r y if and only if x̃ ≺r ỹ, we can prove the statement.

The following conclusion gives an equivalent condition for ∼ on Rn.

Corollary 2.4. Let x, y ∈ Rn. Then the following statements are equivalent:
1) x ∼ y,
2) tr+(x) = tr+(y) and tr−(x) = tr−(y),
3) tr(x) = tr(y) and ‖x‖ = ‖y‖.

Theorem 2.5. Suppose that T : Rm → Rn be a linear operator that preserve ≺r

and ker(T ) 6= 0. Then Tx = xc(m) for some c ∈ Rn.

Proof. Assume that A ∈Mn,m is the matrix representation of the linear operator
T : Rm → Rn with respect to the standard basis. So Tx = xA. Since T is not
one-to-one, there is some b = (b1, . . . , bm) ∈ Rm \ {0} such that Tb = bA = 0.

If b1 = · · · = bm, Set wi = mb1ei, for each i = 1, . . . ,m. For each i = 1, . . . ,m,
we conclude that wi ≺r b, and then Twi ≺r Tb. It implies that Twi = 0, and so
Tεi = 0. We deduce that A = 0. Choose c = 0.
Let bi 6= bj for some i, j ∈ {1, . . . ,m} and i 6= j. For t 6= s ∈ {1, . . . ,m} we have

 m∑
k=1,k 6=i,j

bk

 e1 + biet + bjes ≺r b.



Mathematics Interdisciplinary Research 8 (4) (2023) 291− 307 295

Since T preserves ≺r, m∑
k=1,k 6=i,j

bk

aR1 + bia
R
t + bja

R
s = 0,

for every 1 ≤ t 6= s ≤ m. It follows that

 m∑
k=1,k 6=i,j

bk

aR1 + bja
R
t + bia

R
s = 0,

for each t, s = 1, . . . ,m and t 6= s. Hence (bi − bj)aRt + (bj − bi)aRs = 0 and
aRr = aRs for each t, s = 1, . . . ,m and r 6= s. Put c = aR1 , we have Tx = xc(m).

The following conclusion is expressed in [15].

Lemma 2.6. ([15]). The set RS(n) is a convex set whose extreme points are
R(n).

Lemma 2.7. Let x, y ∈ Rn be both nonnegative or nonpositive. Then the following
statements are equivalent:
1) x ≺r y,
2) x ∼ y,
3) tr(x) = tr(y),
4) ‖x‖ = ‖y‖.

Proof. By the use of Proposition 2.3, the proof is obvious.

Lemma 2.8. Let T : Rm → Rn preserve ≺r. Then each column of A is nonneg-
ative or nonpositive.

Proof. Let A = [aij ] and atjasj < 0 for some t, s, j. Since 2et ∼r et + es and T
preserves ∼r, we conclude that

2aRr ∼ aRr + aRs .

So 2‖aRr ‖ = ‖aRs + aRr ‖ and thus

2

n∑
j=1

|arj | =
n∑

j=1

|arj + asj |

<

n∑
j=1

|arj |+
n∑

j=1

|asj | = 2

n∑
j=1

|arj |.

It is a contradiction. Therefore we deduce that each column of A is nonnegative
or nonpositive.
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Suppose that T : Rm → Rn preserves ≺r. Since εi ∼ εj , for each 1 ≤ i, j ≤ m,
we observe that Tεi ∼ Tεj , and then tr+(a

R
i ) = tr+(a

R
j ), tr−(aRi ) = tr−(a

R
j ),

and tr(aRi ) = tr(aRj ). Now define tr+(A) := tr+(a
R
1 ), tr−(A) := tr−(a

R
1 ), and

tr(A) := tr(aR1 ).

Lemma 2.9. Let T : Rm → Rn preserve ≺r. Then |T | preserves ≺r.

Proof. First, we prove that for each x ∈ Rm

tr(|T |(x)) = tr(x)(tr+(A)− tr−(A)), (1)

‖|T |(x)‖ = ‖T (x)‖. (2)

Lemma 2.8 ensures that

tr(|T |(x)) =
n∑

j=1

x.
∣∣∣ajCt

∣∣∣ = ∑
j∈c+(A)

x.
∣∣∣ajCt

∣∣∣+ ∑
j∈c−(A)

x.
∣∣∣ajCt

∣∣∣
=

∑
j∈c+(A)

x.aj
Ct −

∑
j∈c−(A)

x.aj
Ct

= x.
∑

j∈c+(A)

aj
Ct − x.

