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Abstract

The Randić matrix R = [rij ] of a graph G = (V,E) was defined as
rij = 1√

didj
if vertices vi and vj are adjacent and rij = 0 otherwise, where

di is the degree of the vertex vi ∈ V . In this paper, we define the Randić
matrix of a uniform hypergraph and study some its spectral properties. We
also define the Randić energy of a uniform hypergraph and determine some
upper and lower bound for it.
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1. Introduction

Graph theory has a wide application area in many sciences including chemistry.
The spectral and topological indices of graphs have long been common in chemical
graph theory. One of the most popular graph–spectrum–based quantity is the
graph energy concept that helps in approximation of the total π-electron energy
of alkanes (see [1] and the references therein). Let G be a simple graph with n
vertices and m edges and λ1 ≥ · · · ≥ λn be the eigenvalues of its adjacency matrix,
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the energy of G has been defined as:

E(G) =

n∑
i=1

|λi|,

for the first time in 1978 [2]. Its mathematical examinations has led to the publi-
cation of many papers in this field (see [3–5]).

Then some researchers introduced other types of energy in graphs. The first
candidate for this was the Laplacian energy, that is defined as follows:

LE(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣,
where µ1 ≥ · · · ≥ µn are the eigenvalues of Laplacian matrix of G [6]. Generally, if
M is a square symmetric matrix corresponding to graph G, the associated energy
of G with matrix M is defined as:

EM (G) =

n∑
i=1

∣∣∣∣λi − tr(M)

n

∣∣∣∣,
where λ1, · · · , λn are the eigenvalues of M . Some other energies defined on G
are the signless Laolacian energy [7], normalized Laplacian energy [8] and Randić
energy [9].

Nikiforov in 2007 extended the energy-consept to any matrix [10]. If M is a
n×m matrix then the positive square roots of the eigenvalues of MMT are called
the singular values of M . In this way the energy of M , E(M), was defined as
the sum of its singular values. Note that, if M is a square symmetric real matrix
then its singular values, in turn, equal the absolute value of its eigenvalues and
therefore the new and old definitions are equivalent.

Nikiforov’s definition led to some new energies in the graphs that corresponded
to non-square matrices. The first one was the incidence energy [11], followed by
normalized incidence energy [12], Laplacian incidence energy [13], Randić incidence
energy [14], Randić energy of digraphs [15], etc.

However, unlike the topic of energy of graphs, there is, so far, almost blank for
this topic about hypergraphs, a notion that naturally generalizes that of graphs.
Few articles have been published in this field. In 2020 and 2022 Cardoso et. al.
studied the incidence and the singless Laplacian energies and the adjacency energy
of uniform hypergraphs, respectively[16, 17]. They obtained some bounds for
these energies as functions of maximum degree, Zagreb index and spectral radius.
Then, in 2023, Yalçın introduced the Laplacian energy of uniform hypergraphs
and derived bounds. The bounds depond on pair degree, maximum degree, and
the first Zagreb index for the greatest Laplacian eigenvalue and this energy of
uniform hypergraphs and uniform regular hypergraphs [18]. Recently Sharma et
al. extended the concept of distance energy for hypergraphs and obtained some
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bounds for the distance energy in terms of the determinant of the distance matrix
and the number of vertices of uniform hypergraphs [19].

In this paper, we introduce the Randić matrix and then the Randić energy of
uniform hypergraphs that are the generalizations of those topics on graphs.

2. preliminaries

Here, we present some required concepts of uniform hypergraphs, see [20] for
comprehensive references.

