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Abstract

Ricci bi-conformal vector fields have find their place in geometry as well
as in physical applications. In this paper, we consider the Siklos spacetimes
and we determine all the Ricci bi-conformal vector fields on these spaces.
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1. Introduction

Siklos [1] found a class of metrics on spacetimes which are solutions of Einstein’s
field equations with an Einstein-Maxwell source. They are a class of Petrov type
N with cosmological constant A < 0. All of them admit a null non-twisting Killing
field. In global coordinates (z,y, z, w), Siklos metrics are given by:

3
9=-33 (2dzdy + Hdy® + d2° + dw?) (1)
z
where H = H(y, z,w) is an arbitrary smooth function [1, 2]. The class of Siklos
spacetimes coincides with the subclass (IV)g of Kundt spacetimes [3]. Homo-
geneous Siklos metrics correspond to cases admitting at least four linearly inde-
pendent Killing vector fields. They form five subclasses I),---,V). For each of
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subclasses I),---, V) we consider the special form of H [4] as follows:

I) H=A(zw),
II) H = A(z),
IIT) H = A(y)z?,

IV) H =y 2A(y"2),
V) H=+"

where A_o(z,w) is a homogeneous function of degree —2 of variables z,w and A
is a smooth function.

Let (M, g) be a smooth n-dimensional pseudo-Riemannian manifold. A vector
field X on a Riemannian manifold (M, g) is said to be a Killing field if

‘CXg = 07

where Lx is the Lie derivative in the direction of X. Killing vector fields were
considered in [5]. Recently, various generalizations of Killing vector fields have
been investigated. If there is a smooth function 1 on M that is named a potential
function, such that Lxg = 2¢g then vector field X on a Riemannian manifold
(M,g) is called a conformal vector field. If the potential function ¢y = 0, X is a
Killing vector field. Conformal vector fields have been explained [6, 7]. A vector
field X on M is called a Kerr-Schild vector field whenever

Lxg=al®l, Lxl=27/l,

where [ is a null 1-form field and «, 8 are real smooth functions over M. Also, the
generalized Kerr-Schild vector field is determined by

where «, 8, are smooth functions over M. Coll et al. [8] investigated the gener-
alized Kerr-Schild vector field. A symmetric tensor h on M is said to be a square
root of g if hmhgC = gi;. Garcia-Parrado and Senovilla [9] by using the square root
of g defined bi-conformal vector fields. A vector field X is called a bi-conformal
vector field if it satisfies the following equations:

Lxg=cag+ Bh, Lxh=ah+ fBg,

where h is a symmetric square root of g and «, are smooth functions. The
functions « and j are called gauges [8, 9] of the symmetry and they play a role
analogous to the factor v appearing in the definition of the conformal vector fields.
After that, De et al. in [10] using the metric tensor field g and the Ricci tensor
field S defined Ricci bi-conformal vector fields as follows:
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Definition 1.1. A vector field X on a Riemannian manifold (M, g) is called Ricci
bi-conformal vector field if it satisfies the following equations

(Lxg)(Y, Z) = ag(Y, Z) + BS(Y, 2), (2)

and
(LxSIY,Z) = aS(Y,Z) + Bg(Y, Z), (3)

for any vector fields Y, Z and some smooth functions o and 3, where S is the Ricci
tensor of M with respect to metric g.

Also, Ricci soliton is introduced by Hamilton [11] as follows:
Lxg+S=MN, NeER,

which is a natural generalization of Einstein metric. For more details, see [12—
18]. Calvaruso in [4, 19-21] investigated the Ricci soliton on homogeneous Siklos
spacetimes. Recently, various generalizations of Killing vector fields have been
investigated.

Motivated by [4, 10, 19-21], we study the Ricci bi-conformal vector fields on
Siklos spacetime. This paper is organized as follows. In Section 2 we recall some
necessary concepts on Siklos spacetime which be used throughout this paper. In
Section 3 we give the main results and their proofs.

2. Preliminaries

We may refer to [2, 19] for the essential information concerning the Levi-Civita
connection and curvature of an arbitrary Siklos metric g. Let

0 0 0 0
81*%7 82787:[/, 337$a 84*%

With respect to the global coordinates (x,y,z,w) used in (1), the Levi-Civita
connection V of g is determined by the following non-vanishing components:

1 1
ValaQ = —03s, Valag = —781,
z z
1 1 1
V8282 = 5(82H)8a + 272(2H — Z@3H)a3 — 5(84_[—[)847
1 1
v0283 = 5(63H)81 — 2827
1 1
V82a4 = 5(84]{)817 v0383 = _;837

1 1
V3364 == —584, Va484 - ;83
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The non-vanishing components of Riemannian-Christoffel curvature tensor R of g
are the following:

3 3

Ry912 = _Aiz‘“ Ry323 = Aiz‘“
3 3(2H — (93 H) + 2?(03,H))
Ri424 = ot Rosa3 = ALl )
Rowr 303, H Row 3(2H — 2(05H) + 2*(03,H))
2824 = 535 2424 oA ;
3
Riq34 = e

where R;ji = g(R(9;,0;)0k, 0;) and the Ricci tensor S of g is described by

0 -2 0 0
3 6H—22(83H)+2°(03,H+0;,H) 0 0
S = 22 222 3 , (4)
0 0 -= 0
0 0 0o -3

with respect to {0;}. Let X = X;0; be an arbitrary vector field where X; =
Xi(z,y,z,w), i = 1,2,3,4 are smooth functions. The Lie derivative Lxg is given
by

(Lxg)

(Lxg)12 = — 25 {201 X1 + zHO X2 + 20 X0 — 2X3},
(Lxg9)13 = —522{03 X2 + 01 X3},

(Lxg)1a = — 522 {04 X2 + 01 X4},

(Lx9)22 = —25{2200X1 + 200 HX> + 2:H0: X2 — 2H X3

(Lx9)23 = —522{03X1 + HO3 X2 + 92 X3},
(Lxg)2a = — 522 {04 X1 + HO1 X2 + 02 X4},
(Lxg)ss = — 125 {20: X5 — X3},

(Lx9)31 = —522{0s X5 + 05X4},

(Lx9)as = — 325 {20:4 X4 — X3},
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where (Lxg)i; = Lx9(0;,0;), i <3, 1,5 € {1,2,3,4}. The Lie derivative Lx S is
determined by

(LxS)1 =501 X,
2 2 2
(Lx )2 = $ X5 — 30X, — 2O O HAOLH) 5
_%62)(2)
(LxS)13 = —2%{01 X5 + 05 Xa},

(Lx8)1a = — {01 X4 + 04 X5},
(LxS)as = — Y1, X,0; (6H—2z(asH)+22(a§3H+az4H))

222

—2%82)(1 . 6H—2z(03H)+;2(a§3H+a§4H) 9, X5, (6)
Lx8)23 = —2{0:X5+05X1} — 6H_22(83H)222(8§3H+834H) 03X,
Lx8)as =~ 5{0Xa+ X1} — GH_QZ(OSH)222(8§3H+6§4H) 01X,

31 = —5{05X4 + 0, X3},
1= 3 X3 — 504Xy,

(LxS)
(LxS)
(LxS)33 = S X3 — 505X3,
(LxS)
(LxS)
where (LxS);; = Lx5(0;,0;), i <j, 1,7 € {1,2,3,4}.