∑
j∈c−(A)

aj
Ct

=

m∑
i=1

xi
∑

j∈c+(A)

aij −
m∑
i=1

xi
∑

j∈c−(A)

aij = tr(x)(tr+(A)− tr−(A)).

This shows that (1) holds. Also,

‖|T |(x)‖ =
n∑

j=1

∣∣∣x.ajCt
∣∣∣ = ∑

j∈c+(A)

∣∣∣x.ajCt
∣∣∣+ ∑

j∈c−(A)

∣∣∣−x.ajCt
∣∣∣

=
∑

j∈c+(A)

∣∣∣x.ajCt
∣∣∣+ ∑

j∈c−(A)

∣∣∣x.ajCt
∣∣∣ = n∑

j=1

∣∣∣x.ajCt
∣∣∣ = ‖T (x)‖.

Thus ‖|T |(x)‖ = ‖T (x)‖.
Now suppose that x, y ∈ Rm and T preserves ≺r. So tr(x) = tr(y) and

T (x) ≺r T (y), therefore ‖Tx‖ ≤ ‖Ty‖. The relations (1) and (2) ensure that
tr(|T |(x)) = tr(|T |(y)) and ‖|T |(x)‖ ≤ ‖|T |(y)‖. It means that |T |(x) ≺r |T |(y)
and |T | preserves ≺r.

Lemma 2.10. Let a ∈ Rk and let T : Rm → Rn be a linear operator. Define
T̃ : Rm → Rn+k by [T̃ ] := [A|a(m)]. Then T preserves ≺r if and only if T̃
preserves ≺r.
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Proof. Assume that x ≺r y and T preserves ≺r. So tr(x) = tr(y) and

T̃ x ≺r T̃ y ⇐⇒ tr(Tx) + tr(x)tr(a) = tr(Ty) + tr(y)tr(a)

=⇒ tr(Tx) = tr(Ty), (3)

and

‖T̃ x‖ ≤ ‖T̃ y‖ ⇐⇒ ‖Tx‖+ |tr(x)|tr(|a|) ≤ ‖Ty‖+ |tr(y)|tr(|a|)
⇐⇒ ‖Tx‖ ≤ ‖Ty‖. (4)

By the relations (3) and (4) and Proposition 2.3 the proof is easy.

Lemma 2.11. Let T : Rm → Rn be a linear operator and let P ∈ P(n). Define
TP : Rm → Rn by [TP ] := AP . Then T preserves ≺r if and only if TP preserves
≺r.

Proof. Suppose that x ≺r y. We have

tr(Tx) =

n∑
i=1

x.ai
Ct

and ‖Tx‖ =
n∑

i=1

∣∣∣x.aiCt
∣∣∣ .

Since AP is A which its rows have been interchanged, we dedeuce that T
preserves ≺r if and only if TP preserves ≺r.

3. Linear preservers of matrix majorization on R2

In this section, we characterize the linear preservers of matrix majorization T :
R2 → Rn. We use the symbol P for the following matrix

P :=

[
0 1
1 0

]
.

Lemma 3.1. Let u ∈ R2 and T : R2 −→ Rn be a linear operator such that
T (uR) ≺r Tu for every R ∈ R2, then T (uR) ≺r Tu for every R ∈ SR2.

Proof. Let R ∈ SR2. By the use of Lemma 2.6 we have R =
∑4

i=1 λiRi for some
Ri ∈ R2, λi ≥ 0,

∑4
i=1 λi = 1. Hence,

T (uR) = T

(
u

4∑
i=1

λiRi

)
=

4∑
i=1

λiT (uRi).
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Since T (uRi) ≺r T (u) for all i, (1 ≤ i ≤ 4), there exists some Si ∈ RS(2) such
that T (uRi) = T (u)Si. Thus,

T (uR) =

4∑
i=1

λiT (u)Si = Tu

(
4∑

i=1

λiSi

)
= (Tu)S,

and S ∈ RS(2), so T (uR) ≺r Tu and thus T preserves ≺r.

For any real and nonnegative number a, the symbol a
0 equal to +1 if a > 0,

and equal to 1 if a = 0.

Theorem 3.2. Let T : R2 −→ Rn be a nonnegative linear operator and

[T ] :=

[
a11 a12 . . . a1n
a21 a22 . . . a2n

]
.

