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Abstract

A new subclass of meromorphic univalent functions by using the g-
hypergeometric and Hurwitz-Lerch Zeta functions is defined. Also, by apply-
ing the generalized Liu-Srivastava operator on meromorphic functions, some
geometric properties of the new defined subclass such as coefficient estimates,
extreme points, convexity and connected set structure are investigated.
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1. Introduction

The meromorphic functions bear the same relation to the entire functions as the
rational functions do to the polynomials. A meromorphic function is a univalent
function that is analytic in all but possibly a discrete subset of its domain, and
at those singularities, like a polynomia, it must limit at infinity. By considering
q-hypergeometric function, g-analogue of Liu-Srivastava operator, A-generalized
Hurwitz-Lerch Zeta function, see [1-4], and convolution structure a new subclass
of meromorphic univalent function is defined, some geometric properties related to
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coefficient bounds, extreme points, convex family and connected sets are obtained.
Of course, we will use the techniques used in [5], to show the family of convexity,
and its related properties.

Let X denote the meromorphic functions f of the form

+oo
f(z) = Dz 14 Z anz", D >0, (1)
n=0

which are univalent and analytic in the punctured open unit disk.
Let U ={z € C: 0<|z| <1} =U\{0}. For the functions f; (j = 1,2) intro-
duced by

—+o0
fi(z)= Dz7" 4+ an ;2"
n=1
the convolution (or Hadamard product), see [6], of fi and f; is defined by

+oo
(fi#fo)(2) = Dz7' 4+ apaan2z" = (fox f1) (2).

n=1

Definition 1.1. Let « € C\ {0, —-1,-2,...} and k € NU{0}. Then (a)o =1,
(@) =ala+1)...(a+k—1) series

F(a,b,c;2) := ;Mz", (lz| < 1),

which is absolutely convergent and analytic on the unit disk, we call hypergeomet-
ric function.
This function was first used by Euler to solve the differential equation

21 =2 () + (e = (a+b+1)2) X (2) — abx(2) = 0.

Some examples of functions, which according to the hypergeometric function, ex-
pressed:

Example 1.2.
F(1,2,1;2) := #, F(1,b,b;2) := 1 ,
1= 2P =)
2F(1,1,2; —z2) :=log(1 + z), F(—n,b,b;—2) := (1 +2)",
F(1 _ 1'511122) = COS 2.

27272
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Also, the g-hypergeometric function .Y is defined by

TTS (mlv"'7xr;y17"'7y8;Q7Z)
o n(n—1)

+ (71, @)n - - (T, Q) n(n—1)
nz:;) (q,Q)n(ybq)n...(ys,q)nz (_1) q 2 (2)

where x;,y; are complex numbers (y; # 0,—1,...), ¢ # 0, r,s € Ny = NU {0},
r>s+1,z€Uand

(w,q)n = { 8 —w)(1—wgq)...(1—wg™1), Zi];{,

By using the gamma function, we get

Ly(w+n)(1—q)"
L'y(w) ’

(¢“;q), = n > 0.

Also, by a simple calculation, we conclude that lirri ((¢“,q),, /(1 —q)") is equal
q— )
to
(W) =ww+1)...(w+n-—1),
where (w),, is the well-known Pochhammer symbol, see [7]. Moreover, we have:

X @) (@) 2
Vs (@1, T Y, Yss @, 2) = Yy A

If0<|q <1,r=s+1, then

(xh(J)n-u(xMQ)n o
DY On - Ys O

“+oo
TTS(xlv"'aIT;yla"'ays;qﬂz) :Z (q

It is concluded by the basic hypergeometric function which is given in (2), above
series is absolutely convergent in U; see [1]. Aldweby and Darus [1], also Challab
et al. [2, 3] investigated the g-analogue of Liv-Srivastava operator associated with
7 Lo (1, o Tr Y1, -+, Ys; ¢, 2) for f € X which presented by:

Qz) = D217, (T1ye ey Tri Y1y -5 Ysi G, 2) * f(2)
+oo H (miaq)n+1
= Dz 'y Z = anz", z€U*. (3)