3. The main results and their proofs

Applying (1), (4) and (5) in (2), we get

01 Xs =0, (7)
201 X1+ zHM Xo + 202 X5 — 2X5 = (a + AB)z, (8)
03Xy + 01 X3 =0, (9)
91X + 01 Xy = 0, (10)
2205 X1 + 200 HXo + 2:H0s Xo — 2HX3 + 205 HX;3 + 20.HX,  (11)

— azH — (6H — 22(0sH) + 22(03, H + 02, H)) %Aﬁ,
85X1 + HO3 X5 + 02X5 = 0, (
84Xy + HO, X5 + 02Xy = 0, (
2{20:X3 — X3} = (@ + AB)z, (1
04 X3 + 05 X4 =0, (
2{204 X4 — X3} = (o + ApP)z. (

=~
= Z L = =
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Inserting (1), (4) and (6) in (3), we have

0 Xo =0,
6H — 22(0sH) + 22(02,H + 03, H)

—2X3+ 201 X1 + 6 201 X2 (17)
_ B
+282X2 = (Ot -+ K)Z,
01 X3 + 03X =0,
N X4+ 04Xy = 0,
4
H -2 H 292, H 2 H
-3 X0, (6 2(0s )‘;752 (0331 + 034 )) (18)
z
1=2

_ 2792 2
z z
6H —22(03H) + 2%(93;H + 03,H) 3H
= - L)
222 Az2?

6{02 X3 + 03 X1} + {6H — 22(03H) + 2*(93,H + 03, H)}03Xo = 0, (19)
6{02 Xy + 04 X1} + {6H — 22(03H) + 22(03,H + 03, H)}04 X2 = 0, (20)

1
2X3 —2205X3 = —az — X,Bz,
03 X4+ 04 X35 =0,

1
2X3 — 2204 X4 = —z — Kﬁz.

We state integrating the Equation (7), obtaining
X2 :Fl(y,z,w), (21)

for some smooth function Fy. Inserting (21) into the Equations (9), (10) and
integrating, we respectively get

XS - _anFl(ya Z,lU) + F2(y7 Z,lU), (22)
X4 - _$84F1(y1 Zaw) + FS(yvzaw)v (23)

where Fy, F3 are smooth functions. Applying (22) and (23) in Equation (15) we
have
23763%4}71 (ya Z, U}) - 84F2(y, 2, ’LU) - 63F3(y7 2, ’LU) =0. (24)

Since x is arbitrary, the Equation (24) implies at once
8§4F1(y7 2, U)) = 84F2(ya 2, U]) + 83F3(y7 2, U)) =0. (25)
Integrating 93, F (y, z, w) = 0, we infer

Fi(y, z,w) = G1(y, z) + Hi(y, w), (26)
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for some smooth functions Gy and H;. From Equations (14) and (16), we have
05 X5 — 04X4 = 0. (27)
Applying (22), (23) and (26) in (27), we obtain
~2033G1(y, 2) + 03 F(y, 2, w) + 203, Hi (y, w) — 4 F3(y, z,w) = 0,
since x is arbitrary, we conclude
O3t (y,w) = 033G1(y. 2) = Fu(y), (28)
for some smooth function Fy and
03P (y, z,w) = 04 F3(y, 2, w). (29)

Integrating of (28), we deduce

Crly,2) = 2 Fuly) + 2Fy(y) + Caly),

Hy(y,w) = 7F4(y) +wkr(y) + Fo(y),

SI\D

for some smooth functions Fjx, Fg, F7 and G5. Therefore, we have
22 w?
Py, z,w) = 5 Faly) + 2F5(y) + 5 Faly) + whr(y) + Fs(y), (30)

where Fg = Gy + Fg. The Equation (14) reduces to

a+ Ag
5

T 1
83F2(y,z,w)+;F5(y) - ;F2(y7z7w) = (31)

Substiuting (7) into (8) and (17), we get

201 X1 + 209X —2X3 = (a + Aﬁ)z,
—2X3 4+ 201 X1 + 20, X9 = (a + é)z,

A
which imply that
(A+1)p=0.
Inserting (21), (22), (31) and (30) in (8), we arrive at
1
X, = —5(22 +w?)Fi(y) — 2F5(y) — wk(y)

—F3(y) — 22Fy(y) + 203 F5(y, 2, w),
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which by integrating provides

1
Xi = =5+ wheFi(y) - 2wF(y) — waFi(y)
—aF§(y) — 2*Fy(y) + 2205 Fs(y, 2, w) + Fy(y, 2, w), (32)

for some smooth function Fy. Substituting (21), (23), (30) and (32) in (13), we
find

+HF;(y) — zwFy(y) — xF1(y) + 02 F3(y, 2,w) = 0.

Since x is arbitrary, we obtain

64F9(y7zaw> + wHF4(y) + HF?(Z/) + 82F3(yvzaw) = 07

which by integrating it implies that

2

w

Fy(y,z,w) = —/(wHF4(y) + HF7(y) + 02 F3(y, 2, w)) dw + Fi1(y, 2),
for some smooth functions Fjg and Fi;. Therefore, we have
1
X1 = *5(22 +w?)zFy(y) — 2 F3(y) — waFy(y)
—$Fé(y) - x2F4(y) + 2$83F2(y, Z, ’U))
- / (wHFy(y) + HF7(y) + 02F5(y, z,w)) dw + F11(y, 2),

X, = ° —; L Fu(y) + 2F5(y) + wF(y) + Fs(y),
Xy = —alzRi) + Bo) + " Fi)  weFi) + Fioly,2),
Xy = —a(wFi(y) + F5(y)) + F3(y, 2, w).

From (12) and (19), we conclude that

(2(03H) — 2(033H + 03, H)) 05X> = 0. (34)
Also, from (13) and (20), we infer

(2(05H) — 2(03,H + 03, H)) 94X> = 0. (35)
Applying (33) in (25), we deduce

03 F3(y, z,w) = — (wzFy(y) + 2F7(y))) -
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Integrating of last equation yields

Fatpw) = = (JusFi() + 3°F50) ) + Fialy.w), (30)

for some smooth function Fy2. Substituting (33) and (36) in (29), we find

1 1
O4F12(y, w) = 5"1’2Fi(y) +wFr(y) + §z2Fi(y) + 03F1o(y, 2).

Hence, we get

1

1
2w2F7/(?J) +wdsFio(y, 2) + §ZQWFi(y) + Fi3(y),

1
Fia(y, w) = Gu’Fi(y) +

for some smooth function Fj3. Deriving with respect to z, we arrive at
B Froy, 2) + 2wFj(y) = 0.

