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1. Introduction
In this paper, we seek an approximate solution for the Burgers-Fisher equation
under the initial and Direchlet boundary conditions presented below: for (x, t) ∈
Ω× [0, T ]

ut(x, t)−∆u(x, t)− αu(x, t)∇ · u(x, t) + u(x, t)(1− u(x, t)) = 0, (1)

u(x, 0) = u0(x), x ∈ Ω, (2)

u(x, t) = u∂(x, t), (x, t) ∈ ∂Ω× (0, T ]. (3)

The spatial domain Ω is a subset of Rd, where d can be 1, 2, or 3. The term
ut represents the time derivative of the function u. The Laplacian operator is
well-defined as ∆ = ∂2

x1
+ · · · + ∂2

xd
. The initial data u0 and boundary data u∂

are given functions that specify the initial and boundary conditions for the exact
solution u, respectively.

For the model problem (1)-(3) the weak formulation can form as: find
u(x, t) ∈ L2(0, T ;H1(Ω)) such that{

(ut, v) + a(u, v) = (f(u), v), for v ∈ H1
0 (Ω),

u(x, 0) = u0(x), x ∈ Ω,
(4)

where f(u) = αu∇ · u− u(1− u), (·, ·) is the usual L2 inner-product and a(·, ·) is
the grad-grad H1 inner-product of two functions.

The model equation (1) has a highly non-linear nature due to the presence of
diffusion, convection, and reaction mechanisms in its formulation. When α = 0, we
have the well-known Fisher’s equation. This equation was introduced by Fisher in
[1] to describe the population dynamics to investigate the dispersion of a mutant
gene.

Partial differential equations (PDEs) as one of the fundamental tools in math-
ematical modeling and analysis, are used to describe various physical phenomena
in fields such as physics, engineering, biology, and finance. Studying and analyzing
the behavior of these equations allows scientists and researchers to gain a deeper
understanding of these phenomena. By studying equations, they can uncover pat-
terns, make predictions, and develop mathematical models that can be used to
solve real-world problems. In some cases, the lack of an analytical solution or the
time required to obtain such a solution leads researchers to use numerical methods
to approximate solutions.

Various numerical methods for approximating the solution of PDEs have been
developed in recent years. By discretizing the PDEs into a system of algebraic
equations, these methods aim to provide efficient and accurate approximations.
Finite difference [2], finite element [3, 4], and finite volume [5] methods are some
of the most commonly used numerical methods. These techniques have been used
successfully in a variety of fields, including fluid dynamics, structural analysis,
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and electromagnetic simulations. Furthermore, advances in computational power
have enabled the development of more sophisticated numerical methods capable
of dealing with complex geometries and non-linear problems.

Meshing the computational domain into an arbitrary number of elements (such
as polygons or polyhedrons) is a common approach used in numerical simulations
and computational modeling. This process, known as mesh generation, allows
for the accurate representation of complex geometries and facilitates the analysis
of the solution of PDEs on these domains. Among the mesh-generation based
methods, the virtual element method (VEM) is a promising technique that has
gained attention in recent years [6–10]. The VEM combines the advantages of finite
element methods (FEM) and mimetic finite difference methods [11, 12], allowing
for the accurate approximation of solutions on arbitrary polygonal or polyhedral
meshes. It provides a versatile framework for tackling a wide range of problems,
including those with complex geometries. The most important feature of the VEM
is its mathematical foundation, which allows it to approximate the solution to the
problem in a simpler manner than the FEM. Additionally, the VEM offers greater
flexibility in terms of incorporating different types of elements, such as convex
and non-convex, which further enhances its applicability in various engineering
and scientific domains. The weak formulation of the model problem serves as
the foundation for both FEM and VEM. Contrary to the FEM, the VEM does
not necessitate computing the explicit computation of the shape functions on a
polygon. Based on the weak formulation (4) of the model problem (1)-(3), due to
the inclusion of the grad-grad term in this formulation, integrals of the gradient
of the shape functions may need to be computed in order to form the element
matrices using a quadrature formula on the corresponding element. Also, the
FEM may encounter difficulties as a result of the non-linearity term’s presence.
On the other hand, the VEM can deal with these difficulties in a simpler way.

The first steps in developing this numerical method can be traced back to
paper [13], which introduced VEM as a generalization of FEM. Since then, VEM
has been applied to a wide range of problems and many efforts have been made
to develop this numerical method. In [14], the practical aspects of VEM for the
Poisson equation in two and three dimensions are investigated. The numerical
approximations for semi-linear parabolic problems based on conforming VEM have
been studied in [15]. In [16], a non-conforming VEM for the approximation of the
time-fractional reaction-subdiffusion equation has been investigated. A unified
framework is introduced to study the conforming and non-conforming VEMs for
a class of time-dependent fourth-order reaction-subdiffusion equations with the
Caputo derivative in [17].