An undirected hypergraphH = (V, E) with vertex set V = {v1, v2, · · · , vn}, and
edge set E = {e1, e2, . . . , em}, in which es ⊂ V for 1 ≤ s ≤ m, is called a k-uniform
hypergraph if |es| = k for 1 ≤ s ≤ m. The order of the hypergraph is n and its
size is m. Let vi, vj be two vertices in H. The degree of vi, which is denoted by di,
is defined by |Ei|, where Ei = {e ∈ E | vi ∈ e}, and the pair-degree of two vertices
vi, vj , which is denoted by dij , is defined by |Eij |, where Eij = {e ∈ E | vi, vj ∈ e}.
The vertex vi is an isolated vertex if di = 0. Vertices vi, vj are called adjacent
and denoted by vi ∼ vj if there exists an edge that contains both of them. The
neighborhood of the vertex vi, denoted by N(vi), is the set of all adjacent vertices
to the vertex vi. A hypergraph is d-regular if all its vertices have the same degree
d. Two different vertices vi and vj are connected to each other if there exists a
sequence of edges (el1 , . . . , elp) such that vi ∈ el1 , vj ∈ elp and els ∩ els+1

6= ∅ for
all s ∈ {1, . . . , p − 1}. A hypergraph is called connected if every pair of distinct
vertices in H is connected.

The tensor representation of the hypergraph was considered initially in [21].
Since the tensor is a multi-dimensional array, we can specify all the connections and
their details in hypergraphs by using it and then it is a more complete represen-
tation for hypergraphs. Recently, due to the simplicity of working with matrices,
hypergraph matrix representation has attracted the attention of researchers. The
adjacency matrix of a k-uniform hypergraph, A = [aij ], was defined in [22] as
follows :

aij =


1

k−1dij , vi ∼ vj ,

0, vi � vj .

In the next section, we will present some information about Randić matrix.

3. Randić matrix

Throughout this article, we let H = (V, E) be a k-uniform hypergraph of order n
and size m. The Randić matrix of H, denoted by R = [rij ], is defined to be a
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matrix with entries

rij =


aij√
didj

, vi ∼ vj ,

0, vi � vj .

By direct matrix multiplication, ifH has no isolated vertices thenR = D− 1
2AD− 1

2 ,
where D = diag(d1, d2, · · · , dn) is the degree matrix of H. This matrix can also be
called weighted adjacency matrix in which the connection between the adjacent
vertices vi, vj is weighted by dij

(k−1)
√
didj

.

The normalized Laplacian and normalized signless Laplacian matrices of H,
denoted by L and Q, respectively, are defined as follows:

Lij =


1, if i = j and di 6= 0,
−aij√
didj

, vi ∼ vj ,
0, otherwise.

and

Qij =


1, if i = j and di 6= 0,
aij√
didj

, vi ∼ vj ,
0, otherwise.

If H has no isolated vertices then L = In − R and Q = In +R, where In is the
unit matrix of order n.

Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the eigenvalues of Randić matrix of H. Some of the
following theorems are motivated by some classical results for graphs.

Lemma 3.1. With the previous assumptions, we have

1)
n∑
i=1

ρi = 0,

2)
n∑
i=1

ρ2
i =

2

(k − 1)2

∑
vi∼vj

d2
ij

didj
.

Proof. 1)
n∑
i=1

ρi = tr(R) = 0.

2)
n∑
i=1

ρ2
i = tr(R2) =

n∑
i=1

[R2]ii =

n∑
i=1

n∑
j=1

rijrji =

n∑
i=1

n∑
j=1

r2
ij

=

n∑
i=1

∑
vj

vi∼vj

a2
ij

didj
=

1

(k − 1)2

n∑
i=1

∑
vj

vi∼vj

d2
ij

didj
=

2

(k − 1)2

∑
vi∼vj

d2
ij

didj
.
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Lemma 3.2. Let H be a k-uniform hypergraph of order n and L be its normalized
Laplacian matrix. If the eigenvalues of L are ordered as λ1 ≤ λ2 ≤ · · · ≤ λn, then
0 ≤ λi ≤ 2 for i = 2 · · · , n and λ1 = 0.

Proof. See Lemma 1.7 in [23]. The proof is also valid for uniform hypergraphs
with minor modifications.

Theorem 3.3. Suppose that the n-vertex uniform hypergraph H has no isolated
vertices. If the eigenvalues of Randić matrix of H are ordered as ρ1 ≥ ρ2 ≥ · · · ≥
ρn, then −1 ≤ ρi ≤ 1 for i = 2 · · · , n and ρ1 = 1.