Since w is arbitrary we have Fj(y) = 0 and 02;Fio(y, z) = 0 which imply that
Fy(y) = a for some constant a and Fio(y, z) = 2F14(y) + Fi5(y), for some smooth
functions Fiy4 and Fis, respectively. Therefore,

2 2

F3(y,z,w) = %Fé(y) +whia(y) + Fis(y),

X1 = —zaFy(y) —aFg(y) — az® + 2xF1a(y) + awFi(y)
S by - L)
—wkFy5(y) — / (awH + HF(y)) dw + Fi1(y, 2), (37)

Xo = o) wE ) + R,

X5 = —az(az+ F5(y) + wzFr(y) + 2Fia(y) + Fis(y),

Xy = —z(aw+ Fs5(y)) + e 2_ = Fi(y) + wFa(y) + Fis(y),

atAS = ZE) - 2R,

Substituting X1, Xa, and X3 in (12), we get

—xF5(y) + 2wky (y) — | (aw + Fz(y)) OsHdw + 03 F11 (y, 2)

+H(az + Fs5(y)) + 2F14(y) + Fi5(y) = 0. (38)

Since z is arbitrary we infer FY(y) = 0, thus, F5(y) = b for some constant b.
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3.1 Siklos metrics with H =0
If H =0 then Equation (11) yields 92X7 = 0. So, we get

w3 + 322w 1
Fu(y,2) = oF(y) —2eFu(y) —ewFiy) + ———F/(y) + SW Fla(y)

+wFi5(y) + G3(2), (39)
and
X, = —az® + G3(2),

for some smooth function G3. Since z is arbitrary we have F§(y) — 2F14(y) —
wF7(y) = 0 this implies that F(y) = 0 and F}(y) = 2F14(y). Therefore F;(y) = ¢
for some constant c. Also, Since w is arbitrary, from (39) we have F{,(y) =
F{5(y) = 0. Then Fi3(y) = ai3, F1a(y) = a14, F5(y) = 2a14y + a16 for some
constants ais, ai4,a16. Also, Equation (38) reduces to

G5(2) + Fis(y) = 0.

Therefore G3(z) = bzz + by, Fi5(y) = —bsy + bs and X; = —ax? + b3z + by for
some constants bs, by, b5. Hence,

X, = —az®+bsz+ by,
Xy, = a22+w2 + bz + cw + 2a14 + ass,
Xs = —z(az+b)+ za1q — byy + bs, (40)
Xy = —z(aw+Db) +wayq + a3,
a+A8 = Z;b—g(—bgy+b5).

Theorem 3.1. Any homogeneous Siklos spacetime defined by H = 0 has Ricci
bi-conformal vector field X = X,0; if and only if o, 5 and X; satisfy in (40).

Now, we consider the vector fields as X = Vf for some smooth function f
which are Ricci bi-conformal vector fields on homogeneous Siklos spacetime with
H = 0. On homogeneous Siklos spacetime with H = 0, we have

A 2
VS = == [(0)0h + (011)02 + (95)0s + (91)4). (41)
From (41) and (40), we have
2 2 2
—ATZ@lf:aZ tw + bz 4+ cw + 2a14 + asg,
2
7%82]" = —az? + b3z + by,
A2
7783]” = —x(az +b) + za14 — b3y + bs, (42)
A2

7784]0 = —x(aw + b) + waq4 + ais.
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Deriving the first Equation (42) with respect to y and deriving the second Equation
(42) with respect to & we infer ¢ = 0. By similar method we conclude b = ¢ =
a4 = A13 — Q16 — b4 = 0. Then

3bs

alfzoa 82f:_E7

3
Kf = —K(—bz%y +b5)z72, Osf =0.

Therefore we have the following corollary:

Corollary 3.2. Homogeneous Siklos spacetime defined by H = 0 has Ricci bi-
conformal vector field as X = Vf if and only if f = Aiz(—bgy + b5) + k, where
keR.

3.2 Siklos metrics with nonzero constant H

In the following we assume H # 0 and H be a nonzero constant then (38) yields

a 1
Fi(y,z) = —ZQUJF?’(y)—H(§Zg+bz)—§ZQF{4(3/)—ZFfs(y)JrFlG(y)a

for some smooth function Fig. Thus, we can write (37) as follows:

X, = —zFi(y)— az® + 20 F14(y) + zwF3(y)
w3 — 322w 1
—— F )~ 50 FL)

~wFy(y) ~ H(zaw® + wFi(y))

1
—whY (y) - H(52* +b2) = 522 Flu(y) = 2F5(y) + Fio(y),
2 2
+
X, = az 2w + bz +wFr(y) + Fs(y),
X3 = —z(az+b) + wzFi(y) + 2F14(y) + Fi5(y),
w2 — 22
Xy = *x(anrb)+TF7/(Q)+U1F14(y)+F13(y),
200 2
OL+Aﬂ = _— — *F15(y).
z z

Inserting o + A = 222 — 2Fy5(y) and H in (18), we obtain

HXg—ZaQXl—ZH82X2+bHZL'—HF15(y):0. (43)
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Applying X1, X, X3, X4 in (43), we get

—zaHz + HwzFy(y) + HzFi4(y) + 2z FE (y)
w? — 32w

1

—2x2F],(y) — r2wkF7 (y) + 5

2w’ Fiy(y)

1
+2wF{s(y) + 22wF (y) + 22 Fy(y) + 2°F5(y) — 2F{6(y)

2
—2HF{(y) = 0.

(44)

Equation (44) is a polynomial with respect to x. Since x is arbitrary, we infer

—Haz + 2Fg/(y) — 22F14(y) — 2wF7 (y) = 0.

Since w is arbitrary we deduce FY(y) = 0 and —aH + F{(y) — 2F{,(y) = 0.
Also, Equation (44) is a polynomial with respect to z. Since z is arbitrary we get

Fiy(y) = Fi5(y) = 0 and
HuwF;(y) + HF4(y) + wFi3(y) — Fig(y) — HEg

Thus, HF(y) + F{4(y) = 0 and HFy4(y) — Fis(y) — HF§(y) =

(y) =0.

0. Therefore,

1
Fr = b1y + by, g = §b3y2 + byy + bs,
a 1
F14=—§Hy+§b3y+b67 Fi5 = bry + bs,

1
Fis = —iblHyQ + bgy + b1o,

a 1
Fig = —ZHQZ/Q - Zb:aHy2 + (bg — ba)Hy + b1,

for some constants by,---,b;1. Then

1
X, = —a(bsy +bs) —az® + 2x(—%Hy + §b3y + bg) + brzw

bg —aH 2
—w
4

1
—w(—2byHy + bg) — H(ﬁan + w(bry + b)) — H(%z2 + b2)

(45)

by —aH 1
—%22 —brz — %H2y2 — ZbgHyZ + (be — b4)Hy + b11,
2 2
+ 1
XQ = az 2w —|—bZ+’UJ(b1y+b2)—|—§b3y2+b4y+b5,
a 1
X; = —z(az+b)+bjwz+ z(fiHy + ibgy + bg) + bry + bs,
w? — 22 a 1 1 9
Xy = —z(aw+b)+b 3 +w(f§Hy + §b3y +bs) — §b1Hy + boy + bio.
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Using a + AB = 222 — 2(byy + bg) in (11), we get

1 a 1
_ -1 _ -1 Loy _a 1
a = bxz 27 (bry + bs) + QZH{ 2bzzx + dza( 2H + 2b3) + 4b1 Hzw
—2b1 Hzw — aH?yz — bsHyz + 2(bg — by) H22by H 2w + 2b3H 2y 4 2by H 2,
1
+2Hz(az +b) — 2Hbywz — 2Hz(—gHy + 5bay + bs) — 2Hbry — 2Hbs}.
Theorem 3.3. Any homogeneous Siklos spacetime defined by nonzero constant H

has Ricci bi-conformal vector field X = X;0; if and only if a, 8 and X; satisfy in
(45).