The primary objective of VEM is to establish an optimal and efficient way
in order to compute the integrals based on discrete bilinear forms, where two
projection operators Π∇ and Π0 are defined to discretize the grad-grad term and
the term that involved time derivatives, respectively. We demonstrated how the
non-linearity term can be handled differently when using the defined projection
operator Π0. The validity of the theoretical findings is demonstrated by numerical
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outcomes, which also demonstrate the precision of the calculations. Researchers
can confidently conclude this data and make reasoned decisions.

Throughout this paper, for 1 ≤ p < ∞ and k ≥ 0 we adopt the following
notation on Ω

‖ · ‖Lp(0,T ;Hs(Ω)) =
(∫ T

0

| · |pk ds
)1/p

,

where ‖ · ‖LP is the usual Lp-norm and | · |k = | · |Hk(Ω) is the semi-norm defined
in the Sobolev space Hk(Ω).

2. Discrete schemes

Assume that Th represents the partition of the spatial domain Ω ⊂ R2. For any
given element E ∈ Th, we define h as the maximum diameter among all elements
E ∈ Th, denoted by hE . The set of edges of Th is denoted by Eh where we define E0
and Eb to be the interior and boundary of edges, respectively. As with traditional
ways for the FEM family, to formulate discrete schemes for a model problem, we
need to introduce our local and global computational space. To achieve this goal,
first we need to introduce some essential instruments for our algorithm. Let E be
an arbitrary element. We introduce the local function space V Eh as follows:

V Eh := {vh ∈ H1(E) ∩ C0(∂E) : ∆vh ∈ Pk−2(E), vh|e ∈ Pk(E), ∀e ∈ ∂E}, (5)

where Pk(E) is the space of polynomial of degree less than or equal to k. As a
conventional way for VEM, it should be noted here that a function vh in the local
space V Eh can identify by

• The values of vh at k vertices of element E,

• For k ≥ 2, the values of vh at k − 1 distinct points on each edge e,

• The moments 1
|E|
∫
E
vh p, for p ∈ Pk−2(E).

Based on the weak formulation (4), we define the following notations

a(u, v) :=
∑
E∈Th

aE(u, v),

(u, v) :=
∑
E∈Th

(u, v)E . (6)

Next, we define our projection operators Π0 and Π∇ on space V Eh .
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• The projector operator Π∇ : V Eh → Pk(E) is defined by{
aE(Π∇vh, p) = aE(vh, p), for p ∈ Pk(E),

P0(Π∇vh) = P0vh, for vh ∈ V Eh ,

and

P0vh :=
1

nv

nv∑
i=1

vh,i, for k = 1,

P0vh :=
1

|E|

∫
E

vh dx, for k > 1,

where nv denotes the vertices of an element E and vh,i denotes the value of
vh at the i-th degree of freedom in V Eh .

• The standard L2-projection operator Π0 : V Eh → Pk(E) will introduce as

(Π0vh − vh, p)E = 0, ∀p ∈ Pk(E), vh ∈ V Eh .

Ultimately, we can define our local and global virtual element space by utilizing
the aforementioned projection operators in the following manner:

Wh(E) := {vh ∈ V Eh :

∫
E

(Π∇vh) p dx =

∫
E

(vh) p dx, ∀ p ∈ Pk\Pk−2},

and
Wh := {vh ∈ H1(Ω) : vh|E ∈Wh(E), ∀E ∈ Th}.

For those who are interested in further details regarding the construction of the
projection operators and corresponding spaces, we recommend consulting [13, 14].

Following [18], to formulate our semi and fully-discrete schemes, we first im-
prove our bilinear forms defined in (6). For the local discrete bilinear forms
(·, ·)h,E : Wh(E) ×Wh(E) → R and aEh : Wh(E) ×Wh(E) → R, we define our
global bilinear forms as follows:

ah(u, v) =
∑
E∈Th

aEh (u, v),

(u, v)h =
∑
E∈Th

(u, v)h,E , for u, v ∈Wh.

Based on the defined projection operators, the local bilinear forms will be defined
as:

aEh (uh, vh) := aE(Π∇uh,Π
∇vh) + SEa ((I −Π∇)uh, (I −Π∇)vh), (7)

(uh, vh)h,E := (Π0uh,Π
0vh)E + SE((I −Π0)uh, (I −Π0)vh), ∀uh, vh ∈Wh(E),

(8)
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where, SEa and SE are the symmetric stabilizing terms for our algorithm.
Based on the definition for the two bilinear forms, we consider the following

properties for them:

• consistency : on each element E ∈ Th, for all p ∈ Pk(E) and v ∈ Wh(E), we
have

aEh (p, v) = aE(p, v),

(p, v)h,E = (p, v)E ,

• stability : for all v ∈ Wh(E) and some positive constants α∗, α∗, β∗ and β∗,
independent of h,

α∗a
E(v, v) ≤ aEh (v, v) ≤ α∗aE(v, v),

β∗(v, v)E ≤ (v, v)h,E ≤ β∗(v, v)E . (9)

Now we have all the necessary tools, and can define our semi-discrete scheme
for the continuous problem (1)-(3) to find uh ∈ L2(0, T ;Wh) such that{

(∂tuh, vh)h + ah(uh, vh) = (f̃(uh(·, t)), vh),∀vh ∈Wh,

uh(·, 0) = u0
h,

(10)

where u0
h and f̃ are approximations of u0 and f , respectively.