Proof. Since H has no isolated vertices, then L = In −R. Thus if the eigenvalues
of L are ordered λ1 ≤ λ2 ≤ · · · ≤ λn, then ρi = 1− λi for i = 1 · · · , n. Therefore,
the result follows from Lemma 3.2.

Theorem 3.4. Let A and R be the adjacency and Randić matrices of hypergraph
H, respectively. Then rank(A) = rank(R).

Proof. Let D̃ be a diagonal matrix with diagonal entries d̃ii = min{1, di} for
i = 1, · · · , n. Then R = D̃− 1

2AD̃− 1
2 , and since D̃− 1

2 is nonsingular then the result
is true.

In the following, we present the relationship between the A spectrum and the
R spectrum, in which we use the Sylvester’s law. The Sylvester’s law of interia
is a theorem in matrix algebra about certain properties of the coefficient matrix
of a real quadratic form that remain invariant under a chang of basis. Namely, if
A is a symmetric matrix that defines the quadratic form, and S is any invertible
matrix such that D = SAST is diagonal, then the number of negative elements in
any diagonalization D is always the same, for all such S; and the same goes for
the number of positive elements.

Theorem 3.5. Let H = (V, E) be a k-uniform hypergraph, and A and R be the
adjacency and Randić matrices of H, respectively. Then the number of positive
eigenvalues of A is equal to the number of positive eigenvalues of R. The same
result is also valid for the number of negative eigenvalues.

Proof. SinceR is symmetric then there exist an invertible matrix S1 and a diagonal
matrix Σ such that Σ = S1RST1 . Thus by Sylvester’s law of inertia the number
of positive elements in the diagonal of Σ is always the same, for all such S1, and
the same goes for the number of negative elements [24]. On the other hand, the
number of positive (negative) elements in the diagonal of Σ is equal to the number
of positive (negative) eigenvalues of R. Now we have:

Σ =S1D̃−
1
2AD̃− 1

2ST1

=S2AST2 ,
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where S2 = S1D̃−
1
2 is an invertible matrix. Thus the result follows by Sylvester’s

law of inertia.

Theorem 3.6. Let H = (V, E) be a k-uniform hypergraph, and A and R be
the adjacency and Randić matrices of H, respectively. If H has isolated vertices
then det(R) = det(A) = 0, and if H has no isolated vertices then det(R) =

1
d1···dn det(A).

Proof. If H has isolated vertices then obviously det(R) = det(A) = 0. Now
suppose that H has no isolated vertices then RD = D− 1

2AD 1
2 . Therefore RD and

A are similar and then Spec(RD) = Spec(A), thus

det(A) = det(RD) = (d1 · · · dn)det(R).

Theorem 3.7. Let H = (V, E) be a connected k-uniform hype rgraph of order n
and 1 = ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the eigenvalues of its Randić matrix. Then we
have:

ρ2 − ρn ≤ 2

√√√√( ∑
vi∼vj

a2
ij

didj

)
− n

2(n− 1)
.

Proof. By Lemma 3.1 we have:
n−1∑
l=3

(
(ρ2 − ρl)2 + (ρl − ρn)2

)
+ (ρ2 − ρn)2 ≤

∑
2≤i≤j≤n

(ρi − ρj)2

= (n− 1)

n∑
i=2

ρ2
i −

( n∑
i=2

ρi

)2

= 2(n− 1)
∑
vi∼vj

a2
ij

didj
− n.

Hence,
n−1∑
l=3

(
(ρ2 − ρl)2 + (ρl − ρn)2

)
+ (ρ2 − ρn)2 ≤ 2(n− 1)

∑
vi∼vj

a2
ij

didj
− n.

