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Abstract

A significant development in the field of gyrogroups was the introduc-
tion of the space of all relativistically admissible velocities, which brought
gyrogroups into the mainstream. A group has various generalizations, one
of which is the notion of gyrogroups. Moreover, for any pair (a, b) in this
structure, there exists an automorphism gyr[a, b] that fulfills left associativ-
ity and left loop property. The motivation behind this study is to generalize
gyrogroups and semigroups, which has led to the introduction of gyrosemi-
groups. Accordingly, in this paper, some classes of gyrosemigroups are pre-
sented. Also, all gyrosemigroups of order 2 are characterized. Furthermore,
the gyrosemigroups with an identity or a zero are studied.
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1. Introduction

In 1988 Ungar expressed the Lorentz group parametrically in terms of relativisti-
cally admissible velocities and orientations in a paper entitled ”Thomas rotation
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and the parametrization of the Lorentz transformation group” [1]. The group struc-
ture of the resulting parametric realization of the Lorentz group, along with Ein-
stein velocity addition law, enabled Ungar to discover the group-like structure and
it is commonly referred to as a gyrogroup [1, 2]. The research has demonstrated
that gyrogroups possess a ubiquitous computational function that transcends the
domain of Lorentz groups [3], as pointed out by Chatelin and others [4, page 523].

Clifford algebras have been utilized in previous researches to enhance compre-
hension of gyrogroups in diverse investigations, including those in the field of [5–9].
Suksumran and Ungar’s work on the generalization of gyrogroups to bi-gyrogroups
is a significant contribution to the field of mathematics [10]. Recently, Ashrafi et
al. characterized gyrogroups up to order 31 and obtained new gyrogroups[11, 12].

A semigroup is a mathematical structure consisting of a set and an associative
binary operation. Semigroups are a generalization of groups. Semigroups have
various applications in different areas of mathematics and beyond [13–15]. Here
are a few examples: Algebraic Structures, Automata Theory, Geometry and Dy-
namical Systems, Cryptography and Optimization. Gyrogroups also have several
interesting applications, although they might not be as widely known or stud-
ied as semigroups. A gyrogroup is a mathematical structure that generalizes the
concept of a group by relaxing the requirement of associativity. Here are a few ar-
eas where gyrogroups find applications: Relativity Theory, Hyperbolic Geometry,
Quantum Mechanics and Discrete Mathematics. In some fields such as physics,
geometry, and combinatorial mathematics, both semigroups and gyrogroups have
applications. This can provide researchers with ideas for finding applications of
gyrosemigroups in physics, geometry and combinatorial mathematics. Further-
more, since gyrosemigroups are an extension of semigroups and gyrogroups, un-
derstanding the structure of gyrosemigroups helps us better understand these two
structures.

Now we introduce a structure that encompasses both the notion of semigroups
and that of gyrogroups and call it a gyrosemigroup. Several examples and prop-
erties of this structure have been examined. Moreover, we characterize gyrosemi-
groups of order two up to gyroisomorphism. Finally, the conditions required to
obtain a gyrosemigroup with an identity or a zero from another gyrosemigroup
will be discussed.

Let us start with the definition of a gyrogroup.

Definition 1.1. (Gyrogroup) A groupoid (G,⊕), where ⊕ is a binary action, is
called a gyrogroup provided the following axioms are satisfied:

(1) Left associativity law holds, it means for any two elements u and v in G
there exists a gyroautomorphism gyr[u, v] such that for all u ∈ G:

u⊕ (v ⊕ w) = (u⊕ v)⊕ gyr[u, v](w),

(2) For every u, v ∈ G, gyr[u⊕ v, v] = gyr[u, v].
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(3) Left identity law holds, that means there is an element 0 ∈ G, such that
0⊕ u = u, for all u ∈ G.

(4) For every u ∈ G, there exists v ∈ G such that v ⊕ u = 0.

2. Gyrosemigroup

In this section, we explore and analyze the notion of gyrosemigroup. A groupoid
which satisfies the first and second axioms of Definition 1.1 is called a gyrosemi-
group.

Definition 2.2. (Gyrosemigroup) A groupoid (G,⊕) is a gyrosemigroup if its
binary operation satisfies the following conditions.