Now, we consider the vector fields as X = Vf for some smooth function f
which are Ricci bi-conformal vector fields on homogeneous Siklos spacetime with
nonzero constant H. We have

—ATZQ(—Half +02f) = Xu,

—ATZQ(?zf =Xy,

A= (16)
FENN

Deriving the third Equation (46) with respect to w and deriving the fourth Equa-
tion (46) with respect to z we infer a = b = by = b3 = bg = bg = bjp = 0. By
similar method we conclude by = by = b5 = 0. Thus

81f = 0) 82f = 07
3
agf = —ngzfz, (3'4f =0.

Therefore we have the following corollary:
Corollary 3.4. Homogeneous Siklos spacetime defined by nonzero constant H has

Ricci bi-conformal vector field as X = V f if and only if f = bg%—i—k‘, where k € R.

3.3 Siklos metrics of case I

We assume that H = A_5(z,w), that is H is a homogeneous function of degree
—2 of variable z,w. Similar [4], explicitly we consider

H=kz2+kozlw '+ ]€3’IU_27
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for some real constants k1, k2, k3. We have
2(0sH) — 2(03,H + 03, H) = —4koz 2w — 10k 272 — 2kow ™2 — 6kzzw™*.

Thus Equations (34) and (35) yield 95X3 = 04X = 0. Then a =b = Fr(y) =0
and Xy becomes X5 = Fg(y). Also, we have

1
Xi = —aF(y) + 20Fa(y) — 5w’ Fla(y) — wFis(y) + Py, 2),
Xy = Fs(y),
X3 = zFu(y)+ Fis(y),
Xy = wFu(y)+ Fis(y),
2
a+As = _;FIS(CU)~

From Equation (12), we obtain 03F11(y,2) = —2zF{,(y) — F{5(y). Then

1
Fii(y, z) = —522F{4(y) — zF{5(y) + Fi7(y),

for some smooth function Fj7. Let

6H —22(03H) + 2%(93,H + 93,H)
222
= 8k1z 4 4 5koz 3w + 3k3z 2w 2 + koz w3 + 3kyw ™l

G =

Applying AB = —2Fy5(y) — a in Equations (11) and (18), we find

2 3
220, X1 +22H0, Xy — 2H Xy + 203 H Xo + 204 H Xy + 5 2°GFis(y) = a(zH + %G),
(47)

—X303G — X,0,G — gagxl —2G0, Xy —6Hz 3 Fi5(y) = (3Hz72 — G)a. (48)

Therefore,

(49)
25w (G — 3H272) (220, X1 + 22H05 Xy — 2H X3 + 20s H X3 + 20, HX

2 3

+§Z2GF15(y)) — ZG’wg(ZH + %G) (X383G + X404G
6

+?62X1 + 2G82X2 + 6HZ_3F15(y)) =0.

Differentiate it with respect to @ we get —F§ (y) + 2F{,(y) = 0, thus Fi4(y) =
1 F4(y) + c for some constant c. Substituting G, H, X1, X2, X3 and X4 in (49) we
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arrive at
(50)
(5k1 23w° 4 2kp 2 w® + ko 25wC + 3k32"w®) {—w? 2 F)) (y) — 22w F]5(y)
—22Fy(y) — 222 F{5(y) + 22F7(y) + (2k127 " + 2kow ™" + 2kz2w ) Fi(y)
—2(k127% + ko2 lw !+ ksw %) (2 Fua(y) + Fis(y))
—(2k127° 4+ oz w ) (2Fua(y) + Fis(y))
—(koz w2 4 2kz2w ) (wF4(y) + Fis(y))

2
+§(8k;1,z_2 + 5koz tw T 4 Bksw % 4 kozw 3 4 3ks2®w ) Fis(y)}

11 8 1
—l—(gk‘lzﬁwg + §k2z7w8 + 2ks 28w + gkgzgwﬁ + k32w {(32k1 270

+15koz w4 6k3z 3w % 4 koz 2w 3) (2 Fia(y) + Fis(y))
+(5koz 3w ™2 4 6kzz 2w ™3 4 3koz w4+ 12k3w ) (wF14(y) + Fi3(y))
+32 72w Py (y) + 62 *wFiy(y) + 6F{y(y) + 627" F5(y) — 62~ Fiz(y)
+2(8k1274 4 Bkoz 3wt + 3kzz 2w ™2 + koz tw 3 4 3ksw ™) Fi(y)
+6(k1272 + koz w4 k3w A Fis(y)} = 0.

Last equation is a polynomial with respect to z and w. Since z and w are arbitrary
we conclude that all coefficients of z"w?® for 0 < r,s < 11 are equal to zero. The
coefficient of z4w!'! in (50) implies that

k1 Fyy(y) = 0. (51)
The coefficients of 2°w!? and z4w!® in (50) imply that
kaFYy(y) =0, ki(=10F5(y) + 22F3(y)) = 0. (52)
The coefficient of z in (50) leads to
ksFi3(y) = 0. (53)
The coefficients of 2%w! and 2%w! in (50) yield
ksFis(y) =0, ks(2F1a + Fg(y)) = 0. (54)

The coefficient of 2%w? in (50) leads to k3F}}(y) = 0. Since H # 0, using (51),
(52) and (53), we deduce F},(y) = 0. The coefficients of w?, zw?, 22w® and z*w?®
in (50) imply that

k1F15(y) = Oa k1F14(y) = 07 leS/(y) = 07 le{?(y) = Oa (55)
respectively. The coefficients of 26w8, 2°w8, 28w? and 2"w? in (50) yield

koFi5(y) =0, k2Fi(y) =0, kaFi3(y) =0, kaFi5(y) =0, (56)
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respectively. Since H # 0, using (54), (55) and (56) we deduce Fi5(y) = 0. The
coefficient of z8w?3 in (50) leads to

2
24k3 (Fua(y) + F(y)) + 3k3(2F1a(y) + F(y)) = 0. (57)
The coefficients of 2%w7, z3w” and 2*w” in (50) imply that
kaFi7(y) =0, kaFia(y) =0, k2Fg(y) =0, (58)
respectively. Applying (58) in (57) we obtain k3(Fi4(y) + F§(y)) = 0. Inserting it
in (54) we conclude k3F14(y) = ksFj§(y) = 0. Since H # 0, using (55) and (58)
we get Fi4(y) = Fi(y) = 0, thus Fz(y) = a; for some constant a;. Also, using
(55), (56), and (58) we get Fi;(y) = 0, then Fi7; = ag for some constant ag. If
k1 = ko = 0 then k3 # 0 and (53) yields Fi3(y) = 0. Thus from (47) and (48) we
have a« = 0. Therefore for case k1 = ko = 0 we have,
Xlzag, X2:a1, )(3:07 X4=O, (XZBZO.
If &y = 0 and ko # 0 then (56) yields Fi3(y) = 0. Thus from (47) and (48) we
have o = 0. Therefore for case k1 = 0 and ko # 0, we have
X1:a23 X2:a1; X3:0a X4:07 O[:ﬁ:()
If k1 #£ 0 and kg # 0 or ks # 0 then
X1:a2, X2:a1, X3:O, X4:0, azﬁzO.