Then T preserves ≺r if and only if the following conditions occur
1) {a1k

a2k
: 1 ≤ k ≤ n} = {a2k

a1k
: 1 ≤ k ≤ n};

2) for all a ∈ {a1k

a2k
: 1 ≤ k ≤ n}, we have∑

a1k
a2k

=a

a1k =
∑

a2k
a1k

=a

a2k. (5)

Proof. =⇒) Let T be a nonnegative linear operator such that preserves ≺r,

[T ] :=

[
a11 a12 . . . a1n
a21 a22 . . . a2n

]
,

ai be the ith row of the matrix [T ] and ai

aj
:= { aik

ajk
: 1 ≤ k ≤ n} (i, j = 1, 2).

By applying Lemma 2.10 and Lemma 2.11 we can assume that a1j 6= a2j , for
each j = 1, ..., n. Let

A :=
a1
a2
∪ a2

a1
= {a1, ..., ap, a−1p , ..., a−11 },

such that

0 ≤ a1 < · · · < ap < 1 < a−1p < · · · < a−11 ≤ ∞.

Assume that T preserves ≺r. Since e1 ∼r e2 , Te1 ∼r Te2. So a1 ∼r a2, thus
tr(a1) = tr(a2). It is suficient to show that aj ∈ a1

a2
∩ a2

a1
, for every j = 1, ..., n and

thus a−1j ∈ a1

a2
∩ a2

a1
. For every j = 1, ..., p, we define the open intervals Ej ⊆ R by
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Ej :=

{
(aj , aj+1), if j < p,

(ap, 1), if j = p.

We see that (x,−1) ∼r (−1, x) for each x ∈ R, so T (x,−1) ∼r T (−1, x) and
tr+(T (x,−1)) = tr+(T (−1, x)) for all x ∈ Ej , j = 1, ..., p.

By induction on j we prove that

aj ∈
a1
a2
∩ a2

a1
, (6)

and ∑
a1k
a2k

=aj

(
a1k
a2k

)
=

∑
a2k
a1k

=aj

(
a2k
a1k

)
, (7)

thus ∑
a1k
a2k

=a−1
j

(
a1k
a2k

)
=

∑
a2k
a1k

=a−1
j

(
a2k
a1k

)
, (8)

for everyj = 1, ..., p. Let j = 1. If x ∈ E1 then

tr+T (x,−1)) =
∑

a2k
a1k

=a1

(a1kx− a2k), (9)

and

tr+T (−1, x)) =
∑

a1k
a2k

=a1

(a2kx− a1k). (10)

It implies that a1 ∈ a1

a2
∩a2

a1
, because if a1 ∈ a1

a2
and a1 /∈ a2

a1
then tr+(T (−1, x)) >

0 and tr+(T (x,−1)) = 0, this is a contradiction. Similarly, a1 /∈ a1

a2
and a1 ∈ a2

a1

yields a contradiction.
By the use of relations (9) and (10) and tr+(T (x,−1)) = tr+(T (−1, x)), we

deduce that (7) holds for j = 1. Now assume that the conditions holds for j < p
and x ∈ Ej+1. So

tr+(T (x,−1)) =
j+1∑
i=1

∑
a2k
a1k

=ai

(a1kx− a2k)

=

j∑
i=1

∑
a2k
a1k

=ai

(a1kx− a2k) +
∑

a2k
a1k

=aj+1

(a1kx− a2k). (11)
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Also,

tr+(T (−1, x)) =
j+1∑
i=1

∑
a1k
a2k

=ai

(a2kx− a1k)

=

j∑
i=1

∑
a1k
a2k

=ai

(a2kx− a1k) +
∑

a1k
a2k

=aj+1

(a2kx− a1k). (12)

By induction hypothesis we have

∑
a2k
a1k

=ai

(a1kx− a2k) =
∑

a1k
a2k

=ai

(a2kx− a1k),

for i = 1, ..., j. Thus

j∑
i=1

∑
a2k
a1k

=ai

(a1kx− a2k) =
j∑

i=1

∑
a1k
a2k

=ai

(a2kx− a1k).

It shows that (7) for j + 1 holds. Hence, the relation (5) holds.
Now we show that aj+1 ∈ a1

a2
∩ a2

a1
. Hence the induction argument is completed.

Conversly, suppose that (1) and (2) hold, we prove T preserves ≺r. The conditions
(1) and (2) ensure that

n∑
k=1

a1k =
∑
a∈A

(∑
k∈Ka

a1k

)
=
∑
a∈A

(∑
k∈Ka

a2k

)
=

n∑
k=1

a2k.

