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Abstract
In the present paper it is shown that Bogomolov multipliers of isoclinic

Lie rings are isomorphic. Also, we show that isoclinic finite Lie rings have
isoclinic CP covers. Finally, it is proved that if CE1 and CE2 are central
extensions which are isoclinic, then CE2 is a CP extension if CE1 is so.
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1. Introduction
The Bogomolov multiplier which is a group-theoretical invariant, was introduced
as an obstruction to Noether’s problem. The latter is an important problem in
invariant theory that was discussed by Emmy Noether in [1]. Let W be a faithful
representation of a finite group over a field L. Then G acts naturally upon the field
L(W ), the rational functions. The problem of rationality or Noether’s problem
asks about rationality of G-invariant functions L(W )G over a field L. Saltman in
[2] presented a new method that was the application of the unramified cohomology
group H2

nr(C(W )
G
,Q/Z) as an obstruction. Then in the case where L = C, some

examples of finite p-groups of order p9 with negative answer to Noether’s problem
is given by Saltman himself. In 1988, Bogomolov [3] showed that the unramified
cohomology group H2

nr(C(W )
H
,Q/Z) is canonically isomorphic to
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B0(G) =
⋂

ker{resBG : H2(G,Q/Z)→ H2(B,Q/Z)},

where resBG is the usual cohomological restriction maps and B is an abelian
subgroup of G. The group B0(G) was named by Kunyavskii in [4] the Bo-
gomolov multiplier of G and it is actually a subgroup of the Schur multiplier
M(G) = H2(G,Q/Z). Negating examples to Noether’s problem over the com-
plex numbers, can be come up when the Bogomolov multiplier is non trivial. But
the computition of the Bogomolov multiplier of a group is not an easy matter.
Recently, Moravec in [5] presented homological version of the Bogomolov multi-
plier using a notion of the non abelian exterior square between groups. He proved
that for a finite group G, there is a natural isomorphism between B0(G) and
Hom(B̃0(G),Q/Z). Also the group B̃0(G) can be viewed as a section of G ∧ G,
the non abelian exterior square of a group G. Among other results he proved
that B̃0(G) is isomorphic to the quotient group M(G)/M0(G), in which, M(G)
the Schur multipluer of the group G, is considered as the kernel of the so called
commutator homomorphism G∧G→ [G,G] defined as x∧y → [x, y], andM0(G)
is generated by all x ∧ y for which [x, y] = 1. In finite case, there is a natu-
ral isomorphism between B̃0(G) and B0(G). With this interpretation, all really
nontrivial nonuniversal commutator relations are gathered into an abelian group
that is called the Bogomolov multiplier. In addition, the Bogomolov multiplier
is related to the probability of commuting two random elements of a group, by
Moravec’s method. Also this method introduces the important role of Bogomolov
multiplier in central extensions of groups which preserves commutativity, which
are famous in K-theory. (See [6, 7] for more information). Furthermore, Moravec
showed that isoclinic groups have isomorphic Bogomolov multipliers, CP covers
of isoclinic groups are isoclinic and if ce1 and ce2 are central extensions with ce1

a CP extension, then e2 is a CP extension provided that the extensions are both
isoclinic. (for more information see [7]). Here, we want to prove similar results for
Lie rings. This should be seen as a continuation of our recent work [8, 9], where
we developed the analogous theory of commutativity preserving exterior product,
Bogomolov multiplier, CP central extension, and CP cover for finite dimensional
Lie algebras over a field and finite Lie rings.

2. The Bogomolov multiplier and CP covers of

Lie rings
In this section we introduce the notion of Bogomolov multiplier and a kind of cover
which preserves commutativity and is called CP cover of Lie rings.

Definition 2.1. A Lie ring is an abelian group L together with a Z-bilinear map
[., .] : L × L → L defined on it, which is called the Lie bracket with the following
conditions:
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• [a, a] = 0,

• [a, [b, c]] + [c, [a, b] + [b, [c, a]] = 0 and [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 (the
Jacobi identity),
for all a, b, c ∈ L.

The product ([a, b]) is called the commutator of a and b.