Let the function spaceWh has a total of Ndof degrees of freedom. The bilinear
forms ah(·, ·) and (·, ·)h satisfy symmetry and stability conditions, from which it
can be shown that the problem (10) has a unique solution as [18]:

uh(t) :=

Ndof∑
n=1

(
(u0
h, w

(n)
h )he

−λ(n)
h t +

∫ t

0

(f̃(uh(·, s)), w(n)
h )e−λ

(n)
h (t−s) ds

)
w

(n)
h ,

where {λ(n)
h }N

dof

n=1 is a set of strictly positive constants and {w(n)
h }N

dof

n=1 is an or-
thonormal basis of Wh with respect to (·, ·)h such that for all v ∈Wh we have

ah(w
(n)
h , vh) = λ

(n)
h (w

(n)
h , vh)h.

2.1. Handling the non-linear term
Following [15], based on the properties of Π0, for each element E in Th, we define
f̃(uh) as:

f̃(uh)|E := Π0(f(Π0uh))|E , for uh ∈Wh, (11)

where we have the following orthogonal property∫
E

(Π0f − f) dx = 0.
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Now, with this definition, we have

(f̃(uh), vh) =
∑
E∈Th

∫
E

Π0f(Π0uh) · vh dx =
∑
E∈Th

∫
E

f(Π0uh) ·Π0vh dx

=
∑
E∈Th

Ndof
E∑
i=1

f(uh,i)

∫
E

Π0φi ·Π0vh dx, (12)

where Ndof
E degrees of freedom for element E is considered and we used the La-

grangian type property for the canonical bases {φi}N
dof

i=1 for space Wh.

2.2 Fully-discrete scheme

In order to formulate the fully-discrete scheme for (10), a backward Euler method
is employed to approximate the temporal variable t. First, we create a partition
of time interval [0, T ] such that 0 = t0 < t1 < · · · < tM = T and tm = m∆t
for m = 0, 1, · · · ,M for the time step ∆t = T/M . Therefore, the fully-discrete
scheme can form in which: find Un ≈ uh(·, tn) ∈Wh such that{

(U
n−Un−1

∆t , vh)h + ah(Un, vh) = (f̃(Un), vh),

U(·, 0) = u0
h.

(13)

By lagging the non-linear term, we can linearize the above problem as follows:{
(U

n−Un−1

∆t , vh)h + ah(Un, vh) = (f̃(Un−1), vh),

U(·, 0) = u0
h,

(14)

where the non-linear term formed as f̃(Un−1) = Un−1∇ · Un − Un(1− Un−1).

3. Error analysis of discrete schemes

This section is devoted to error analyses for both semi-discrete and fully-discrete
schemes in the related L2 and H1 norms. The section is divided into two subsec-
tions, where we investigate the errors between the exact solution u for the problem
(1)-(3) and the corresponding approximate solutions for schemes (10) and (14), re-
spectively. We employ the main tool from [18] throughout this process and denote
a generic positive constant independent of the mesh size h by C.

We define the following mapping Ph : H1
0 (Ω)→Wh as the energy projection:

ah(Phu, vh) = a(u, vh), for vh ∈Wh. (15)

We have the following bounds for this projection.
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Lemma 3.1. Let u ∈ H1
0 (Ω). Then there exists a unique function Phu ∈ Wh

verifying
|Phu− u|1 ≤ Chk|u|k+1. (16)

Moreover, if the domain Ω is convex, the following bound holds

‖Phu− u‖0 ≤ Chk+1|u|k+1. (17)

Proof. Refer to [18] for proof details.

For a, b ≥ 0 and m ∈ N, we have

1

2
(a+ b)2 ≤ ma2 + b2. (18)

3.1 Error analysis for semi-discrete scheme

As follows, we define the error equation for the difference of the solution of the
problem (10) and the energy projection of the solution u for the problem (1)-(3)
as:

eh := uh(·, t)− Phu(·, t).

Based on the introduced tools, we can provide an L2-error estimate for the problem
(10) as follows.

Theorem 3.2. Let u be the solution of the continuous problem (1)-(3). For all
t ∈ [0, T ], the following error estimate for the solution uh of the problem (10) is
hold

‖uh − u‖0 ≤ C
(
‖uh(·, 0)− u(·, 0)‖0

+ hk+1(|u0|k+1 + ‖u(·, t)‖L2(0,t;Hk+1(Ω)) + ‖ut(·, t)‖L1(0,t;Hk+1(Ω))

+ ‖ut(·, t)‖L2(0,t;Hk+1(Ω)) + ‖f(u(·, t))‖L2(0,t;Hk+1(Ω)))
)
.