Now by Jensen’s inequality for the convex function φ(x) = x2, we have:∑n−1
l=3

(
(ρ2 − ρl)2 + (ρl − ρn)2

)
n− 3

=

∑n−1
l=3 φ(ρ2 − ρl)

n− 3
+

∑n−1
l=3 φ(ρl − ρn)

n− 3

≥ φ
(∑n−1

l=3 ρ2 − ρl
n− 3

)
+ φ

(∑n−1
l=3 ρl − ρn
n− 3

)
≥ 2φ

(∑n−1
l=3 ρ2−ρl
n−3 +

∑n−1
l=3 ρl−ρn
n−3

2

)
=

(ρ2 − ρn)2

2
.
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Thus,

n−1∑
l=3

(
(ρ2 − ρl)2 + (ρl − ρn)2

)
≥ n− 3

2
(ρ2 − ρn)2,

and

2(n− 1)
∑
vi∼vj

a2
ij

didj
− n ≥ n− 3

2
(ρ2 − ρn)2 + (ρ2 − ρn)2

=
n− 1

2
(ρ2 − ρn)2 ≥ 0.

Therefore,

ρ2 − ρn ≤ 2

√√√√( ∑
vi∼vj

a2
ij

didj

)
− n

2(n− 1)
.

In the following we study the Randić matrix of two special classes of hyper-
graphs.

Definition 3.8. Let Kkn = (V, E) be a k-uniform hypergraph with n vertices. We
call it complete hypergraph if E consists of all possible edges; in other words, every
k distinct vertices form an edge.

Lemma 3.9. Let Kkn = (V, E) be a complete k-uniform hypergraph with n vertices
and let R(Kkn) be the Randić matrix of Kkn. Then we have:

[R(Kkn)]ij =


0, if i = j,

1
n−1 , otherwise.

and thus Spec
(
R(Kkn)

)
=
{

1, −1
n−1

(n−1)}.
Proof. Let vi, vj be two arbitrary vertices in Kkn. It is easy to see that di =

(
n−1
k−1

)
and dij =

(
n−2
k−2

)
. Then by straightforward calculations the result follows.

Lemma 3.9 is interesting from this point of view that the Randić matrix of
a complete k-uniform hypergraph Kkn is the same as the Randić matrix of the
complete graph Kn and it does not depend on k.

Definition 3.10. Let Skm = (V, E) be a k-uniform hypergraph andm be a positive
integer. We call it a hyper-star of size m, if there exists a disjoint partition of the
vertex set V as V = V1 ∪V2 ∪ · · · ∪ Vm, such that |V1| = 1 and |V2| = · · · = |Vm| =
k − 1 and E = {V1 ∪ Vi | 2 ≤ i ≤ m}. The vertex v ∈ V1 is called the heart of Skm.
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It is clear that n := |V| = m(k − 1) + 1. In the following we determine the
spectrum of the Randić matrix of Skm.

By straightforward calculations, we have the following lemma.

Lemma 3.11. Let H = (V, E) be a k-uniform hypergraph of order n with Randić
matrix R. If x ∈ Rn then

(Rx)i =
1

k − 1

∑
e∈Ei

∑
j∈e\{vi}

xj√
didj

.

Lemma 3.12. Let H = (V, E) be a k-uniform hypergraph of order n with Randić
matrix R. Suppose that u, v ∈ V such that Eu = Ev. If (λ,x) is an eigenpair of
R and λ 6= −1

k−1 then xu = xv.

Proof. By Lemma 3.11 we have:

λxu =
1

k − 1

∑
e∈Eu

∑
vj∈e\{u}

xj√
dudj

.

Thus,

(λ+
1

k − 1
)xu =

1

k − 1

∑
e∈Eu

∑
vj∈e

xj√
dudj

=
1

k − 1

∑
e∈Ev

∑
vj∈e

xj√
dvdj

= (λ+
1

k − 1
)xv.

Since λ 6= −1
k−1 , the result follows.

Theorem 3.13. Let Skm = (V, E) be a hyperstar and R be the Randić matrix of
it, then we have:

Spec(R) =

{
1, λ0,

(
1− 1

k − 1

)n−1

,

(
−1

k − 1

)n(k−2)
}
,

where λ0 6= 1 is the root of (k − 1)λ2 + (2− k)λ− 1 = 0 .