(1) For any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that the
binary operation obeys the left associativity law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

(2) The map gyr[a, b] : G → G given by c → gyr[a, b]c is an automorphism of
the groupoid (G,⊕), that is,

gyr[a, b] ∈ Aut(G,⊕).

(3) The gyroautomorphism gyr[a, b] generated by any a, b ∈ G possesses the left
reduction property

gyr[a, b] = gyr[a⊕ b, b].

The automorphism gyr[a, b] of G is called the gyroautomorphism, or the gyra-
tion of G generated by a, b ∈ G. The operator gyr : G×G→ Aut(G,⊕) is called
the gyrator of G.

We recall that a gyrosemigroup (G,⊕) is trivial if gyr[a, b] is the identity func-
tion, i.e. gyr[a, b]x = x, for every x ∈ G. Now, the question that arises is whether
there is a non-obvious gyrosemigroup of any order. The answer in gyrogroups is
negative. The first non-trivial gyrogroup is of order eight [11]. We show that the
answer is positive in gyrosemigroups.

Lemma 2.3. Let S be a non-empty set . We define ⊕ : S × S → S by a⊕ b = a,
for all a, b ∈ S. Then for every a, b, c ∈ S and for every gyroautomorphism of
gyr[a, b] ∈ Aut(S,⊕) we have:

(1) gyr[a⊕ b, b] = gyr[a, b].

(2) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

Proof. For every a, b ∈ S and gyr[a, b] ∈ Aut(S,⊕) we have a⊕ b = a. Therefore,
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(1) gyr[a⊕ b, b] = gyr[a, b].

(2) a⊕ (b⊕ c) = a⊕ b = a and (a⊕ b)⊕ gyr[a, b]c = a⊕ b = a.

Now by Lemma 2.3, we obtain the next theorem:

Theorem 2.4. If (S,⊕) be a groupoid with the following Cayley table, then (S,⊕)
is a gyrosemigroup for every gyr[a, b] ∈ Aut(S,⊕).

Table 1: Non-trivial gyrosemigroup of order n.

· 1 2 . . . n
1 1 1 . . . 1
2 2 2 . . . 2
...

...
. . .

...
n n n . . . n

Therefore for every n ∈ N, there exist (n!)n
2

gyrosemigroup and a number of
these gyrosemigroups are gyroisomorphic.

There exists a groupoid (S,⊕) such that for every gyr[a, b] ∈ Aut(S,⊕), we
can not obtain a non-trivial gyrosemigroup.

Theorem 2.5. Suppose that (S,⊕) is a groupoid with the following Cayley table.

Table 2: Gyrosemigroup of order n.

· 1 2 . . . n
1 1 2 . . . n
2 1 2 . . . n
...

...
. . .

...
n 1 2 . . . n

Then (S,⊕) is a gyrosemigroup if and only if for every u, v ∈ S, gyr[u, v] is the
identity function.

Theorem 2.6. If (G, ·) is an Abelian group, then (G,⊕) is a gyrosemigroup, where
for every a, b ∈ G, a⊕ b = a · b−1 and gyr[a, b]c = c−1.

Theorem 2.7. The gyrosemigroup (G,⊕) in Theorem 2.6 is a gyrogroup if and
only if for all a ∈ G, we have o(a) = 2, when o(a) is the order or period of the
element a in the Abelian group (G, ·).

Proof. If for all a ∈ G, o(a) = 2, then the result is clear.
Conversely, let c ∈ G be an identity for ⊕. Then for every a ∈ G, a = a⊕ c = ac−1

and a = c⊕ a = ca−1. So a−1 = (ca−1)−1 = ac−1 = a and o(a) = 2.
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Example 2.8. Let (Zn,+) be the cyclic group of order n. We define a ⊕ b =
a + (−b). (Zn,⊕) is not a semigroup, but it is a gyrosemigroup by putting for
every a, b ∈ G, gyr[a, b]c = −c.

Theorem 2.9. For every n ∈ N, n 6= 1, there exists a groupoid (G,⊕) such that
for every gyrator of G , (G,⊕) is not a gyrosemigroup.