Proof. From the triangle inequality, we have

‖uh − u‖0 ≤ ‖eh‖0 + ‖Phu− u‖0. (19)

Next, we proceed by bounding both terms on the right-hand side in (19) separately.
From (17) we can easily write

‖Phu− u‖0 ≤ Chk+1|u|k+1 = Chk+1(|u0|k+1 + ‖ut(·, t)‖L1(0,t;Hk+1(Ω))). (20)

Multiplying both sides of Equation (1) by vh ∈ Wh and subtracting (10) from
that, for all t ∈ [0, T ], yield

(∂tuh − ut, vh)h + ah(uh, vh) = (f̃(uh(·, t))− f(u(·, t)), vh) + a(u, vh).
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Then, by adding and subtracting terms d
dtPhu and Phu in the first and the second

terms above, respectively, we will have

(∂teh, vh)h + ah(eh, vh) = (f̃(uh(·, t))− f(u(·, t)), vh)

+ a(u, vh)− (Phut − ut, vh)h − ah(Phu, vh)

= (f̃(uh(·, t))− f(u(·, t)), vh)

+ a(u, vh)− (Phut − ut, vh)h − a(u, vh) (by (15))

= (f̃(uh(·, t))− f(u(·, t)), vh)

− (Phut − ut, vh)h, (21)

where we used the time derivative commutativity property with the energy pro-
jection. The next step involves bounding the two last terms in (21) separately.
Inspired by [15] (Theorem 4.2), we will begin with the first term.

(f̃(uh(·, t))− f(u(·, t)), vh) = (Π0f(Π0uh(·, t)), vh) (by (22))

− (Π0f(Π0u(·, t)), vh) + (Π0f(Π0u(·, t)), vh)

− (Π0f(u(·, t)), vh) + (Π0f(u(·, t)), vh)

− (f(u(·, t)), vh). (22)

From the Cauchy-Schwarz inequality, one can write

(Π0f(Π0uh(·, t))−Π0f(Π0u(·, t)), vh) ≤ ‖Π0(f(Π0uh(·, t))− f(Π0u(·, t)))‖0‖vh‖0
≤ ‖f(Π0uh(·, t))− f(Π0u(·, t))‖0‖vh‖0
≤ C‖Π0uh(·, t)−Π0u(·, t))‖0‖vh‖0
≤ C‖uh(·, t)− u(·, t))‖0‖vh‖0, (23)

where we used the fact that f is Lipschitz continuous together with boundedness
property of the L2-projection operator Π0.

In a similar manner and using the error bound of L2-projection operator Π0,
we will have

(Π0f(Π0u(·, t))−Π0f(u(·, t)), vh) ≤ ‖Π0(f(Π0u(·, t))− f(u(·, t)))‖0‖vh‖0
≤ Chk+1|u(·, t)|k+1‖vh‖0. (24)

The error bound of L2-projection operator Π0 implies that

(Π0f(u(·, t))− f(u(·, t)), vh) ≤ ‖Π0f(u(·, t))− f(u(·, t))‖0‖vh‖0
≤ Chk+1|f(u(·, t))|k+1‖vh‖0. (25)

For the second term in (21), by using the Cauchy-Schwarz inequality and (17), we
infer that

(Phut − ut, vh)h ≤ ‖Phut − ut‖0‖vh‖0 ≤ Chk+1|ut|k+1‖vh‖0. (26)
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Considering (22)-(26) and setting vh = eh in (21), we will have

(∂teh, eh)h + ah(eh, eh)

≤ C
(
‖uh(·, t)− u(·, t)‖0 + hk+1(|u(·, t)|k+1

+ |ut(·, t)|k+1 + |f(u(·, t))|k+1)
)
‖eh‖0.

Using the fact that ah(eh, eh) = |eh|21 ≥ 0 and from (19), we have

1

2

d

dt
‖eh‖20 ≤ C

(
‖eh‖0 + ‖Phu(·, t)− u(·, t)‖0

+ hk+1(|u(·, t)|k+1 + |ut(·, t)|k+1 + |f(u(·, t))|k+1)
)
‖eh‖0.

Integrating both sides of the above inequality from 0 to t, using the Young’s
inequality and (18), we infer that

‖eh‖20 − ‖eh(·, 0)‖20 ≤C
(∫ t

0

‖eh(·, s)‖20 +

∫ t

0

‖Phu(·, s)− u(·, s)‖20

+ h2k+2(‖u(·, t)‖2L2(0,t;Hk+1(Ω))

+ ‖ut(·, t)‖2L2(0,t;Hk+1(Ω))

+ ‖f(u(·, t))‖2L2(0,t;Hk+1(Ω)))
)
.