Proof. Let v1 be the heart of Skm, therefore dv1
= m and dv = 1 for v ∈ V distinct

from v1. Suppose that E = {ej | ej = {v1, v
j
1, v

j
2, · · · , v

j
k−1} & j = 1, · · · ,m}.

If (λ,x) is an eigenpair of R then by Lemma 3.11, for j = 1, · · · ,m and i =
1, · · · , k − 1 we have:

λxvji
=

1

k − 1
(
xv1√
m

+ xvj1
+ · · ·+ xvji−1

+ xvji+1
+ · · ·+ xvjk−1

).
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Thus,

λxvji
+

1

k − 1
xvji

=
1

k − 1
(
xv1√
m

+ xvj1
+ · · ·+ xvjk−1

).

Therefore,

(λ+
1

k − 1
)xvji

=
1

k − 1
(
xv1√
m

+ xvj1
+ · · ·+ xvjk−1

).

There are two cases:

I. If λ = −1
k−1 , then there are linearly independent eigenvectors Xi, for i =

1, · · · , (k − 2)m, associated with λ = −1
k−1 , such that

Xi =


0
x1

x2

...
xm

 ,
where for j = 1, · · · ,m,

xj =

 xj1
...
xjk−1

 ,
and xj1 = 1 and xji = −1 and xjl = 0 for l ∈ ej \ {vj1, v

j
i }.

II. If λ 6= −1
k−1 , then by Lemma 3.12, xvj1 = · · · = xvjk−1

, for j = 1, · · · ,m. Thus
we have:

xv1 = (k − 1)
√
m(λ+

1

k − 1
− 1)xv1

1
,

...

xv1 = (k − 1)
√
m(λ+

1

k − 1
− 1)xvm1

λxv1
=

1

(k − 1)
√
m

m∑
j=1

(k − 1)xvj1
.

Now there are two cases:

IIA. If λ 6= 1− 1
k−1 , then xv1

1
= · · · = xvm1 , thus:

xv1 = (k − 1)
√
m

(
λ+

1

k − 1
− 1

)
xv1

1
,

λxv1
=
√
mxv1

1
.
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So,

λ(k − 1)
√
m(λ+

1

k − 1
− 1)xv1

1
=
√
mxv1

1
,

and since xv1
1
6= 0

(k − 1)λ2 + (2− k)λ− 1 = 0.

It is clear that the roots of above equation are λ = 1 and λ0 6= 1.

IIB. If λ = 1− 1
k−1 ,then there are linearly independent eigenvectors Xi, for

i = 1, · · · ,m− 1, associated with λ = 1− 1
k−1 , such that

Xi =


0
x1

x2

...
xm

 ,

where for j = 1 · · · ,m,

xj =

 xj1
...
xjk−1

 ,
and x1 = 1 and xi = −1 and xj = 0 for j 6= 1, i. This completes the proof.

4. Randić energy
Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the eigenvalues of R. Randić energy of the hypergraph
H is defined as

RE(H) =

n∑
i=1

|ρi|. (1)

Lemma 4.1. Let ρ1 ≥ · · · ≥ ρt be the nonnegative eigenvalues of R, then
RE(H) = 2

∑t
i=1 ρi.

Proof. We have
∑n
i=1 ρi = 0, therefore

∑t
i=1 ρi = −

∑n
i=t+1 ρi and thus RE(H) =

2
∑t
i=1 ρi.