(q7 q)n"rl H::l(yia q)n-i—l

n=1

In [8, 9], Ghanim introduced the function G, , by

u u 1
Guao = (a+1) <<I>(z,u,a) —a" + P 1)u> ,
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for which Hurwitz-Lerch Zeta function ®(z,u,a) is defined by

+oo o
D(z,u,a) := Z —,
n=0 (TL + (1)

where ¢ € C\ Z; ,u € C, z € U and Re(u) > 1 when |z| = 1; see, e.g., [10-12].
After a direct calculation, we get

Guo=s+ Y (255) o sevn
a n

n=1

Srivastava [13] introduced the generalized Hurwitz-Lerch Zeta function as follows:

MNiseesMpsV1seesYm . R
@ A1, )\pvﬂla sHm (Z,u,a,b, )\) T

(min {Re(a), Re(u)} > 0,Re{b} > 0,A > 0).
Keep in mind that
ANeC(=1,...,ppand p; €C\Zy(j=1,....,m), n; >0(=1,...,p),
m P
j=1 j=1
H-function which was on the right-hand side of (4) is the well-known Fox’s H-

function [14], denoted by H, % (z), define as below:

€T

Yy
1 [T 00+ B,t) [T - a; - A1)
x, (a 7A ) 7(‘1 s ) Jj=1 j=1 ¢
Hpom, |(b11,311 ..... po )} 27Ti/g — 2tdt,
1‘[ T(a; +Ajt) I T(1—b;— Bjt)
=y+1 j=x+1

where
z € C\ {0}, larg(2)| < =.

We note that z,y,m and p all are integers that 1 < z < m, 0 < y < p,
a; €C, A;>0 (j=1,...,p)alsob; €C,B; >0(j=1,...,m).
L-Cantour is of the Mellin-Barnes type which separates the poles of the gamma
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functions {I'(¢tB; + bj)};c:1 from the poles of the gamma functions {I'(—A;t — a; + 1)}3;:1.
Also, we see (4) is convergent for |z| < W, where

p m
we= (10n ) (I
j=1 j=1

Now, by applying the Hadamard product, H-function, A—generalized Hurwitz-
Lernch Zeta, g-hypergeometric function and g-analogue of Liv-Srivastava opera-
tor. We consider the following operator which introduced by Challab et. al [4]:

K f(2) = KEImm f(z) 2 = %,
which has been defined by
K f(2) = GEE 0(2) ¥ Q(2),

where the Hadamard product (or convolution) of the analytical functions has been
denoted by *, and Q(z) is given in (3), also

U,a,\
G 3o ()
. w | (111,01 a " (a+1)~"
= (a+1) [@/\17___7)\17#1,“‘7’%(z,u, a,b,\) — WY(Q’ b,u, \) + —

Jr

8
-:]ﬁ

>

<.

D j=1 " la+1\" Y(a+n,byu,\) 2"
s + 4 a+n AT (u) n!
=) |
j=1
. U, QA .
gave the function G(/\p),(um),b(z) , with

Y(a,b,u,\) :== Hyy [abl/A

e (03)]

Now
K f(2) (5)
r p

Zi,q)n Aj n u

_ 2+ = 11;[1( 7 +1jl;[1( i) a+1\"Y(a+n,bu,N) 2"

oz u m a+n AT (u) Il

n=1(¢; @)n+1 l_[l(qu)nJrl _Hl(uj)n

1= J=

It is convenient to write K% f(z) = J(z), see [14]. For 0 < R <1,0< S5, T <1,
k = 2l; a function f of the form (1) belongs to MX(R,S,T) if it satisfies the
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inequality

K2 74D (2) 4 D(k 4 1)!
R2k27 (k41 (2) — D(k+ 1)! + D(1 + R)S[(K + 1)!]

<T,

where J) is the j-th derivative of J(z) = K* f(2).

2. Main results

In this section first we state coefficient estimates on the class M*(R, S, T). For a
given zg € R such that 0 < x¢p < 1, we define two subclasses of ¥ and find some
geometric properties of these subclasses. Also integral representation of j((:)) is

obtained.