Following the given idea for the Theorem 4.2 in [15], yields

‖eh‖0 ≤ C
(
‖uh(·, 0)− u(·, 0)‖0 + hk+1(|u0|k+1

+ ‖u(·, t)‖L2(0,t;Hk+1(Ω)) + ‖ut(·, t)‖L1(0,t;Hk+1(Ω))

+ ‖ut(·, t)‖L2(0,t;Hk+1(Ω)) + ‖f(u(·, t))‖L2(0,t;Hk+1(Ω)))
)
. (27)

Combining the estimates (20) and (27) with (19), we will have

‖uh − u‖0 ≤ C
(
‖uh(·, 0)− u(·, 0)‖0 + hk+1(|u0|k+1

+ ‖u(·, t)‖L2(0,t;Hk+1(Ω)) + ‖ut(·, t)‖L1(0,t;Hk+1(Ω))

+ ‖ut(·, t)‖L2(0,t;Hk+1(Ω)) + ‖f(u(·, t))‖L2(0,t;Hk+1(Ω)))
)
.

We reached the desired result.

We will now turn our attention to analyzing the H1-error of the semi-discrete
scheme (10).
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Theorem 3.3. Let u be the solution of the continues problem (1). For all t ∈
[0, T ], the following error estimate for the solution uh of the problem (10) is hold

|uh − u|1 ≤ C
(
|uh(·, 0)− u(·, 0)|1 + hk(|u0|k+1 + ‖ut(·, t)‖L1(0,t;Hk+1(Ω)))

+ hk+1(‖u(·, t)‖L2(0,t;Hk+1(Ω)) + ‖ut(·, t)‖L2(0,t;Hk+1(Ω))

+ ‖f(u(·, t))‖L2(0,t;Hk+1(Ω)))
)
.

Proof. From the triangle inequality, we have

|uh − u|1 ≤ |eh|1 + |Phu− u|1. (28)

Based on the estimate (18), we immediately conclude that

|Phu− u|1 ≤ Chk|u|k+1 ≤ Chk(‖u0‖k+1 + ‖ut(·, t)‖L1(0,t;Hk+1(Ω))). (29)

Setting vh = ∂teh in (21), using the bounds (22)-(26) and (19), we have

(∂teh, ∂teh)h + ah(eh, ∂teh) ≤ C
(
‖eh‖0 + ‖Phu(·, t) + u(·, t)‖0

+ hk+1(|u(·, t)|k+1 + |ut(·, t)|k+1

+ |f(u(·, t))|k+1)
)
‖∂teh‖0.

Using the Young’s inequality and from (18), we will have

(∂teh, ∂teh)h + ah(eh, ∂teh) ≤ C
(
‖eh‖20 + ‖Phu(·, t)− u(·, t)‖20

+ h2k+2(|u(·, t)|2k+1 + |ut(·, t)|2k+1

+ |f(u(·, t))|2k+1)
)

+
β∗
2
‖∂tuh − Phut‖20.

From the stability property (9), we infer that

β∗‖∂teh‖20 +
α∗
2

d

dt
|eh|21 ≤ C

(
‖eh‖20 + ‖Phu(·, t)− u(·, t)‖20

+ h2k+2(|u(·, t)|2k+1 + |ut(·, t)|2k+1 + |f(u(·, t))|2k+1)
)
.

Because of ‖∂teh‖20 ≥ 0, using the obtained estimates (20) and (27), from (18) and
then integrating both sides from 0 to t, we can write

|eh|21 ≤ C
(
|eh(·, 0)|21 + ‖uh(·, 0)− u(·, 0)‖20

+ h2k+2(|u0|2k+1 + ‖u(·, t)‖2L2(0,t;Hk+1(Ω))

+ ‖ut(·, t)‖2L2(0,t;Hk+1(Ω)) + ‖f(u(·, t))‖2L2(0,t;Hk+1(Ω)))
)
. (30)
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We can estimate the first term in (30) as follows:

|eh(·, 0)|1 ≤ |uh(·, 0)− u(·, 0)|1 + |u(·, 0)− Phu(·, 0)|1
≤ |uh(·, 0)− u(·, 0)|1 + Chk|u0|k+1.

Using the above estimate and from the Poincaré inequality, we have

|eh|1 ≤ C
(
|uh(·, 0)− u(·, 0)|1 + hk|u0|k+1

+ hk+1(‖u(·, t)‖L2(0,t;Hk+1(Ω)) + ‖ut(·, t)‖L2(0,t;Hk+1(Ω))

+ ‖f(u(·, t))‖L2(0,t;Hk+1(Ω)))
)
.

Combining the above estimate and (29) with (28), we get the desired result.

3.2 Error analysis for fully-discrete scheme
First, we introduce the error function between the numerical solution for the lin-
earized fully-discrete scheme (14) and the energy projection of the solution u for
the continuous problem (1)-(3) as follows:

enh := Un − Phu(·, tn).