Note that we can define a Lie ring as a Z-Lie algebra (see [10]). Also, for a
given positive integer k, every Lie algebra over Z/pkZ is called a p-Lie ring (see
[11]).

Definition 2.2. Assume that L is a Lie ring and L ∼= F/R be a free presentation
for it . A function h : L × L → L, which is bilinear is called a Lie-B̃0-pairing,
provided that

(i) h(λa, b) = h(a, λb) = λh(a, b),

(ii) h(a+ a′, b) = h(a, b) + h(a′, b),

(iii) h(a, b+ b′) = h(a, b) + h(a, b′),

(iv) h([a, a′], b) = h(a, [a′, b])− h(a′, [a, b]),

(v) h(a, [b, b′]) = h([b′, a], b)− h([b, a], b′),

(vi) h([b, a], [a′, b′]) = −[h(a, b), h(a′, b′)],

(vii) If [a, b′] = 0, then h(a, b′) = 0,

for all λ ∈ Z and a, a′, b, b′ ∈ L.

Definition 2.3. Let L be a Lie ring with a free presentation L ∼= F/R. The curly
exterior square L f L is the Lie ring generated by the symbols m f n subject to
the following list of relations

(i) λ(af b) = λaf b = af λb,

(ii) (a+ a′) f b = af b+ a′ f b,

(iii) af (b+ b′) = af b+ af b′,

(iv) [a, a′] f b = af [a′, b]− a′ f [a, b],

(v) af [b, b′] = [b′, a] f b− [b, a] f b′,

(vi) [(af b), (a′ f b′)] = −[b, a] f [a′, b′],

(vii) If [a, b] = 0, then af b = 0,
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for all λ ∈ Z and a, a′, b, b′ ∈ L.
It is shown by Ellis in [12] that, the kernel of the map κ : L ∧ L→ L2 defined

by a ∧ a′ 7−→ [a, a′] is actually the Schur multiplier of L. On the other hand,
M0(L) ≤ M(L) = kerκ, where M0(L) =< a ∧ b | [a, b] = 1 >. So there is a
homomorphism κ̃ : L ∧ L/M0(L) → L2 given by a ∧ a′ +M0(L) 7−→ [a, a′] and
ker κ̃ ∼=M(L)/M0(L). Similar to groups, we denoteM(L)/M0(L) by B̃0(L), and
we call it the Bogomolov multiplier for the Lie ring L. Also similar to [8, Theorem
3.6], LfL ∼= L∧L/M0(L). So, one may consider the following exact sequence of
Lie algebras 0→ B̃0(L)→ Lf L→ L2 → 0.
In the following, K(F ) and F 2 stand for {[x, y] | x, y ∈ F} and [F, F ], respectively.

Theorem 2.4. Let L be a Lie ring. If L ∼= F/R is a presentation for L, then
B̃0(L) ∼= (R ∩ F 2)/< K(F ) ∩R >.

Proof. From [12], L ∧ L ∼= F 2/[R,F ] and L2 ∼= F 2/(R ∩ F 2). Moreover ker κ̃ =
M(L) ∼= (R ∩ F 2)/[R,F ] and M0(L) can be considered as the subalgebra of
F/[R,F ] whose generators are all the commutators in F/[R,F ] that lie inM(L).
So we have the following isomorphism forM0(L)

< K(
F

[R,F ]
) ∩ R

[R,F ]
>∼=

< K(F ) ∩R > +[R,F ]

[R,F ]
∼=
< K(F ) ∩R >

[R,F ]
.

In classical group theory we have a kind of central extensions of groups which
preserve commutativity. Here we have such extensions and the Bogomolov mul-
tiplier is a key tool in studying these kinds of group extensions, and it is unique
up to isomorphism. Also, in finite groups theory, commutativity preserving covers
was first studied by Jezernik and Moravec [7]. Unlike Bogomolov multiplier, CP
covers are not unique in general. Recently in [9], we defined CP cover for finite Lie
rings and finite dimensional Lie algebras and proved that for finite dimensional
Lie algebras, all CP covers are isomorphic.