Theorem 2.1. Let f € X, then f € MF(R,S,T) if and only if

S . igl(%q)nﬂjgl(kj)n <a+ 1>v Y(a+ n,b,v,\)
n=1(n—k—1)q,q¢)n+1 _ljl(ﬁz‘>Q)n+1 ﬁl(ﬂj)n atn AL(v)

TD(R + 1)(1 — S)[(k + 1)1].

The result is sharp for F(z) given by

F(z) =

D
=+
z

Gp <

(0~ k= Vg @ T ) {1 ()u(n + 0" AL@TD(R + 1)1 = Sk + 1))

Jj=1

n+1

(1+ RT)

(aia q)1+n H (Aj)n(a + 1)UY(a +n, b7 v, )‘)

T p
i=1 j=1
Proof. Let f € M*(R,S,T), then (5) holds true. So by replacing

(k + 1)!
zk+2

j(k+1)(z) _ (*1)k+1D +

=

p
+oo (ai7Q)1+n Hl()‘J)n
j=

1

.
Il

S m

n=1(n—1—k)(q,q)n+1 H (Bis @n+1 H (Nj)n

i=1 j=1

a+1\"Y(a+n,b v\
a+n AT'(v)

z

—(k+1
A CanDR



Mathematics Interdisciplinary Research 8 (4) (2023) 309 — 325 315
I —

in (5), we have

r ) P ) a+1\"
too z'l;l1(a“q)l+n 'H (A (CH'") Y(a+mn,bv,A)
ECE ST I (CAPIINE | (PR M
=l = <T
r D 1+a\’
oo RH(Oﬁv‘])lJrn H(AJ) nta
~(RA (- S$)DIk+ 1]+ 5 = ( +m) Het g o
"=l (n—1-k)! g Q14n H (Bi, @) 14n l_ll(ﬂj)"
L pe

It is known that Re(z) < |z]| for all z. So

f[ (2, @) 14n ﬁ Aj)n
= j=1

+z°:° = s — m <a::'_ 1>v Y(a —:1?(71))71)7)\)an ntl
"=l (n—1-k)!q q)14n _Hl(ﬁi,(I)lJrn _Hl(,uj)n arn Y
i= j=

Re

T

R 11 (@ Dot ] ﬁ Psn (1 +a)v Y(n+a,b,v,\)

n+a Al(v)

(R+1D)(1 -9+ — Jio
GRS UCRIS | (CHINe | (TN

=1 j=1

By letting z — 1~ through real values, we have

(1 + RT) ﬁ (au )n-i—l li[ ()\])TL

1 i=1 a+1\"Y(a+n,b v\
Z m an
n=1 (n — k- 1) ( )n—i—l 1:[ (ﬁu ) l;[ (:uj) (a + n> /\F(U)

< TD(R+1)(1 — 8)[(k + 1)1].

Conversely, let (7) hold, it is enough to show that

vV o= ‘zk+2j<k“>(z)—p[(k+1)!]

T ‘Rzk+2j(k+1)(2) ~ D[(k+1)]] + (R+ 1)SD[(k + 1)1]| < 0.

But, for 0 < |z| = r and k = 2I(I € N), we see that

anzn+1

<T
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r

o T (@ @)1+n 11 Og)n
V _ Z =1 _ Jj=1

"=t (n— 1= R, @)ren LB @)1t T1 (1) (””

n

a+1>UY(a+n,b,v,)\) ntl

Al'(v)
i=1 j=1
T D
+oo I (@i @) 14n [T (Aj)nR
— T|DR+DHA-9k+D]-3 =1 =t -
n=1 (n —1— k)!(q, (I)1+n il:ll(ﬁiy q)1+n jl:[l(/lj)n

(a-i— 1)” Y(a+mn,bv,\) 1y
anz
a+n )\F(’U)

ﬁ (s @)nt1 ﬁ (Aj)n
=1 j=1

+oo v
< i i _ (a+1) Y(a J;:( b),v,)\)laannH
i1 (0= k= D@ Dt [T @t T () atn v
1= Jj=
— TDR+1(1=-9)[k+1)
7 P
RT Q;,q Aj n
= z‘l;ll( )n+1jl;[1( 2 (a+1)“ Y(a+n7b,v7/\)| [t
anl|r
S m AF
2= (n— k= DNgy Dnst L1 (B @nir T1 (j)n 0T (v)
i=1 j=1
(1+ RT) [T (@i )sr [100)
oo 1+ RT Qi q)n Aj)n
< t i=1 Jrlj=1 J <a+l>”Y(a+n,b,v,/\)| [t
anl|r
- Ll a+n Al (v)

n

1(n—k—1)Ng @)n+1 'ﬁl(ﬂiuQ)nJrl _Hl(#j)n
1= 1=
— TD(R+1)(1— $)[(k+ 1)1,

By letting r — 17, since the last inequality holds for all (0 < r < 1), we conclule
that V' < 0, so the proof is complete. O