If k1 # 0 and k2 = k3 = 0 then from (52) we have Fi3(y) = %age%y—&—mh for some
constants ag and a4. Thus from (47) and (48) we have o = a3 = 0. Therefore for
case k1 = 0 and ko = k3 = 0, we have

X1:a27 X2:a17 X3:07 X4:a47 a:ﬁ:()
Theorem 3.5. Any homogeneous Siklos spacetime with H = k272 4+ koz w1 +
ksw™2 has Ricci bi-conformal vector field X = X;0; if and only ifa = 8 = X3 =0,
X1 =uaq, Xo=ay and X4 =0 for k1 #0 and X4 = a4 for k1 # 0.
Suppose that there exists some smooth function f = f(z,y,2,w) such that
X = V. By definition of gradient of f that is Vf = g9, f9;, we have
%AzzHalf - %A2282f = az,
—%A2281f = daq,
—%Azzagf =0,
—%A2’264f = a4.
By solving the last system we have a1 = a2 = a4 = 0 and f = k for some constant
k. Therefore we have the following corollary:

Corollary 3.6. Homogeneous Siklos spacetime defined by H = kyz ?+koz w1+
ksw™2 has Ricci bi-conformal vector field as X = VYV f if and only if f = k where
keR.
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3.4  Siklos metrics with H = A(z)
Now, assume that H = A(z). We have
2(0sH) — 2(03, H + 03, H) = 2A'(2) — 24" (2).

If 24’(z) — zA”(z) = 0 then H = %a;2® + ag for some constants ar,as. Assume
that a7 # 0. In this case we have
6H — 22(0:H) + 22(03,H + 03,H)
222

=a7z+ 3a8272.

From Equation (12), we get

1
—a722(§aw2 +wl7(y)) + 93 F11(y, 2)

1
+(3a72" + as)(az +b) + 2F14(y) + Fis(y) = 0.
Since w is arbitrary we deduce a = 0,
F?(Z/) = 07

1
sk (y,2) + 5(5@723 +as) + 2F4(y) + Fi5(y) = 0.
Integrating the last equation, we get
1 1
Fi(y,z) = —Eba7z4 — bagz — 522F{4(y) — 2F{5(y) + Fis(y),

for some smooth function Fig. Therefore,

1
X1 = —xFi(y)+2zF4(y) — §w2F{4(y) —wF5(y)
1 1

—Eba7z4 — bagz — §z2F{4(y) — zF{5(y) + Fis(y),
X2 - bZ+F8(y)7
X; = —br+zFuu(y)+ Fi5(y),
Xy = —br+wFu(y)+ Fis(y),

2x 2

a+AB8 = —b——-Fi5(y).
z z

Substituting X1, X9, X3, X4 and H in (18) and using last equation, we obtain

—(a7z® — 6as) (—bz + 2F14(y) + Fi5(y)) — (2a72* + 6asz)Fi(y)
—6z (—xF¥ (y) + 22 F],(y)
1

1
~SUPFL) ~ wF () ~ 3L - SF () + Fl))

= —(a72® + 3ag) (2bx — 2F15(y)).
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Since x is arbitrary, we have
b(arz® — 6ag) — 62(—F% (y) + 2F4(y)) + 2b(az2® + 3ag) = 0.

This implies that b = 0 and —F§ (y) + 2F],(y) = 0. Also, the above equation
is a polynomial with respect to z,w. The coefficient of z* implies that Fi4(y) +
2F{(y) = 0. Thus F{,(y) = F{(y) = 0. Then Fi4(y) = ¢1 and Fy(y) = —1c1y+c2
for some constants ¢y, ca. The coefficient of 23 yields Fi5(y) = 0. The coefficient
of z leads

asFia(y) + wi3(y) — Fis(y) — asFg(y) = 0.

Since w is arbitrary, we infer Fi5(y) = 0 and agFi4(y) — Fis(y) — asF5(y) = 0.
Hence, Fi3(y) = csy + ¢4 and Fig(y) = %clagy + ¢5 for some constants c3, ¢4 and
c5. Therefore,

X, = iclx—Cp,er 501a8y+05,
1
Xy = —5CY + ca,
X3 = (1%, (59)
Xy = caw+c3y+c,
a+AB = 0.

From Equation (11) we have a = 5 = 0.

Now, we consider 24'(z) — zA”(z) # 0. Thus Equations (34) and (35) yield
03X = 04X = 0. Then a = b = F;(y) = 0 and X5 becomes X5 = F3(y). Also,
we have

1
X1 = —zFg(y) +2zFu(y) — §w2F{4(y) —wFi3(y) + Fui(y, 2),
X, = Fs(y),
X3 = z2Fu(y) + Fis(y),
Xy = whu(y)+ Fs(y),
2
a+Ag = —;Fm(y)-

From (12) we have 95F11(y, z) + 2F|,(y) + F{5(y) = 0 then

1
Fii(y,2) = —522F1’4(y) — 2F5(y) + Fio(y),

for some smooth function Fig. Then
/ 1 2 / / 1
X1 = —wFg(y) +22Fu(y) — sw Fu(y) — wliz(y) — By

2 22F1/4(y)
—2F|5(y) + Fio(y),
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and

2
(G —3Hz"){220: X, +2:H0:Xo —2HX3 + 2H' X3 — gz“‘GFu—)(y)}

1
—(zH + 52’3G){X3G/ + 62720, X1 + G Xo + 6Hz " Fi5(y)} = 0.
Then

(G —3Hz"*){—222F{ (y) + 422 F|,(y) — 2w’ F{y(y) — 22w F]5(y)
—2°Fii(y) — 22° 5 (y) 4 22F{y(y) + 22HFg(y) — 2H (2F14(y) + Fi5(y))

+2H'(2F14(y) + Fi5(y)) — gZQGFw(?/)}

1 _

—(zH + gz?’G){(sz(y) + Fi5(y))G — 62272 F (y) + 12222 F{,(y)
=32 w? Fly(y) — 627wk (y) — 3FY4(y)

—62""Fi5(y) + 62 Fio(y) + GFg(y) + 6Hz"*Fi5(y)} = 0.

The coefficient of w? implies that F{}(y) = 0 and the coefficient of w leads to
F/%(y) = 0. The coeflicient of z yields F§ (y) — 2F{,(y) = 0. Also, we have

Floly) = 1 (G = 3Hz"){=2:2Fly(y) + 2:HFY(y) — 2H(zF1a(y) + Fis(y)

, 2
+2H'(2F14(y) + Fi5(y)) — §Z2GF15(Z/)} SRy
+Fi5(y)G — 627" Fii(y) + GF4(y) + 6Hz">Fi5(y)}.

(zH + %ZSG){(ZFM(y)

Then
Fia(y) = cey + 7,
Fi3(y) = csy + co,
Fy(y) = cey® + cioy + c11,
and
z
Flo(y) = (G = 3Hz7*){—=22*F{5(y) + 22H (cgy + c10) — 2H (c7- + Fi5(y))

12H
2
+2H'(z(cey + ¢7) + Fis(y)) — gz2GF15(y)}

z 1,
—12H(ZH+ §Z G){(z(cey + ¢7)

+F15(y))G/ — 62_1F1”5(y) + G(2C()y + 010) + 6H2_3F15(y)},
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for some constants c7,--- ,c11. Also,
_ 1 2 1 2 /
X1 = (2¢7—co)x — 2csw — cgWw — 2062 — zF:s(y) + Fio(y),
Xo = coy®+croy + e,
X3 = z(cey +c7) + Fis(y), (60)
Xy = w(cey +c7)+cgy + ¢,
2
O‘+AB = _;FIS(y)7
a = —(=G+322H) {(z(cey + ¢7) + Fi5(y)) G

627" Fi5(y) + 6272 Fio(y) + G(2csy + c10) + 6Hz > Fi5(y)}.