Definition 2.5. Let L, M , and C be Lie rings and 0 −→M
χ−→ C

π−→ L −→ 0, be an
exact sequence. It is called a commutativity preserving extension or CP extension
of M by L, if the lifts of each commuting pairs of elements of L in C, commute.
Furthermore if the kernel is central, it is named to be a central CP extension.

Proposition 2.6. ([8]). Let ec : 0 −→ M
χ−→ C

π−→ L −→ 0 be a central extension.
Then ec is a CP extension if and only if χ(M) ∩K(C) = 0.

Definition 2.7. Let C and M be finite Lie rings. The pair of Lie rings (C,M) is
a commutativity preserving defining pair or CP defining pair for L, if

(i) L ∼= C
M ,

(ii) M ⊆ Z(C) ∩ C2,



Mathematics Interdisciplinary Research 8 (4) (2023) 327− 335 331

(iii) M ∩K(C) = 0.

Lemma 2.8. For a finite Lie ring, if C is the first term in a CP defining pair for
L, then |C| is bounded.

Proof. Put |C| = n. We know |C/Z(C)| ≤ |C/M | = |L| = n. By using Lemma
7 in [13] and Proposition 4.2 in [8], C2 is finite and we have the following exact
sequence

B̃0(C)
f−→ B̃0(L)

g−→M −→ 0.

So, B̃0(L)/Imf ∼= M and |M | ≤ |B̃0(L)|. Therefore

|C| = |L||M | ≤ |L||B̃0(L)| = n|B̃0(L)|.

Hence |C| is bounded.

Now, we have the following definitions:

Definition 2.9. Let C and M be finite Lie rings. The pair (C,N) of Lie rings is
called a maximal commutativity preserving defining pair or maximal CP defining
pair for L, provided that the order of C is maximal.

Definition 2.10. If (C,M) is a maximal CP defining pair, we call the Lie ring C
a commutativity preserving cover or CP cover for L.

In the recent work [9], we proved that for an arbitrary CP defining pair (C,M),
the Lie rings M and C are isomorphic to a quotient of the Bogomolov multiplier
and CP cover of L, respectively. Also the maximality of the pair (C,M), implies
M to be isomorphic to the Bogomolov multiplier of L. In this paper we intend to
prove that for a finite Lie ring each two CP covers are isoclinic.

3. Bogomolov multiplier and isoclinism of Lie rings
Hall in [14] presented an equivalence relation on the class of all groups that named
isoclinism. In 1994, Moneyhun in [15] defined the same concept for Lie algebras.
Now, since Lie rings are Z-Lie algebras, we have similar definitions for Lie rings.
Here we want to show Bogomolov multipliers of isoclinic Lie rings are isomorphic.

Definition 3.1. Two Lie rings L1 and L2 are isoclinic, if there exist isomorphisms:

α :
L1

Z(L1)
→ L2

Z(L2)
, β : L2

1 → L2
2,

such that for all l1, l′1 ∈ L1, if α(l1 + Z(L1)) = l2 + Z(L2) and α(l′1 + Z(L1)) =
l′2 + Z(L2), then β([l1, l

′
1]) = [l2, l

′
2] where l2, l′2 ∈ L2. In this case, the pair (α, β)

is called an isoclinism from L1 to L2.

Theorem 3.2. Let L and K be isoclinic Lie rings. Then B̃0(L) ∼= B̃0(K).
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Proof. There are two isomorphisms α : L/Z(L) → K/Z(K) and β : L2 → K2

such that for all l1, l2 ∈ L and k1, k2 ∈ K, if α(l1 + Z(L)) = k1 + Z(K) and
α(l2 + Z(L)) = k2 + Z(K), then β([l1, l2]) = [k1, k2]. Define a map Φ : L × L →
KfK given by Φ(l1, l2) = k1fk2. For proving to see that this is well-defined, sup-
pose α(li+Z(L)) = ki+Z(K) = k′i+Z(K), for i = 1, 2. Therefore k1−k′1, k2−k′2 ∈
Z(K), and we can let k′1 = k1 + z and k′2 = k2 + w for some z, w ∈ Z(K). The
definition of K fK implies that k′1 f k′2 = (k1 + z) f (k2 +w) = k1 f k2. So, Φ is
well-defined.