Theorem 3.4. Let u(·, tn) be the solution of the continuous problem (1)-(3) at
time tn. For n = 1, · · · , N , the following error estimate for the sequence {Un}Nn=1

of the problem (14) is hold

‖Un − u(·, tn)‖0 ≤ C
(
‖u0

h − u(·, 0)‖0 + ∆t(‖ut‖L1(0,tn;L2(Ω)) + ‖utt‖L1(0,tn;L2(Ω)))

+ hk+1(|u0|k+1 + ‖ut‖L1(0,tn;Hk+1(Ω)) + max
1≤j≤n

|u(·, tj)|k+1

+ max
1≤j≤n

|f(u(·, tj))|k+1)
)
.

Proof. From the triangle inequality, we have

‖Un − u(·, tn)‖0 ≤ ‖enh‖0 + ‖Phu(·, tn)− u(·, tn)‖0. (31)

From (17), for the second term we infer that

‖Phu(·, tn)− u(·, tn)‖0 ≤ Chk+1|u(·, tn)|k+1. (32)

Following the same idea that is presented in Theorem 3.2, for the semi-discrete
scheme (14) we will have

(
enh − e

n−1
h

∆t
, vh)h + ah(enh, vh) = (f̃(Un−1)− f(u(·, tn)), vh)

+ (ut(·, tn), vh)

− (
Phu(·, tn)− Phu(·, tn−1)

∆t
, vh)h. (33)
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Inspired by the idea in Theorem 3.2, we have the following bound

(f̃(Un−1)− f(u(·, tn)), vh) ≤ C
(
‖Un−1 − u(·, tn)‖0 + hk+1(|u(·, tn)|k+1

+ |f(u(·, tn))|k+1)
)
‖vh‖0. (34)

On each element E ∈ Th, the following bound has been investigated in [18]

(ut(·, tn), vh)− (
Phu(·, tn)− Phu(·, tn−1)

∆t
, vh)h

≤ C

∆t
(‖∆t ut(·, tn)− (u(·, tn)− u(·, tn−1))‖0

+ hk+1|u(·, tn)− u(·, tn−1)|k+1)‖vh‖0

=:
C

∆t
(βn + γn)‖vh‖0. (35)

Using bounds (34) and (35), we can rewrite (33) as follows

(
enh − e

n−1
h

∆t
, vh)h + ah(enh, vh) ≤ C

(
‖Un−1 − u(·, tn)‖0

+ hk+1(|u(·, tn)|k+1 + |f(u(·, tn))|k+1)
)
‖vh‖0

+
C

∆t
(βn + γn)‖vh‖0.

Setting vh = enh, from the stability property (9) and using the fact that (enh −
en−1
h , enh) ≥ ‖enh‖20 − ‖e

n−1
h ‖0‖enh‖0, for n = 1, · · · , N the above inequality can be

written as

‖enh‖0 ≤ C
(

(1 + ∆t)‖en−1
h ‖0 + ∆t(‖Phu(·, tn−1)− u(·, tn−1)‖0

+ ‖u(·, tn−1)− u(·, tn)‖0 + hk+1(|u(·, tn)|k+1 + |f(u(·, tn))|k+1))
)

+ C(βn + γn)

=: C‖en−1
h ‖0 + C(∆t αn + βn + γn). (36)

We claim that the following relation holds

‖enh‖0 ≤ C‖e0
h‖0 + C

n∑
j=1

(∆t αj + βj + γj). (37)

In the following, we check the validity of our claim based on mathematical induc-
tion. For n = 1, the following relation is hold from (36)

‖e1
h‖0 ≤ C‖e0

h‖0 + C(∆t α1 + β1 + γ1).
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We assume that the following relation for n = k holds

‖ekh‖0 ≤ C‖e0
h‖0 + C

k∑
j=1

(∆t αj + βj + γj).

We are going to show that, for n = k + 1 we have

‖ek+1
h ‖0 ≤ C‖e0

h‖0 + C

k+1∑
j=1

(∆t αj + βj + γj).

From the original inequality (36), we can write

‖ek+1
h ‖0 ≤ C‖ekh‖0 + C(∆t αk+1 + βk+1 + γk+1).

According to the induction hypothesis, the desired relation (37) is achievable.
Based on the obtained result, the relation (36) can be rewritten as:

‖enh‖0 ≤ C
(
‖u0

h − u(·, 0)‖0 + ∆t

n∑
j=0

‖Phu(·, tj)− u(·, tj)‖0

+ ∆t

n∑
j=1

(‖u(·, tj−1)− u(·, tj)‖0 + hk+1(|u(·, tj)|k+1 + |f(u(·, tj))|k+1))
)

+ C

n∑
j=1

(βj + γj). (38)

For the second term in (38), from (17) we can write

∆t

n∑
j=0

‖Phu(·, tj)− u(·, tj)‖0 ≤ Chk+1∆t(|u0|k+1 +

n∑
j=1

|u(·, tj)|k+1)