Proof. If n > 2, consider the cyclic group G = (Zn,+) of order n. Define the
operation ⊕ : Zn × Zn → Zn by a ⊕ b = b − a. We have 1 ⊕ (1 ⊕ 0) = −2 and
(1⊕ 1)⊕ gyr[1, 1](0) = 0− (1− 1) = 0 , but for n > 2 we have 0 6= −2 and this is
a contradiction. For n = 2 we prove it in Theorem 3.24.

3. Gyrosemigroups of order 2

In this section all gyrosemigroups of order 2 are introduced and characterized.
Let G = {0, 1}. If (G,⊕) is a groupoid, then Aut(G,⊕) = {A} or Aut(G,⊕) =
{A, T}, where A is the identity automorphism and T is the transposition (01).
This means that T (0) = 1 and T (1) = 0.

Theorem 3.10. There exist 5 non-isomorphic semigroups of order 2 as the fol-
lowing Cayley tables show:

Table 3: All semigroups of order 2 up to isomorphism.

S1

· 0 1
0 0 0
1 0 0

S2

· 0 1
0 0 0
1 0 1

S3

· 0 1
0 0 0
1 1 1

S4

· 0 1
0 0 1
1 0 1

S5

· 0 1
0 0 1
1 1 0

Theorem 3.11. Let (G,⊕) be a semigroup and for every a, b ∈ G, gyr[a, b] = A.
Then (G,⊕) is a gyrosemigroup.

Proof. For every a, b, c ∈ G, we have a⊕ (b⊕ c) = (a⊕ b)⊕ c = (a⊕ b)⊕ A(c) =
(a⊕ b)⊕ gyr[a, b]c.

Theorem 3.12. Let G = {0, 1}. If 0⊕ 0 = 1⊕ 1, then (G,⊕) is a gyrosemigroup
if and only if (G,⊕) is a semigroup and for every a, b ∈ G, gyr[a, b] = A.

Proof. First, assume that (G,⊕) is a gyrosemigroup. To the contrary, let for some
a, b ∈ G, gyr[a, b] 6= A. So gyr[a, b](0) = 1 and gyr[a, b](1) = 0. Let 0⊕0 = 1⊕1 =
0 then

1 = gyr[a, b](0) = gyr[a, b](0⊕ 0) = gyr[a, b](0)⊕ gyr[a, b](0) = 1⊕ 1 = 0,

and it is a contradiction. In a similar fashion, 0⊕0 = 1⊕1 = 1 makes a contradic-
tion. Therefore for every a, b ∈ G, gyr[a, b] = A. Thus a groupoid of order 2 with
0⊕ 0 = 1⊕ 1 cannot be a gyrosemigroup with any non-trivial gyrator. Moreover,
when the gyrator is trivial the concepts of semigroup and gyrosemigroup coincide.
The inverse statement is clear by Theorem 3.11 and we are done.
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Corollary 3.13. Among 128 groupoids of order 2 with 0 ⊕ 0 = 1 ⊕ 1, there are
124 non-gyrosemigroups and 4 gyrosemigroups.

Theorem 3.14. Let G = {0, 1}. If (G,⊕) is a commutative groupoid, then (G,⊕)
is a gyrosemigroup if and only if (G,⊕) is a semigroup and for every a, b ∈ G,
gyr[a, b] = A.

Proof. Let for some a, b ∈ G, gyr[a, b] 6= A so gyr[a, b](0) = 1 and gyr[a, b](1) = 0.
Let 0⊕ 1 = 1⊕ 0 = 0, then

1 = gyr[a, b](0) = gyr[a, b](0⊕ 1) = gyr[a, b](0)⊕ gyr[a, b](1) = 1⊕ 0 = 0,

and it is a contradiction. Similarly, 0 ⊕ 1 = 1 ⊕ 0 = 1 makes a contradiction.
Therefore for every a, b ∈ G, gyr[a, b] = A. So, a commutative groupoid of order 2
can not be a gyrosemigroup with any non-trivial gyration. The inverse is clear by
Theorem 3.11 and the proof is complete.

Corollary 3.15. There are 62 commutative non-gyrosemigroup groupoids of order
2 and 2 commutative gyrosemigroups such that 0⊕ 0 = 1⊕ 1 dose not hold.

Theorem 3.16. Let a⊕ a = a⊕ b = a, for every a, b ∈ G = {0, 1}. Then, (G,⊕)
is a gyrosemigroup, for every gyrator of G.