Theorem 2.2. Let f € M*(R,S,T). Then

[P+ (T¥(u)(S+ RS —1)—1)
TV (=) = /0 (1 —T¥(u)R) uk+t? du,

and

where p(x) is the probability measure on X = {x: |z| = 1}.
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Proof. By (6), we have

2R (2) 4+ (k+ 1)!
Rk+27k+1)(2) — (k+ 1)! + (1 4+ R)S[(k + 1)!]

where |¥U(z)| < 1;z € U*. Then

= T(2),

22 7D () 4 (k+1)! = TW(2) RZFF2 7D (2) 4+ 70 (2)[(k+1)!](1— S — RS) = 0,

or
2 JEED () (1 = TU(2)R) = [(k + 1)1 (TT(2)(S + RS — 1) — 1).
After integration, we conclude that

R+ D)Y(TE(u)(S + RS — 1) — 1)
IO = /0 (1 — TU(u)RyuF+2 du-

For the second representation, we put X = {« : |z| =1}, and so

Zk+2J(k+1)(Z) + (k 4 1)|
ReF+2 D (2) — (k+ 1)l + (1+ R)S[(k + 1)

=Tz,

and after a simple calculation, we obtain the desired result. O

Two subclasses of ¥ are defined and the above geometric properties of these
classes are examined. For a given g € (0, 1), let 31 be a subclass of X provided
that, xof(79) = 1 and 3 be a subclass of ¥ provided that, —z3 f'(x) = 1, also:

M]g(R,S,T,ibo):Mk(R,S,T)mZQ, (021,2)

Theorem 2.3. Let f be defined by (1). Then f € M¥(R,S,T,xo) if and only if

p

v (4R TT @i s [T ()

( =1 j=1 (a + l)v

n=1 (n —k —1)q,q)nt1 ljl(ﬂi’ Qnt1 ijl(“j)n a+mn
Y(n+a,b,,v,\) .

NIRRT DA-9k+D] zya, < 1. (8)

Proof. Since f € M¥(R,S,T,zy), we have

+o0
zof(zo) =+ Z anri Tt =1.
n=0

Thus
+oo
D=1- ZanxgH.
n=1
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By replacing this value of D in Theorem 2.1, we obtain

i

0o 1+RT i (679 n )\ n v
< ( )il;[1( D j 1( i) <a+1> Y(a+n,b,,v,\)
In

> .
= (= k= )Y @)rgn 115 s atn AL(v)

1=1 ]

<T(R+1)(1—S)[(k+ 1)] (12%33”“),

(/LJ
1

H:]E

or

(1+ RT) I (4, @)t _ﬁ[l(xj)n

oo i=1

a+1
Z( m
"=t (n—k—1)Yq, ¢)n+1 H (Bis On+1 l;[ (1)n <a * n)

Y(a+mn,b,,v,A) )
AL (V)T (R+1)(1 = S)[(k+ 1)

and we get the desired assertion. O

+ x”+1)an <1,

Theorem 2.4. Suppose that f is defined as (1). So f € M5(R,S,T,x0) if and
only if

s (1+RT) 'ﬁl(ai’q)1+n 'ﬁl()\j)n ( +1 )” Y(a+mn,b A)

> ( — . T (9)
n=1 (n—k—1)1(q,q)14n .1;[1(51', @1+n _H (j)n NOFT AT+ 1 = S){(k+ 1)1

j=1

—nngrl)an <1

Proof. Since —z3f'(zg) = 1, we have
+oo
D=1+ Z nanxgH.
n=1
Substituting D in (7), we obtain (9). O
Corollary 2.5. (i) If f be in the form (1)and in the class M¥(R, S, T, xo), then

< q) (10)
An > W%LJFP
where
o = ([[(5@wsr [[(5)n(a+n) AL@T(R+1)(1 = S)[(k + 1))
i=1 Jj=1

< (n—k—1)Ngq)ns (11)
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W = (1+RT) H(ai, Q)1+n H(/\j)n(l +a)’Y(n+a,b,v,\), (12)

(ii) If f(2) be in the form (1)and in the class M5(R,S,T,zo), then

< o
a < -
YT W - ndan Y

where ® and W are given in (2.5) and (2.6) respectively.