Since A ≥ 0, a1 ∼ a2. Let u = (x, y) ∈ R2 and R ∈ R(2), we prove that
T (uR) ≺r Tu and thus T (uD) ≺r Tu for every D ∈ RS(2) by the Lemma 3.1.
Observe that

R(2) =
{
I, P,

[
0 1
0 1

]
,

[
1 0
1 0

]}
.

Let u = (x, y) ∈ R2 and R ∈ R(2), so uR ∼r u. If xy ≥ 0, since A ≥ 0, we have
T (u) ∼r T (uR) if and only if tr(T (u)) ∼r tr(T (uR)). So in this case the proof
is established. Now suppose that xy < 0. Since for c ∈ R − {0}, T (uR) ∼r T (u)
if and only if T (cuR) ∼r T (cu), so without loss of generality we can assume that
u = (x,−1) or u = (−1, x), where 0 < x ≤ 1.
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Suppose that u = (x,−1), for some 0 < x ≤ 1 (similarly for the case u = (−1, x)).
Since tr(a1) = tr(a2),

tr(T ((x,−1)R)) = tr(T (x,−1)), (13)

for every R ∈ R(2). We just have to prove that

tr+(T ((x,−1)R)) ≤ tr+(T (x,−1)). (14)

Now we prove (14) in four cases.

• Case 1: If R = I, the proof is obvious.

• If R =

[
1 0
1 0

]
, then

tr+(T ((x,−1)R)) = tr+(T (x− 1, 0))

= tr+((x− 1)a1) = 0 ≤ tr+(T (x,−1)).

• If R =

[
0 1
0 1

]
, the proof is similar to the second case

• Let R = P and 0 < x ≤ 1. So

x ∈ (0, a1] ∪ [a1, a2] ∪ . . . ∪ [ap−1, ap] ∪ [ap, 1].

Observe that

tr+(T (−1, x)) =


0, if x ∈ (0, a1],∑j−1

i=1

∑
a1k
a2k

=ai
(a2kx− a1k), if x ∈ [aj−1, aj ],∑p

i=1

∑
a1k
a2k

=ai
(a2kx− a1k), if x ∈ [ap, 1],

and

tr+(T (x,−1)) =


0, if x ∈ (0, a1],∑j−1

i=1

∑
a2k
a1k

=ai
(a1kx− a2k), if x ∈ [aj−1, aj ],∑p

i=1

∑
a2k
a1k

=ai
(a1kx− a2k), if x ∈ [ap, 1],

where 1 < j < p. On the other hand, from the conditions (1) and (2) of
hypothesis we have
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∑
a1k
a2k

=aj

(
a1k
a2k

)
=

∑
a2k
a1k

=aj

(
a2k
a1k

)
,

for every j = 1, ..., p. Thus,

∑
a1k
a2k

=aj

(a1kx− a2k) =
∑

a2k
a1k

=aj

(a2kx− a1k),

for every j = 1, ..., p and x ∈ R. Hence,

j∑
i=1

∑
a1k
a2k

=aj

(a1kx− a2k) =
j∑

i=1

∑
a2k
a1k

=aj

(a2kx− a1k),

for each j = 1, ..., p and x ∈ R. So, tr+(T (x,−1)) = tr+(T (−1, x)), and the
relation (14) holds.

Lemma 3.3. Let T : R2 → Rn be a linear operator. Then T preserves ≺r if and
only if the following statements are true:
1) |T | preserves ≺r,
2) each column of A is nonnegative or nonpositive,
3) two rows of A are equivalent. i.e. a1 ∼ a2.

Proof. We only prove the necessary condition. Let x, y ∈ R2 and x ≺r y, so

tr(xA) =

n∑
j=1

x.aCj = x.

n∑
j=1

aCj

= x1

n∑
j=1

a1j + x2

n∑
j=1

a2j = x.tr(a1) + x.tr(a2)

= tr(x)tr(a1) = tr(y)tr(a1) = tr(yA). (15)

On the other hand, |T | preserves ≺r, so |T |x ≺r |T |y. Hence

‖xA‖ = ‖x|A|‖ ≤ ‖y|A|‖ = ‖yA‖. (16)

By the relations (15) and (16) we conclude that Tx ≺r Ty.
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4. Linear preservers of matrix majorization on Rm

In this section, we express linear preservers of matrix majorization T : Rm → Rn.