Theorem 3.7. Any homogeneous Siklos spacetime with H = A(z) has Ricci bi-
conformal vector field X = X;0; if and only if

i) when 2A4'(z) — zA"(2) = 0 then X;,i =1,2,3,4 satisfy in (59).
ii) When 2A'(z) — zA"(2) # 0 then X;,i =1,2,3,4 satisfy in (60).

Suppose that X = V f for some smooth function f which are Ricci bi-conformal
vector fields on homogeneous Siklos spacetime with nonzero constant H. We have

—ATZQ(—Half +02f) = Xa,

—AT%azf =Xy,

A= (o)
FE

Deriving the third Equation (61) with respect to w and deriving the fourth Equa-
tion (42) with respect to z we infer a = b = by = b3 = bg = bg = b1jp = 0. By
similar method we conclude by = by = b5 = 0. Thus

alf:O7 a?fzoa
3

O3f = *Kbszfz, osf = 0.

Therefore we have the following corollary:

Corollary 3.8. Homogeneous Siklos spacetime defined by nonzero constant H has
Ricci bi-conformal vector field as X = V f if and only if f = bg%—l—k, where k € R.
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3.5 Siklos metric with H = A(y)z?

Now, we assume that H = A(y)2?, in this case we have

6H — 22(0sH) + 22(02,H + 03, H)  6A(y)2? — 422 A(y) + 222 A(y)

222 = 2,2 = 2A(y),
X1 = —zxF(y) — aFg(y) — az® + 2xFa(y) + 2w Fi(y)
w?® — 322w 1
——— () — 5w FLy)
—wF) ~ [ (@l + HE () dw+ Fu(y.2),
22+ w?
Xy = a 5 + 2F5(y) + wFr(y) + Fs(y),
Xs = —wz(az+ F5(y)) + weFp(y) + 2F1a(y) + Fis(y),
w2 — 22
X4 = —z(aw+F5(y))+TF7'(y)+wF14(y)+F13(y),
2z 2
a+A3 = 7F5(y) - ;F15(y)-

Since
2(0sH) — z(8§3H + 6Z4H) = 22A(y).

Thus Equations (34) and (35) yield 03Xo = 04 X2 = 0. Thena=b= F;(y) =0
and Xy becomes X5 = Fy(y). From Equation (12), we obtain

D F11(y, 2) = —2F1,(y) — Fi5(y).

Then
1
Fii(y,z) = —§Z2F{4(y) — 2Fi5(y) + Fir(y),

for some smooth function Fi7. Thus

1 1
Xy = —aF(y) + 20Fa(y) — 5w’ Pl (y) — wFi(y) - 52" Fla(y)
—2F5(y) + Fi7(y),
Xy = Fg(y),
Xs = zFuu(y)+ Fis(y),
Xy = wFu(y) + Fis(y),
2

a+AB = *;Fls(y)-
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Using (12) and (19), we get
—22aF (y) + 422 F (4 (y) — 2w’ F{y(y) — 2ewF{s(y) — 2°FYy(y)
—22°F{5(y) + 22 F77(y) + 2° Fs(y) A'(y) + 22" A(y) Fi (y)
4 5 _ -
—327 AW Fis(y) — 321 —2F () A (y) + 62277/ (y) — 12227 F4 (y)

1322w FY () + 62 2wFl4 (y) + 3F,(y) + 62" Fli(y) — 62 2Fl-(y)
—4A(y)F{(y) — 627" A(y) Fis(y)} = 0.

Since x is arbitrary, we conclude
—F/(y) + 2F,(y) =0,
and the coefficient of w? implies that
F{i(y) = 0.

Hence, Fi4(y) = diy + do and Fg(y) = dy1y? + d3y + d4. Also the coefficient of w
yields F{4(y) = 0 then Fi3(y) = dsy + dg. Hence,

=222 F{4(y) + 22F](y) + 2 Fs(y) A’ (y) + 223 A(y) Fi(y) — %zQA(y)Fls(y)

B[Ry A'(y) + 627 Fih(y) — 62 Flr(y)
—4A(y)Fg(y) — 627 A(y) Fis(y)} = 0.

The above equation is a polynomial with respect to z. Since z is arbitrary we get
Fy(y)A'(y) + 2A(y)Fg(y) = 0, Fiz(y) = 0, and —12F{5(y) + 13A(y) Fis(y) = 0.

Thus Fi7(y) = d7 and A(y) = WW. Therefore,
1 2 L, 5
X, = —.%‘(ley + d3) + 21‘(d1y + d2) — idlw —dsw — §d1Z
_ZFIIS(y) + d7,
X2 = d1y2 + dgy + d4,
Xz = z2(diy+da) + Fi5(y), (62)
Xy = w(diy+dz)+ dsy + d,
5 _
Aﬁ = _53 1F15(y)’
1
o = 5271F15(y).

Theorem 3.9. Any homogeneous Siklos spacetime with H = A(y)z? has Ricci
bi-conformal vector field X = X;0; if and only if o, B, X;,i = 1,2,3,4 satisfy in
(62).
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Now, we consider the vector fields as X = Vf for some smooth function f
which are Ricci bi-conformal vector fields on homogeneous Siklos spacetime with
H = A(y)z%. We have d; = 0 for i = 1, ,7. Therefore we have the following
corollary:

Corollary 3.10. Homogeneous Siklos spacetime defined by H = A(y)z? has Ricci
bi-conformal vector field as X = V f if and only if f = Fi5 (y)AiZ +k, where k € R.

3.6 Siklos metric with H = y*2A(y*z)
Now we consider H = y**~2A(u) where u = y*z. We have
2(03H) — 2(05; H + 03 H) = y** 2 (24" (y*2) — 2" A" (y*2)).

If 2A"(y%2) — 2y* A" (y*¥2) = 0 then H = k1y°* =223 4 koy?*~2 for some constants
ki1, ko. In this case, we have

6H —22(0sH) + 2%(03;H + 03,H)
222

= 3k1yP" 22 4 3koy?h 2272
From Equation (38), we get

1
2wFy (y) — 3k1y5k72$2(§aw2 +wFr(y)) + 03F11(y, 2)

+(k1y™ 7227 + kay™ ) (az + b) + 2F{4(y) + Fs(y) = 0.
Since w is arbitrary we deduce aky = 0, FY/(y) = 0,

le'?(y) = Oa
O3 F11(y, 2) + akay® 2z + b(k1y® 22 + kay® %) + 2F{,(y) + Fi5(y) = 0.