3. Convex and connected sets

In the last section we will show that M’g(R, S, T,xq) for § = 1,2 are convex sets.
Also, connected set conditions are investigated. The same properties were studied
recently in [5].

Theorem 3.1. Let f; defined by
+o0o
D. n
fi(z) = 7] + Z an,jZ",
n=1

be in the class M¥(R,S,T,xo). Then the function F(z) =Y d;f;(z) (d; > 0) is

Mz

0

J
m

also in the same class where > d; = 1.
§=0

Proof. By definition of F'(z), we have
m D +oo m +oo m
F(Z) = Zd] 7j —&—Zan’jz" = Zdej Z_l +Z Zdjanyj 2",
j=0 n=1 j=0 =1 \j=0

Since f; € M¥(R, S, T, x¢) for j =0,1,...,m, by using (8), we have

i=1

too (1+ RT) I1 (0, @)14n ,IEII(AJ-)
j=

> s

A5 (= k= Dla, @i TG @ren ()
1= Jj=

(l—i—a)u Y(n+a,b,,u,\)
n+a/) AN'(wWT(R+1)(1-9)[(k+1D)]

+ :L‘(lfr")amj <1.
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But
+oo (1 + RT) ﬁ (aia Q)l-i-n ﬁ (AJ) u
Z( i=1 j=1 < 1+ a)
n=1 (n—k—1q, Q14n ﬁl(ﬁi, 14n ﬁl(uj)n nta
1= j=
Y(n+a,b,,u,\) L
NIRRT+ DA -8k D] 7" ); djtn.j
s 08D [T 10) e
= Y4 s s ()
=0 n=1 (n—k—1)Yq,q)14n Hl(ﬁi,Q)Hn Hl(uj)n nta
1= j=
Y(n+aaba7u7)‘) 14+n
N(@T(R )1 -_8)kt1] 70" )an)
< Y di=1
§=0
Now, the proof is complete. O

Remark 1. By using the same techniques, we can prove the same result for
ME(R, S, T, x0).

Corollary 3.2. The classes ./\/l’g(R7 S, T,xg) for 0 = 1,2 are convex sets.
Theorem 3.3. Let

fo(z) =271, (13)
and

W + oznt!
()= - >, 14
fl2) Z(W—i-(I)xgH) (14)
where ® and W are given in (11) and (12), respectively. Then f € M¥(R, S, T, zo)

+0o too

if and only if it can be expressed by f(z) = > &€nfn(z), where &y >0 and Y. &, =
n=0 n=1

1.
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Proof. Let

+oo

n=1

n+1
_ ahi +ZgnlW+<I>z]

n+1
— W + ®x )
—+o00
W + ®zntl
71
= +
EONE WWW)]
= 1474 = P
51
= + | + .
b0 nzf W+ 0z t! ;f W+ 0z t!

In view of Theorem 2.3 and by

—+oo +oo
%% 41 ®

> n e | =D G =1-& <1,
(q>+ )(5 W+<1>xg+1> n:f S =

n=1

(EOf {170 anxOfn xO Zgn = ]-

n=0
we conclude that

f(Z) = MIf(R7 S7 T7 .7}0)-

Conversely, suppose that f(z) € M¥(R,S,T,z¢). Then inequality (2.4) is estab-
lished. By setting

W+ oapt!
fn Tanv n 2 ]-
and § =1— j;: n, We obtain the required result, so the proof is complete. [

Remark 2. With a similar way, we can prove the same theorem for M5(R, S, T, z¢).