Now, let l, l′, s, s′ ∈ L and k, k′, ks, ks′ ∈ K such that α(s+Z(L)) = ks+Z(K),
α(s′+Z(L)) = ks′+Z(K), α(l+Z(L)) = k+Z(K), and α(l′+Z(L)) = k′+Z(K).
As L and K be isoclinic, then β([l, l′]) = [k, k′] and β([s, s′]) = [ks, ks′ ]. Also, we
have

Φ(l, [s, s′]) = kf [ks, ks′ ] = ([ks′ , k]fks)− ([ks, k]fks′) = Φ([s′, l], s)−Φ([s, l], s′),

and

Φ([l, s], [l′, s′]) = [k, ks] f [k′, ks′ ] = −[ks f k, ks′ f k′] = −[Φ(s, l),Φ(s′, l′)].

Also, let l, s ∈ L commute, and let k, ks ∈ K be as above, Then β([l, s]) = [k, ks] =
0, hence kf ks = 0. Thus Φ is B̃0-pairing. Therefore Φ induces a homomorphism
Φ∗ : L f L → K fK given by (l1 f l2 7−→ k1 f k2) for all l1, l2 ∈ L. Similarly,
there is a homomorphism Ψ∗ : K fK → LfL given by k1 f k2 7−→ l1 f l2, for all
k1, k2 ∈ K. We can write Ψ∗Φ∗ = Φ∗Ψ∗ = 1, hence Φ∗ is an isomorphism.
Let k∗L : LfL→ L2 be given by (l1 f l2 7−→ [l1, l2]) and let k∗K : K fK → K2 be
given by (k1fk2 7−→ [l1, l2]), for all l1, l2 ∈ L and k1, k2 ∈ K. Since βk∗L(l1f l2) =
β([l1, l2]) = [k1, k2] = k∗K(Φ∗(l1 f l2)), we have the following diagram which is
commutative

0→ B̃0(L) //

γ

��

Lf L
K∗L //

Φ∗

��

L2 → 0

β

��
0→ B̃0(K) // K fK

K∗K // K2 → 0

Since β and Φ∗ are isomorphisms, so is γ.

4. CP extension and isoclinism of Lie rings

In this section, similar to groups, we want to study the connection between CP
extension and isoclinism and then we will prove that all CP covers of isoclinic Lie
rings are isoclinic.
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Definition 4.1. Let Ni, Ci, and Li (i = 1, 2) be Lie rings, and let ce1 : 0 →
N1

χ1−→ C1
π1−→ L1 → 0 and ce2 : 0 → N2

χ2−→ C2
π2−→ L2 → 0 be two central

extensions. Then ce1 and ce2 are isoclinic, if there are isomorphisms η : L1 → L2

and ξ : C2
1 → C2

2 such that for all c1, c2 ∈ C1, we have ξ([c1, c2]) = [c′1, c
′
2] where

c′1, c
′
2 ∈ C2 and ηπ1(ci) = π2(c′i), (i = 1, 2). In this case, the pair (η, ξ) is called an

isoclinism from ce1 to ce2.

Proposition 4.2. Let ei : 0 → Ni
χi−→ Ci

πi−→ Li → 0, i = 1, 2, be two central
extensions which are isoclinic. If e1 is a CP extension, then so is e2.

Proof. Let (x2, y2) be a commuting pair of L2. Since e1 and e2 are isoclinic central
extensions, there are two isomorphisms η : L1 → L2 and ξ : C2

1 → C2
2 . Also, there

are x1, y1 ∈ L1 such that y2 = η(y1), x2 = η(x1) and [x1, y1] = 0. Also, there
are c1, c′1 ∈ C1 such that x1 = π1(c1) and y1 = π1(c′1). Since e1 is a central CP
extension, then [c1, c

′
1] = 0. Also there are c2, c′2 ∈ C2 such that

x2 = η(x1) = ηπ1(c1) = π2(c2) , y2 = η(y1) = ηπ1(c′1) = π2(c′2).