Integrating the last equation, we arrive at

1 _ 1 _ _ 1
Fii(y,z) = *iakzy% 222*17(17<?1y‘r"C 22+ koy?F 22)*522F{4(y)*Ff5(y)Z+F2o(y)7
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for some smooth function Fyy. Therefore, F7(y) = ksy + k4 for some constants
]{13, k’4 and

1
Xi = —aF(y) + 20Fa(y) + kszw — 5w’ Fy(y) — wFis(y)
1 1
_k2y2k_2w(k3y + k4) _ §ak2y2k_222 _ b(ik1y5k—2z4 + k,2y2k—22)

1
—=22F{,(y) — Fi5(y)z + Fao(y),

2
2 2
_|_
X2 = CLZ 2w +bZ+UJ(k3y+k4)+F8(y)7
X; = —x(az+b)+ kswz + 2zF14(y) + Fi5(y),
w? — 22
Xy = —z(aw+b)+ks 7 +whia(y) + Fi3(y),
20 2
at+ A = —/ —=Fi5(y).
z z

Substituting X1, X2, X3, X4 and H in (18) and using last equation, we obtain

s 2+ w? 5k—1
-32°la 5+ bz + w(ksy + ka) + Fs(y) | ((5k — 2)k1y°" "2

+(2k — 2)kpy?FT1272)
—323(—x(az +b) + kawz + 2F14(y) + Fi5(y)) (k1y®" ™2 — 2koy* 72273)

1 :
—62{—xFy (y) + 22F],(y) — §w2pﬂ(y) — wF(y) — ko (2k — 2)y** Bw(ksy + ky)
. 1 o
—koksy®* 2w — ako(k — 1)y2k7322 _ b(zkl(% _ Z)yokﬁﬂzA + ko (2K — 2)y2k73z)

1
—52" Fli(y) = Fi5(y)2 + Fo(y)}

—6(k1y™ 22% + kay®* 7?) (ksw + Fi(y))
- —6(k1y5k_2z3 + k2y2k_2)(bx — Fi5(y)).

Since z is arbitrary we have
3(az+b) (k1y®*22° —2kay®* ) —62(—Fy (y) +2F{4(y)) = —6b(k1y”* 2% +kay® ).

This implies that bk; = 0 and —F¥/ (y) + 2F],(y) = —akoy?*~2. Also, the above
equation is a polynomial with respect to z,w. The coefficient of w? implies that
F!'\(y) = a(k — 1)koy?*~1. The coefficient of z* leads to

(w(ksy + k) + Fe(y))(5k — 2)k1y® ™1 4 (ksw + Fia(y))kiy® =2 = 0.

Then ki1k3 = (5k —2)k1yFs(y) +k1F14(y) = (5k —2)k1ky = 0. The coefficient of 2°
implies that koks = kaF§(y) = 0. Since k1ks = koks = 0 and H # 0 we infer k3 =
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0. The coefficient of 22 implies that FJ%(y) = b(k — 1)koy? =1 + 2bko (k — 1)y?F—3.
The coefficient of z yields

(kaw+Fs(y)) (k—1)koy® ko Fra(y)y* 2 —w 5 (y) —ka (2k—2)wy** ~3+F3 (y) = 0.

Then

Fli(y) = ka(k — D)y* =1 — ko (2k — 2)y%F 3,

and

Fy(y)(k — Dkay® ™ + ko Fra(y)y™ 2 + Fyo(y) = 0.
The coefficient of 22 implies that

—a(k — Dkoy® ™1 — k1 Fi5(y)y"* 1 + 2a(k — 1)koy® 3
+F,(y) — 2k1y® 2 Fi(y) — 2k1y® 2 Fis5(y) = 0.

If K, = 0 then k2 # 0. Equation koF§(y) = 0 implies that Fj(y) = 0 then
Fy(y) = ks. The equation —FY/ (y) +2F],(y) = —akey*~2 yields F{,(y) = —a(k —
1)koy?k=3. Then it together with F{(y) = a(k — 1)koy?*~! leads to a(k — 1) =0
and F{;(y) = 0. Since H is nonconstant then k¥ # 1 and a = 0. Hence, Fi4 = ks.
In this case, we have

X1 = 2kt — wF{y(y) — kay® Phaw — bhoy® 2z — Fi5(y)z + Faol(y),
Xo = bz+kaw+ k‘5,
X3 = —bxr+kgz+ Fls(y), (63)
Xo = —bodkew+ Fis(y),
2bx 2
atAf = — - —Fisy),
z z
where
Fli(y) = blk—1)ka(y* 1 +2y273),
Flii(y) = (k—1)(kay® ! — 2kpy®3),
FZIO(y) = _kQ(ks(]{ — 1)y2k—1 + kGka—Q).

If ky 2#0thena=b=ky =0. If k = % then Fi4(y) = 0 and Fy(y) = ko1y + koo
where kokg1 = 0. Then, Fis = kozy + kos, Fi3(y) = 5koy™5 + kasy + kag, Fao(y) =
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%k‘g/{@gy% . Thus,

X1

Xo
X3
Xy

a+ Ap

4
5

_6 3
—ko1x — w(—kaoy s+ kas) — kozz + Zkzkmy )

ko1y + ko2,

kozy + koy,

5162?/_% + kosy + kae, (64)
2

—;(k23y + kaa),

1 12
5(1@124 + kgyfgz)fl{fgzwkgy 54 gzkgkmy*%
6 )
*5/€2]€222y71571 + 2ky koy 2* + (k1 2° — 2k2y’g)(k23y + koa)

72271 (k?ggy + k24)}.

Now, we assume that k # % Therefore Fi4(y) = Fs(y) =0 and

Xy
Xo
X3
Xy

a+ AS

where

—wF3(y) — Fi5(y)z + kos,
0,
F15(y),

Fi3(y),

*%Fls(y)a (65)

1
22(k Yo% =223 + kyy?k—2)
+(5k — 2)k1y"F 7321 + (2k — 2)koy? 32

—A(k1yP* 22 + kay® ) Fis(y) + 3kiy® 222 Fis(y)}

{~2zwF3(y) - 22°F15(y)

Fli(y) = bk —Dka(y> " + 24273,
Fiiy(y) = —2(k—1)koy> 2.

Now, we consider 24’ (y*2) — zy* A" (y*2) # 0. Thus Equations (34) and (35) yield
03X5 = 04X2 = 0. Then a = b = F7(y) = 0 and X5 becomes X5 = F3(y). From
(12), we have 05F11(y, 2) + 2Fy,(y) + F{5(y) = 0, then

1
Fii(y,2) = —§Z2F{4(y) — 2F5(y) + Fa1(y),

for some smooth function F;. Then

X, =

1
—zFg(y) + 20 F14(y) — sw?Fi,(y) — wF{5(y) —

1

2z2F1’4(y)

2

—2F|5(y) + Fa1(y),
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and from (12) and (19), we have
(G —3Hz"2){220,X1 + 20.HXo + 2:H0o X5 — 2HX3 + 20: HX 5
%2201«15(@,)} —(zH + %f*a){xzaﬁ + X305G + 62720, X1 + GO X
+6H 2 3Fi5(y)} = 0.