Remark 3. We note that the functions given by (13) and (14) are the extreme
points of M¥(R, S, T, z0). Now, we investigate convex family related to connected
sets. Let I be a nonempty subset of [0,1]. We define

MR, S, T.1) = | ] M§(R, S, T,z;), 0=12. (15)

zel

According to Theorem 3.1 and its corollary, M¥(R, S, T, I) is convex family if I is
a single points.

Theorem 3.4. If f € MY(R, S, T, z0)NMK (R, S, T, 1), where xo, v are positive
numbers and xo # x1, then f(z) = 27
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+oo
Proof. Suppose f € M¥(R, S, T,x0)"ME(R,S,T,z) also f(2) = D271+ a,z".
n=1

Then

or

—+o0 +oo
_ +1 _ +1
D—l—E an Ty —1—5 anzy™,
n=1

n=1

+oo
Z an (zgt —2i) = 0.
n=1

Since a,, > 0, zop > 0 and z; > 0, so a, is always zero. This concludes that

f(z) =271

O

Theorem 3.5. Assume that I belong to [0,1]. So MY(R,S,T,I) is a convex
family if and only if I is connected.

Proof. Let I be connected and let x,zy € I with x¢y < x1. It suffices to show that

for

+oo

f(z) =Dzt + Z anz" € M¥(R, S, T, x),
n=1
“+oo

g(z) =Bzt + Z bp2" € MY(R, S, T, 1), (16)
n=1

and 0 < v < 1, there exists xa(xg < x5 < x1) such that

h(z) = vf(z) + (1 - v)g(2) € Mi(R, S, T, z2).

By (16), we obtain

—+oo —+oo
E=1- E by, D=1- E anzy .
n=1 n=1
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Therefore, we get

H(z) = #h(z) =2 (Wf(z) + (1 )g(2))
+o0 foo
= z (VDZ1 + Z vaz" + (1 —v)Ez"t + Z(l - V)bnz”)
n=1 n=1
+00 g
= vD+ Z vapz" ™+ (1 - v)E + Z(l — )bp 2"t
n=1 n=1

+o0 too
= v (1 — Z anxgH) +(1-v) <1 — anx?H)
n=1 n=1

“+o0 “+oo
+ Z va,z"t + Z(l — V)b, 2" !
n=1 n=1

“+o0 “+o0
= 1+vY (" =2t an+ (1 -v) Y (" =2t b (17)
n=1 n=1

Even though H(zp) < 1, H(xz1) > 1. Then x5 exists so that H(z2) = 1, where
X9 € [x0,x1]. Hence

xgh(l‘g) =1. (18)
As a result h € ¥(1). Also from (17), (18) and (8), we infer that

io <‘$ + aﬂ;“) (van + (1 — v)by,)

n=1
+oo +oo
w n w "
3 () e ra-n 3 (e

+o0 too
W n W n
gu; <q>+m0+1) an+(1—u);(¢+xl+l> by
<v+1l—v=1.

Hence h € M¥(R, S, T, x5). Since zg, r1 and x4 are arbitrary, the family M% (R, S, T, I)
is convex. Conversely, if I is not connected, then there exists xp,x; and x5 such
that g < 29 < 1 and zg,z1 € I, but x5 ¢ I.

Let f € MY(R,S,T,x0) and g € M¥(R,S,T,x1), f(2) and g(z) are not both
equal to =1, Then for fixed 2o and 0 < v < 1, by (16), we obtain

+oo too
H(v)=H(zo,v)=1+4v Z (z"T —2pt) an + (1 —v) Z (z" T — 27 b,,.
n=1 n=1
Since H(x2,0) < 1 and H(zg,1) > 1, there exists v9(0 < vy < 1) such that
H(z2,19) =1 or zah(xs) = 1, where h(z) = vof(2) + (1 — 1)g(z). Thus h(z) €
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ME(R, S, T, x5). From Theorem 3.4, we have h(z) ¢ M¥(R,S, T, I). Since zo € T
and h(z) # 27!, this implies that the family M} (R, S, T, I) is not convex which is
a contradiction and the proof is complete. O

Remark 4. We note that by the same techniques where used in Theorem 3.4 and
Theorem 3.5, we can prove the same results for the class M5(R,S, T, I), and so
the details were omitted.
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