Also, 0 = ξ([c1, c
′
1]) = [ξ(c1), ξ(c′1)] = [c2, c

′
2]. Thus e2 is a CP extension.

Note that similar to Definition 3.1, we have the concept of isoclinism for CP
defining pairs.

Definition 4.3. Let Ci, Ni and Li (i = 1, 2) be Lie rings and let (C1, N1) and
(C2, N2) be two CP defining pairs. Then (C1, N1) and (C2, N2) are isoclinic, if
there are isomorphisms η : L1 → L2 and ξ : C2

1 → C2
2 such that for all c1, c2 ∈ C1,

we have ξ([c1, c2]) = [c′1, c
′
2] where c′1, c′2 ∈ C2 and ηπ1(ci) = π2(c′i), (i = 1, 2). In

this case, the pair (η, ξ) is called an isoclinism from (C1, N1) to (C2, N2).

Lemma 4.4. Let (C1, N1) and (C2, N2) be isoclinic CP defining pairs for L1

and L2, respectively, where C1 and C2 are finite Lie rings. Then N1
∼= N2 and

|C1| = |C2|.

Proof. Since Ni ⊆ Z(Ci) ∩ C2
i (i = 1, 2) and ξ(N1) = N2, we have N1

∼= N2. Also
for finite Ci’s, |(C1/N1)| = |(C2/N2)|. So |C1| = |C2|.

In [9], we proved that all CP covers of a finite dimensional Lie algebra are
isomorphic. Now we want to show that all CP covers of a finite Lie ring are
isoclinic.

Proposition 4.5. Let L1 and L2 be isoclinic finite Lie rings. Then the CP covers
of L1 and those of L2 are isoclinic.

Proof. Let C1 and C2 be arbitrary CP covers of L1 and L2, respectively. Hence we
have the exact sequence 0 → N1

⊆−→ C1
π1−→ L1 → 0 such that N1 ⊆ Z(C1) ∩ C2

1 ,
N1 ∩K(C1) = 0 and also an exact sequence 0→ N2

⊆−→ C2
π2−→ L2 → 0 such that

N2 ⊆ Z(C2)∩C2
2 , N2∩K(C2) = 0. Now, let (α, β) be an isoclinic pair of L1 and L2
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such that α : L2/Z(L2)→ L1/Z(L1) and β : L2
2 → L2

1 are isomorphisms. Here, we
want to show that C1 and C2 are isoclinic. The maps π̄1 : C1/Z(C1)→ L1/Z(L1)
and π̄2 : C2/Z(C2) → L2/Z(L2) that are induced by π1 and π2, are in fact
isomorphisms because the extensions are central CP covers. So, we can define
ᾱ : C2/Z(C2)→ C1/Z(C1) given by c2 +Z(C2) 7→ π̄−1

1 απ̄2(c2 +Z(C2)). By using
curly exterior product in Lie algebra [8], π1 and π2 induce two isomorphisms π1 f
π1 : C2

1 → L1 fL1 given by [x1, y1] 7→ π1(x1)fπ1(y1) and π2 fπ2 : C2
2 → L2 fL2

defined by [x2, y2] 7→ π2(x2)fπ2(y2), for x1, y1 ∈ C1 and x2, y2 ∈ C2. Furthermore
as in the proof of Theorem 3.2, there exists an isomorphism α̃ : L2fL2 → L1fL1

which is given by l2fl′2 7→ l1fl′1 induced by α, such that l1+Z(L1) = α(l2+Z(L2))
and l′1 +Z(L1) = α(l′2 +Z(L2)), for l1, l′1 ∈ L1 and l2, l′2 ∈ L2. Thus we can define
an isomorphism β̄ : C2

2 → C2
1 given by [c2, c

′
2] 7→ (π1 f π1)−1α̃(π2 f π2)([c2, c

′
2]),

for c2, c′2 ∈ C2. Now, as L1 and L2 are isoclinic by (α, β), then C1 and C2 are
isoclinic by (ᾱ, β̄).
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