Proof. For every a, b, c ∈ G, we have a ⊕ (b ⊕ c) = a and (a ⊕ b) ⊕ gyr[a, b]c =
a⊕ gyr[a, b]c = a, for every gyr[a, b] ∈ Aut(G).

Corollary 3.17. There are 16 gyrosemigroups of order 2 with a⊕ a = a⊕ b = a.

Theorem 3.18. If (G,⊕) is a gyrosemigroup and a ⊕ b = b′, where b′ = 0 for
b = 1 and b′ = 1 for b = 0, then (G,⊕) is a gyrosemigroup if and only if for every
a, b ∈ G, gyr[a, b] = T.

Proof. For every a, b, c ∈ G,

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c and gyr(a⊕ b, b) = gyr(a, b)⇔ gyr[a, b] = T.

It is noteworthy that the groupoids in the last theorem do not satisfy the
conditions of Theorems 3.12, 3.14 and 3.16.

Corollary 3.19. There are 15 non-gyrosemigroup groupoids of order 2 with 0⊕0 =
1⊕ 0 = 1, 1⊕ 1 = 0⊕ 1 = 0 and one gyrosemigroup with such property.

Theorem 3.20. If 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 0 and 1⊕ 1 = 1 and gyr[a, b] 6= A
then (G,⊕) is not a gyrosemigroup.

Proof. (1) If (a, b) = (0, 0), then 0 ⊕ (0 ⊕ 0) = 0 while (0 ⊕ 0) ⊕ gyr[0, 0]0 =
0⊕ 1 = 1.
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(2) If (a, b) = (0, 1), then 0⊕ (1⊕ 0) = 0 while (0⊕ 1)⊕ gyr[0, 1]0 = 1⊕ 1 = 1.

(3) If (a, b) = (1, 0), then 1⊕ (0⊕ 1) = 1 while (1⊕ 0)⊕ gyr[1, 0]1 = 0⊕ 0 = 0.

(4) If (a, b) = (1, 1), then 1⊕ (1⊕ 0) = 0 while (1⊕ 1)⊕ gyr[1, 1]0 = 1⊕ 1 = 1.

Theorem 3.21. If a ⊕ b = b for every a, b ∈ G = {0, 1}, then (G,⊕) is a
gyrosemigroup if for every a, b ∈ G, gyr[a, b] = A.

Proof. For every a, b, c ∈ G,

c = a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c = gyr[a, b]c,

Thus,

gyr[a, b] = A.

Corollary 3.22. There are 15 non-gyrosemigroup groupoids of order 2 with a⊕b =
b and one gyrosemigroup with such property.

Theorem 3.23. If (G,⊕) is a semigroup of order 2, non-isomorphic to S3, then
the gyrator of every gyrosemigroup on (G,⊕) is the identity function.

Proof. It easy to see that Aut(G,⊕) = {A} so the result follows.

Theorem 3.24. If 0 ⊕ 0 = 1, 0 ⊕ 1 = 1, 1 ⊕ 0 = 0 and 1 ⊕ 1 = 0 then (G,⊕) is
not a gyrosemigroup with any gyrator of G.

Proof. (1) If (a, b) = (0, 0), then 0⊕ (0⊕ 0) = 1 while (0⊕ 0)⊕ gyr[0, 0]0 = 0.

(2) If (a, b) = (0, 1), then 0⊕ (1⊕ 0) = 1 while (0⊕ 1)⊕ gyr[0, 1]0 = 0.

(3) If (a, b) = (1, 0), then 1⊕ (0⊕ 1) = 0 while (1⊕ 0)⊕ gyr[1, 0]1 = 1.

(4) If (a, b) = (1, 1), then 1⊕ (1⊕ 0) = 0 while (1⊕ 1)⊕ gyr[1, 1]0 = 1.

So there is no gyrator such that (G,⊕) is a gyrosemigroup.

Corollary 3.25. There are 16 non-gyrosemigroup groupoids of order 2 with 0⊕0 =
1, 0⊕ 1 = 1, 1⊕ 0 = 0 and 1⊕ 1 = 0.

Theorem 3.26. There are exactly 24 gyrosemigroups of order 2 called GS1, GS2, . . . , GS24,
as shown in Table 4.
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Table 4: All gyrosemigroups of order 2.