Hence,

(G = 3Hz?){—2x2F} (y) + 4zzF{,(y) — 2w’ F{}(y) — 2zwF{5(y) — 2°F{,(y)
—222F5(y) + 22F5 (y) + (2k — 2)y* 22 A(y"2) Fs (y) + ky* 224" (y"2) Fs(y)
+222 2 A(yP2) Fi(y) — 2y 2 A(yF2) (2 Fua(y) + Fis(y))

P () (Fualy) + Fisly)) - 22 °GFis )}

1
—(zH + 32°O{Fs(y)02G + (2F1a(y) + Fis5(y)) %3G — 6227 ¥ (y)
122272 Fy(y) — 32w Fij(y) — 62~ w3 (y) — 3F{4(y)
—627 FY5(y) + 6277 Flo(y) + GFy(y) + 6Hz " Fis(y)} = 0.
In the above equation the coefficient of w? implies that F{}(y) = 0 and the coef-

ficient of w yields Fj5(y) = 0. The coefficient of = leads to F§'(y) — 2F{,(y) = 0.
Also, we have

z

Fy(y) = oY (G —3Hz"*){—22F[5(y) + 22HF3(y) — 2H(2F14(y) + Fi5(y))
2 z 1
+zH'(zFua(y) + Fis(y)) — §22GF15(3J)} gt gng){(ZFm(y)
+F15(y))G" — 627" Fi5(y) + GF4(y) + 6Hz"*Fi5(y)}.
Then
Fia(y) = cey + c7,
Fi3(y) = csy + co,
Fs(y) = coy® + cioy + c11,
and
2
Floly) = (G = 3Hz7*){—=22*F{5(y) + 22H (cgy + c10) — 2H (c7- + Fi5(y))

12H
2
+2H'(z(cey + ¢7) + Fis(y)) — gz2GF15(y)}

o (H 4 2 G) (<l + er) + Fis(9))C

—627 FY5(y) + G(2cey + o) + 6Hz > Fi5(y)},
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for some constants c7,--- ,c11. Also,
_ 1 2 1 2 /
X1 = (2¢7—cio)x — 50611) — cgw — 5062 — zFs(y) + Fio(y),
Xy = ¢y’ 4oy + o,
X3 = z(cey +c7) + Fis(y), (66)
Xy = w(cgy +cr)+ csy + ¢y,
2
atApg = _;F15(y)a
a = 7(7G+3272H)*1{(z(06y+07) + Fi5(y)G’

—627"F{5(y) + 6272 Flo(y) + G(2cey + c10) + 6Hz>Fi5(y)}.

Theorem 3.11. Any homogeneous Siklos spacetime with H = y**=2A(y*z) has
Ricci bi-conformal vector field X = X;0; if and only if

i) for 24" (y*z) — 2y* A" (y*2) = 0 the functions X; satisfy in (63) or (64), or
(65),
ii) for 2A"(y*z) — 2y* A" (y*2) # 0 the functions X; satisfy in (66).

Corollary 3.12. Homogeneous Siklos spacetime defined by H = y** "2 A(y*2) has
Ricci bi-conformal vector field as X =V f if and only if f = F15(y)% + k, where
kEeR.

3.7 Siklos metrics with H = ez*
Let H = ez* where e = 1 and k # 0. We have

2(03H) — 2(02, H + 02, H) = e(3k — k?)2F 1.

If k& # 3 then Equations (34) and (35) yield 93Xs = 0;X2 = 0. Then a = b =
F7(y) = 0 and X5 becomes X = Fg(y). From Equation (12), we obtain

O3l (y, 2) = —ZF1/4(Z‘J) - F1/5(y)

Then 1
Fii(y,z) = —§Z2F1/4(l/> — 2F{5(y) + Faa(y).
Thus
1 1
Xy = —aF(y) + 20F(y) — 5w’ FlL(y) — wFi(y) — 52" Fla(y)
—2F5(y) + Fa(y),
X2 = Fs(y)a
X3 = zFu(y) + Fis(y),
Xy = wFu(y)+ F(y),
2

a+AB = *;Fw(y)-
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Putting these equations in (12) and (19), we obtain

—222Fg (y) + 422 F, (y) — 2w Fiy(y) — 2zwFi3(y) — 2° Fi4(y)
—222F{L(y) + 22F55(y) + 262" TV (y) — 2e27 (2 F14(y) + Fis(y))

) 1 2
+ekzF (2Fua(y) + Fis(y)) — Eg(k’Z — 3k +6)z"Fis(y) + 523(]“2 — 3k +9){
1

_§€(k; —2)(k* = 3k 4+ 6)2F 3 (2Fi4 + Fi5(y))

+6w2 7 Fy (y) — 120272 Fly(y) + 32w’ Fii(y)

+62wFy(y) + 3F{4(y) + 627 F{5(y) — 6272 Fy(y)

+e(k* — 3k + 6)2F 2 Fj(y) — 6e2"3}.
Since x is arbitrary, we conclude —F¥ (y) + 2F},(y) = 0, and the coefficient of w?
implies that F{}(y) = 0. Then Fi4(y) = my + r2 and Fs(y) = riy? + r3y + 14

for some constants 71,...,74. Also the coeflicient of w yields Fi5(y) = 0 then
Fi3(y) = rsy + 16 for some constants r5, 7. Hence,

—22°F{5(y) + 22F55(y) + 262" (2r1y 4 13) — 262" (2(r1y + 72) + Fi5(y))
1 2
+ekzF (2(riy +72) + Fis(y)) — eg(kQ — 3k +6)2F Fi5(y) + g,z?’(/fz’ — 3k +9){

—%e(k — 2)(k% = 3k + 6)2" 3 (2(r1y + 12) + Fi5(y))

++ 627 5 (y) — 6272 Fy(y)
+e(k? — 3k 4 6)2""2(2r1y + r3) — 6e2* 73}

Therefore,
1y 1,
X1 = —z@2riy+rs)+2z(ry+re) — gw 1 — Wrs — 52 r
—2Fi5(y) + Fa2(y),
Xo = rmy*4ray+r,
Xg = z(r1y+r2)+F15(y), (67)
Xy = w(ry+re)+rsy+re,
2
[0 +Aﬁ = —;F15(y)

Now we assume that k& = 3 then (38) leads to

1
2wk (y) — 3622(§aw2 +wkFr(y)) + 03F11(y, 2)
+e2°(az + b) + 2F{4(y) + Fi5(y) = 0.

Since w is arbitrary we conclude a = F7(y) = 0 and

1 1
Fii(y,z) = *15b24 - 522F{4(y) — 2Fi5(y) + Fas(y).
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From (18) we have
_ 1
€(=bz + 2Fua(y) + Fis(y)) + 227 (-2 F (y) + 20 F{u(y) — 5w’ Fy(y)
1
~wFi(y) = 52*Fli(y) — 2Fi5(y) + Fa3(y)) + 2e2(b2 + F5(y))
76(2[)% - 2F15(y)) =0.
Since z is arbitrary we have b = —F{ (y) + 2F],(y) = 0. Also, since w is arbitrary

we get [ (y) = F{5(y) = Fis(y) = Fi3(y) = Fia(y) +2F3(y) = 0. Then Fiy = s1,
Fy = —%sw + 59, F23(y) = s3, F13 = s4y + s5. Therefore

X, = 531x+231m—54w+53,
Xy = *%Sly + s2,
X3 = s12, (68)
X4 = —s1w+ sS4y + S5,
a = [=0.

Theorem 3.13. Any homogeneous Siklos spacetime defined by H = ez* has Ricci
bi-conformal vector field X = X;0; if and only if o, 8 and X; satisfy in (67) for
k # 3 and (68) for k = 3.

Corollary 3.14. Homogeneous Siklos spacetime defined by nonzero constant H
has Ricci bi-conformal vector field as X = V f if and only if f = F15(y)/% + dy
for k#3 and f = dy for k = 3 where dy € R.
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