≤ Chk+1∆t(|u0|k+1 +

n∑
j=1

max
1≤j≤n

|u(·, tj)|k+1)

= Chk+1∆t|u0|k+1 + Chk+1n∆t max
1≤j≤n

|u(·, tj)|k+1

≤ Chk+1∆t|u0|k+1 + Chk+1T max
1≤j≤n

|u(·, tj)|k+1,

(39)

and for the third term, we have
n∑
j=1

‖u(·, tj)− u(·, tj−1)‖0 =

n∑
j=1

‖
∫ tj

tj−1

ut(·, s) ds‖0

≤
n∑
j=1

∫ tj

tj−1

‖ut(·, s)‖0 ds =

∫ tn

0

‖ut(·, s)‖0 ds

= ‖ut‖L1(0,tn;L2(Ω)). (40)



Mathematics Interdisciplinary Research 9 (1) (2024) 1− 22 15

The following bounds for the rest of terms in (36) have been investigated in [15, 18]

•

hk+1∆t

n∑
j=1

|u(·, tj)|k+1 ≤ hk+1n∆t max
1≤j≤n

|u(·, tj)|k+1

≤ hk+1T max
1≤j≤n

|u(·, tj)|k+1 (n∆t = n
T

N
≤ T ),

(41)

•

hk+1∆t

n∑
j=1

|f(u(·, tj))|k+1 ≤ hk+1T max
1≤j≤n

|f(u(·, tj))|k+1, (42)

•
n∑
j=1

(βj + γj) ≤ ∆t‖utt‖L1(0,tn;L2(Ω)) + hk+1‖ut‖L1(0,tn;Hk+1(Ω)). (43)

Substituting (39)-(43) in (38), we will have

‖enh‖0 ≤ C
(
‖u0

h − u(·, 0)‖0 + ∆t(‖ut‖L1(0,tn;L2(Ω)) + ‖utt‖L1(0,tn;L2(Ω)))

+ hk+1(|u0|k+1 + ‖ut‖L1(0,tn;Hk+1(Ω)) + max
1≤j≤n

|u(·, tj)|k+1

+ max
1≤j≤n

|f(u(·, tj))|k+1)
)
.

Combining the above inequality with (32), gives us the desired result.

4. Formulation details
Here, based on the fully-discrete scheme (14), some details are provided for better
understanding of the algorithm. For a set of bases {φi}N

dof

i=1 , any solution uh ∈Wh

can represent as:

uh =

Ndof∑
i=1

uh,i φi.

From (14) for vh = φj , we have

Ndof∑
i=1

unh,i(φi, φj)Th + ∆t

Ndof∑
i=1

unh,iah(φi, φj) = ∆t(f̃(

Ndof∑
i=1

un−1
h,i φi), φj)Th

+

Ndof∑
i=1

un−1
h,i (φi, φj)Th , j = 1, · · · , Ndof ,

(44)
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where the first term on the right-hand side in (44) will be formed from (12) as:

(f̃(

Ndof∑
i=1

un−1
h,i φi), φj)Th = (Π0f(

Ndof∑
i=1

un−1
h,i Π0φi), φj)Th

= (f(

Ndof∑
i=1

un−1
h,i Π0φi),Π

0φj)Th

= (

Ndof∑
i=1

un−1
h,i Π0φi(

Ndof∑
i=1

unh,i∇ ·Π0φi),Π
0φj)Th

− (

Ndof∑
i=1

unh,i Π0φi(1−
Ndof∑
i=1

un−1
h,i Π0φi),Π

0φj)Th .

5. Numerical simulation

In this section, to show the efficiency and accuracy of the introduced algorithm,
we apply the proposed technique to numerical simulation of the model problem
(1)-(3) with α = 1. Numerical outcomes show that our algorithm can achieve the
optimal order of convergence, where this order is based on change of the degree
of our virtual space. We carry out our numerical calculations using MATLAB
R2022b and performed on a Laptop computer with 16.0 GB memory and Intel(R)
Core(TM) i7-11800H CPU 2.30GHz.

To achieve our goal, we follow some basic steps:

• We start by partitioning our spatial domain Ω into convex and non-convex el-
ements, and then create subintervals of the time interval [0, 1] with a specific
time step ∆t.

• The initial and boundary conditions have been chosen in such a way that
the exact solution for the problem (1)-(3) is as follows:

u(x, t) = t sin(πx) sin(πy). (45)

• By lagging the non-linear term and using the L2-projection Π0, this term
will be handled in an interesting way.

• Based on different number of elements (for both convex and non-convex
decomposition), we present L2 (‖eh‖0) and H1 (‖eh‖1) errors for k = 1 and
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k = 2 where the related errors will be computed using the following functions

‖eh‖0 =

√∑
E∈Th

‖u−Π0uh‖2L2(E),

|eh|1 =

√∑
E∈Th

|u−Π∇uh|2H1(E).