GS1

· 0 1
0 0 0
1 0 0

gyr 0 1
0 A A
1 A A

GS2

· 0 1
0 0 0
1 0 1

gyr 0 1
0 A A
1 A A

GS3

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A A
1 A A

GS4

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A A
1 T A

GS5

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A A
1 A T

GS6

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A A
1 T T

GS7

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A A
1 A T

GS8

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A T
1 A T

GS9

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A T
1 T A

GS10

· 0 1
0 0 0
1 1 1

gyr 0 1
0 A T
1 T T

GS11

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T A
1 A A

GS12

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T A
1 A T

GS13

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T A
1 T A

GS14

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T A
1 T T

GS15

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T T
1 A A

GS16

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T T
1 A T

GS17

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T T
1 T A

GS18

· 0 1
0 0 0
1 1 1

gyr 0 1
0 T T
1 T T

GS19

· 0 1
0 0 1
1 0 1

gyr 0 1
0 A A
1 A A

GS20

· 0 1
0 0 1
1 1 0

gyr 0 1
0 A A
1 A A
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GS21

· 0 1
0 0 1
1 1 1

gyr 0 1
0 A A
1 A A

GS22

· 0 1
0 1 0
1 0 1

gyr 0 1
0 A A
1 A A

GS23

· 0 1
0 1 0
1 1 0

gyr 0 1
0 T T
1 T T

GS24

· 0 1
0 1 1
1 1 1

gyr 0 1
0 A A
1 A A

Now, the question arises as to whether some of these gyrosemigroups can be iso-
morphic. To answer the question, we first need to introduce the concept of an
isomorphism in gyrosemigroups.

Definition 3.27. Let (G,⊕) and (G′,⊕′) be two gyrosemigroups. If f : G→ G′

is a groupoid homomorphism such that for every a, b, c ∈ G, gyr′[f(a), f(b)]f(c) =
f(gyr[a, b]c), then f is called a gyrohomomorphism.

If a gyrohomomorphism f is onto and one to one, then we say that f is a
gyroisomorphism. In this case, G and G′ are gyroisomorphic and and we write
G ' G′.

By applying the last definition to the gyrosemigroups of Theorem 3.26, we
conclude the following result.

Theorem 3.28. There are exactly 15 non-gyroisomorphic gyrosemigroups of order
2.

Proof. By Definition 3.27, one can see that GS1 ' GS24, GS2 ' GS21, GS4 '
GS11, GS5 ' GS7, GS6 ' GS15, GS8 ' GS13, GS10 ' GS17, GS14 ' GS16,
GS20 ' GS22 and the result follows.

Remark 1. The isomorphism between GS4 and GS11, shows that the statement
”if two gyrosemigroups with the same groupoid are gyroisomorphic, then the gy-
rators of them are the same” is not necessarily true.

4. Gyromonoids and gyrosemigroups with zero

Let S be a semigroup. If there exists an element 1 of S such that for all s ∈
S, s ⊕ 1 = 1 ⊕ s = s, then 1 is called an identity of S and such S is a called
monoid.

Assume (S,⊕) is not a monoid. Then we can add an extra element 1 to the
set S to obtain a monoid (S ∪ {1},⊕) with the following data,

(1) for all s ∈ S, 1⊕ s = s⊕ 1 = s,

(2) 1⊕ 1 = 1,
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We denote this monoid by S1.
Let G be a gyrosemigroup. If there exists an element e of G such that for all

a ∈ G, a ⊕ e = e ⊕ a = a, we say that e is an identity (element) of G and such
G is a gyrosemigroup with identity, or a gyromonoid. Similar to the semigroups,
gyrosemigroups have at most one identity.

Theorem 4.29. Let (G,⊕) be a gyrosemigroup with no identity and for every
a ∈ G, gyr[a, a] = A, where A is the identity automorphism. Set G1 = G ∪ {e}
and define (G1,⊕′) with the following data,

(1) e⊕′ a = a⊕′ e = a, for all a ∈ G,

(2) e⊕′ e = e and a⊕′ b = a⊕ b, for all a, b ∈ G,

(3) gyr′[e, a] = gyr′[a, e] = A, for all a ∈ G,

(4) gyr′[e, e] = A,

(5) gyr′[a, b]c = gyr[a, b]c and gyr′[a, b]e = e, for all a, b, c ∈ G.