Theorem 4.1. Let m ≥ 3 and T : Rm → Rn be a linear operator. Then T
preserves ≺r if and only if

[T ] = [R|c(m)]P,

where in each column of matrix R there is only one non-zero entry, each two
rows of R are equivalent, P ∈ P(n) and c is a vector.

Proof. Assume that T preserves ≺r. If T is not one-to-one, then by Theorem 2.5
the proof is obvious. Now, let T is one-to-one. First, we prove the theorem for
m = 3. According to Lemma 2.10 we can assume

[T ] = R = A =

a11 a12 . . . a1n
a21 a22 . . . a2n
a31 a32 . . . a3n

 ,
where matrix A has no duplicate column. By Lemma 2.9, without loss of

generality assume that A ≥ 0. Define

•
{

a1j

a2j+a3j

∣∣a2j 6= a3j , j = 1, . . . , n
}
:= A1 ⊆ [0,∞),

•
{

a2j

a1j+a3j

∣∣a1j 6= a3j , j = 1, . . . , n
}
:= A2 ⊆ [0,∞),

•
{

a3j

a1j+a2j

∣∣a1j 6= a2j , j = 1, . . . , n
}
:= A3 ⊆ [0,∞).

If A1 = A2 = A3 = ∅, then the proof is obvious. Otherwise without loss of
generality we assume that A3 6= ∅ and

a3j0
a1j0 + a2j0

= min

{
a3j

a1j + a2j
|a1j 6= a2j , a3j 6= 0, j = 1, . . . , n

}
.

We define two vectors u, v ∈ R3 by

u :=


(
0,

2a3j0

a1j0
+a2j0

,−1
)
, if a1j0 < a2j0 ,(

2a3j0

a1j0
+a2j0

, 0,−1
)
, if a1j0 > a2j0 ,

and
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v :=

(
a3j0

a1j0 + a2j0
,

a3j0
a1j0 + a2j0

,−1
)
.

Since u ∼r v, Tu ∼r Tv. Also, we have the following statements.

1.
∑

a3j=0 a1j =
∑

a3j=0 a2j .

2. If a1j = a2j , then (Tu)j = (Tv)j =
(

2a3j0

a1j0
+a2j0

)
a1j − a3j .

3. If a1j 6= a2j , a3j 6= 0, then (Tv)j ≤ 0, because

(Tv)j =

(
a3j0

a1j0 + a2j0

)
(a1j + a2j)− a3j

≤
(

a3j
a1j + a2j

)
(a1j + a2j)− a3j = 0.

4. If a1j 6= a2j , a3j = 0, then

(Tu)j =

(
2a3j0

a1j0 + a2j0

)
max{a1j , a2j} > (Tv)j .

From the recent statements and (Tu)j0 > 0, we deduce that tr+(Tu) > tr+(Tv),
this is a contradiction. So, there is a maximum of one element nonzero in each
column of the matrix [T ].
Now we prove the theorem for every m > 3. If the jth column of A has over a
non-zero element, choose the vector (arj , asj , atj)t, where (r < s < t) such that it
has at least two non-zero elements and (arj , asj , atj)

t /∈ span(e).
Define S : R3 → Rm by S(x, y, z) = (w1, w2, . . . , wm) such that wr = x,ws =

y, wt = z, wi = 0, i 6∈ {r, s, t}. Observe that S preserves ≺r, and so ToS preserves
≺r. It is a contradiction. Because as we proved for m = 3, in the jth column of

[ToS] =

ar1 ar2 . . . arn
as1 as2 . . . asn
at1 at2 . . . atn

 ,
at least two non-zero elements exist.

Hence, according to Lemmas 2.10 and 2.11,

[T ] = [R|c(m)]P,
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where in each column of matrix Rn×k = [rij ] there is only one non-zero entry,
each two rows of R are equivalent, P ∈ P(n) and c is a vector. Let x = (x1, ..., xn)
be an arbitrary vector in Rn. So,

tr(xR) =

k∑
j=1

n∑
i=1

xirij =

n∑
i=1

xi

k∑
j=1

rij = tr(R1)tr(x), (17)

and

‖xR‖ =
k∑

j=1

∣∣∣∣∣
n∑

i=1

xirij

∣∣∣∣∣ = ‖R1‖‖x‖, (18)

where R1 is the first row of R. Thus if x, y ∈ Rn with x ≺r y, then tr(xR) =
tr(yR) and ‖xR‖ ≤ ‖xR‖. Hence, according to Proposition 2.3 and Lemmas 2.10
and 2.11 the proof is complete.
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