The related L2 and H1 errors between the exact solution and the numerical so-
lution for k = 1, 2 and ∆t = 0.01 on a computational domain decomposition,
contains convex and non-convex elements, are reported when taking into consid-
eration the exact solution (45). In Figure 1, the number of degrees of freedom for
both convex and non-convex elements for different values of k is depicted, and as
expected, there are more degrees of freedom on the non-convex element.

From Table 1, one can observe that by increasing the number of elements on
a convex decomposition, the related error will decrease. The numerical outcomes
show that by changing the order of the polynomial space from 1 to 2, the con-
vergence rate for both L2 and H1 norms will increase. For k = 1 and k = 2, the
convergence rate in L2 norm is 2 and 3, respectively and the convergence rate in
H1 norm is 1 and 2, respectively. These results show the efficiency of the proposed
algorithm and satisfy the theory presented in the previous sections.

In Table 2, the computational error in both L2 and H1 norms between the
exact solution and the numerical solution is analyzed. For k = 1 and k = 2,
the numerical errors on non-convex mesh with different number of elements are
reported in which one can infer that by increasing the number of elements, the
related error will decrease. By going from k = 1 to k = 2, the convergence rate in
L2 and H1 norms will increase. Based on these outcomes, for k = 1 and k = 2, the
rate of convergence is 2 and 3 in L2 norm, respectively and in H1 norm, the rate
of convergence is 1 and 2, respectively. We can infer that the presented theory in
the previous sections will satisfy.

In Figure 2, a visualization for both convex (100 elements) and non-convex (256
elements) spatial domain decomposition is depicted. A 3D comparison between the
exact solution and the numerical solution for k = 1 and ∆t = 0.01 on a non-convex
mesh (with 256 elements) is established in Figure 3. As our main goal of this paper,
we compared FEM and VEM in solving the model problem (1)-(3). Both FEM
and VEM used first-order polynomials in their respective approximation spaces for
this comparison. As we mentioned before, the main difference between these two
methods is that, unlike FEM, no computation of the shape functions is required.
For α = 1 and ∆t = 0.01, we investigated the simulation process on convex spatial
domain decomposition. Both methods can achieve the same order of convergence.
A comparison of the computation time processes for FEM and VEM is shown in
Figure 4. It is clear that the FEM requires less computation time than the VEM,
but it should be noted that using the FEM to solve model problems presents some
challenges when dealing with non-convex domain decomposition [19, 20].
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Table 1: L2 and H1 errors and convergence rates for k = 1, 2 on convex mesh.
k elements ‖eh‖0 Rate |eh|1 Rate

100 1.4985e− 03 − 1.2234e− 02 −
400 3.7696e− 04 1.99 6.1566e− 03 0.99

1 1600 9.4402e− 05 2.00 3.0840e− 03 1.00
6400 2.3611e− 05 2.00 1.5428e− 03 1.00
100 1.0998e− 04 − 9.1600e− 04 −
400 1.3858e− 05 2.99 2.3556e− 04 1.96

2 1600 1.8029e− 06 2.94 6.3308e− 05 1.90
6400 2.2641e− 07 2.99 1.5948e− 05 1.99

Table 2: L2 and H1 errors and convergence rates for k = 1, 2 on non-convex mesh.
k elements ‖eh‖0 Rate |eh|1 Rate

16 1.0670e− 02 − 2.7731e− 02 −
64 3.0418e− 03 1.81 1.3756e− 02 1.01

1 256 7.8915e− 04 1.95 6.9135e− 03 0.99
1024 2.0018e− 04 1.98 3.4802e− 03 0.99
16 2.1160e− 03 − 4.1689e− 03 −
64 3.0715e− 04 2.78 1.0783e− 03 1.95

2 256 4.0435e− 05 2.93 2.7235e− 04 1.99
1024 5.1377e− 06 2.98 6.8564e− 05 1.99

6. Conclusion
In this paper, a generalized version of FEM that is called VEM is introduced and
applied to a combined Burgers-Fisher equation. VEM gives us some powerful in-
struments that we handled the non-linearity term occurred in the model equation
by them. The backward Euler scheme is used to approximate the derivative of the
temporal variable. To show the efficiency and flexibility of our numerical scheme,
we employed our algorithm on convex and non-convex meshes. The numerical
outcomes show that our algorithm is sensitive to the degree of the computational
space in which, by increasing the order of the polynomial space, the rate of con-
vergence of the algorithm will increase. We presented a comparison between FEM
and VEM. As depicted, the FEM has less computation time than the VEM. Also,
we concluded that the VEM is more flexible than the FEM when dealing with
non-convex domain decomposition.
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Figure 1: Number of degrees of freedom for different values of k, both convex (top
row) and non-convex (bottom row).
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Figure 2: Visualization for the convex (left panel) and non-convex (right panel)
spatial domain decomposition.
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Figure 3: Comparison between exact and numerical solution for k = 1 and ∆t =
0.01 on non-convex mesh.
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Figure 4: FEM and VEM computation time comparison.
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