Then (G1,⊕′) with gyr′ becomes a gyrosemigroup with the identity element e.

Proof. First, we prove the gyroassociativity law. For all a, b ∈ G we have

(1) e⊕′ (a⊕′ b) = a⊕′ b and (e⊕′ a)⊕′ gyr′[e, a]b = a⊕′ b.

(2) a⊕′ (e⊕ b) = a⊕ b and (a⊕′ e)⊕′ gyr′[a, e]b = a⊕′ b.

(3) a⊕′ (b⊕′ e) = a⊕′ b and (a⊕′ b)⊕′ gyr′[a, b]e = a⊕′ b.

(4) e⊕′ (e⊕′ a) = a and (e⊕′ e)⊕′ gyr′[e, e]a = a.

(5) a⊕′ (b⊕′ c) = (a⊕′ b)⊕′ gyr[a, b]c = (a⊕′ b)⊕′ gyr′[a, b]c.

Now, note that for all a, b ∈ G, we have gyr′[a, e] = A = gyr′[a⊕′ e, e], gyr′[e, a] =
A = gyr′[e⊕′ a, a] and gyr′[a, b] = gyr[a, b] = gyr[a⊕ b, b] = gyr′[a⊕′ b, b] and the
proof is complete.

We say that S is a semigroup with zero, if there exists an element 0 ∈ S
(it is called zero) such that for all s ∈ S, s ⊕ 0 = 0 ⊕ s = 0. If S has no zero
element, then we can add an extra element 0 to the set S. Then we define for
every s ∈ S, 0⊕ s = s⊕ 0 = 0, and 0⊕ 0 = 0. Hence S ∪{0} becomes a semigroup
with zero element 0. We shall consistently use the notation S0 (semigroup obtained
from S by adding a zero) with the following definition:

S0 =

{
S, if S has a zero element 0,
S ∪ {0}, otherwise.

Let G be a gyrosemigroup. If there exists an element 0 of G such that for all
a ∈ G, a⊕ 0 = 0⊕ a = 0, we say that 0 is a zero (element) of G and such G is a
gyrosemigroup with a zero.
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Theorem 4.30. Let (G,⊕) be a gyrosemigroup with no zero element and for every
a ∈ G, gyr[a, a] = A, where A is the identity automorphism. Set G0 = G ∪ {0}
and define (G0,⊕′) with the following data,

(1) 0⊕′ a = a⊕′ 0 = 0, for all a ∈ G,

(2) 0⊕ 0 = 0 and a⊕′ b = a⊕ b, for all a, b ∈ G,

(3) gyr′[0, a] = gyr′[a, 0] = A, for all a ∈ G,

(4) gyr′[0, 0] = A,

(5) gyr′[a, b]c = gyr[a, b]c and gyr′[a, b]0 = 0, for all a, b, c ∈ G.

Then (G0,⊕′) with gyr′ becomes a gyrosemigroup with the zero element 0.

Proof. First, we prove the gyroassociativity law.

(1) 0⊕ (a⊕′ b) = a⊕′ b and (0⊕′ a)⊕′ gyr′[0, a]b = a⊕′ b.

(2) a⊕′ (0⊕′ b) = a⊕′ b and (a⊕′ 0)⊕′ gyr′[a, 0]b = a⊕′ b.

(3) a⊕′ (b⊕′ 0) = a⊕′ b and (a⊕′ b)⊕′ gyr′[a, b]0 = a⊕′ b.

(4) 0⊕′ (0⊕′ a) = a and (0⊕′ 0)⊕′ gyr′[0, 0]a = a.

(5) a⊕′ (b⊕′ c) = (a⊕′ b)⊕′ gyr[a, b]c = (a⊕′ b)⊕′ gyr′[a, b]c.

Now, note that for every a, b ∈ G, gyr′[a, 0] = A = gyr′[a⊕′ 0, 0], gyr′[0, a] = A =
gyr′[0⊕′ a, a] and gyr′[a, b] = gyr[a, b] = gyr[a⊕b, b] = gyr′[a⊕′ b, b] and the proof
is complete.
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