In [25] the clique multigraph, C(H) = (V, E), was associated with a k-uniform
hypergraph H = (V, E). The clique multigraph C(H), is obtained by transforming
the vertices of H in its vertices. The number of edges between two vertices of this
multigraph is equal the number of hyperedges containing them in H. For more
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details see [17, 25]. It is easy to see that, A(H) = 1
k−1A(C(H)) and di =

d
C(H)
i

k−1 ,

where dC(H)
i is the degree of vertex vi ∈ V in the multigraph C(H). We also have:

∑
vi∼vj

a2
ij

didj
=
∑
vi∼vj

d2
ij

(k−1)2

d
C(H)
i d

C(H)
j

(k−1)2

=
∑
vi∼vj

d2
ij

d
C(H)
i d

C(H)
j

=
∑
vi∼vj

(a
C(H)
ij )2

d
C(H)
i d

C(H)
j

, (2)

We can refer to
∑
vi∼vj

(a
C(H)
ij )2

d
C(H)
i d

C(H)
j

as a special case of general Randić index of

the C(H) for α = −1, in other words R−1(C(H)) :=
∑
vi∼vj

(a
C(H)
ij )2

d
C(H)
i d

C(H)
j

. Randić

index was first defined by Randić in 1975 [26]. Then in 1998, Bollobaś and Erdös
introduced the general Randić index for graph G = (V,E) as:

Rα(G) =
∑
u,v∈V

(dudv)
α, (3)

where α is an arbitrary real number[27]. In 2023 the general Randić was defined
for uniform hypergraph [28].

In the following first we obtain an upper bound for R−1 of a multigraph G
(similar to Theorem(3.2) in [29]) and then obtain an upper bound for R−1(C(H)),
where C(H) is the clique multigraph associated with the hypergraph H.

Theorem 4.2. Let G = (V,E) be a multigraph with a weight-function w that

is defined on each edge vivj ∈ E as w(vivj) =
a2
ij

didj
and let uv be an edge with

minimum weight in G such that du, dv > auv. Then we have

R−1(G− uv) > R−1(G).

Proof. Let Wu =
∑
vi∼u
vi 6=v

w(uvi) and Wv =
∑

vi∼v
vi 6=u

w(uvi). It is easy to see that

Wu ≥ (du − auv)
a2
uv

dudv
,

Wv ≥ (dv − auv)
a2
uv

dudv
.
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Now we have:

R−1(G− uv)−R−1(G)

=
∑
vi∼u
vi 6=v

a2
uvi

(du − auv)dvi
−
∑
vi∼u
vi 6=v

a2
uvi

dudvi

+
∑
vi∼v
vi 6=u

a2
vvi

(dv − auv)dvi
−
∑
vi∼v
vi 6=u

a2
vvi

dvdvi
− a2

uv

dudv

=
du

du − auv
Wu −Wu +

dv
dv − auv

Wv −Wv −
a2
uv

dudv

= Wu(
du

du − auv
− 1) +Wv(

dv
dv − auv

− 1)− a2
uv

dudv

≥ (du − auv)
a2
uv

dudv
(

auv
du − auv

) + (dv − auv)
a2
uv

dudv
(

auv
dv − auv

)− a2
uv

dudv

= 2
a3
uv

dudv
− a2

uv

dudv
=
a2
uv(2auv − 1)

dudv
> 0.

Definition 4.3. Let Sn∆ = (V,E) be a multigraph, and ∆, n be positive integer
numbers. We call it a multistar of size ∆ and order n, if V = {v1, v2, · · · , vn} and
e = v1vi , ∀e ∈ E & i = 2, · · · , n and dv1

= ∆. The vertex v1 is called the heart.

It is clear that in Sn∆, dvi = av1vi for i = 2, · · · , n and
∑n
i=2 av1vi = ∆.

Lemma 4.4. Let Sn∆ = (V,E) be a multistar of size ∆ and order n, then R−1(S∆) =
1.

Proof. By Definition 4.3 we have:

R−1(Sn∆) =

n∑
i=2

a2
v1vi

∆av1vi

=
1

∆

n∑
i=2

av1vi = 1.

Lemma 4.5. Let Sn∆ = (V,E) be a multistar of size ∆ and order n, and let R be
the Randić matrix of it. Then we have:

Spec(R) =

±
√√√√ n∑

i=2

a3
i1

∆
, 0(n−2)

 .



Mathematics Interdisciplinary Research 9 (3) (2024) 269− 288 281

Proof. It is determined by simple calculations that there are linearly independent
eigenvectors Xi ∈ Rn, for i = 3, · · · , n, associated with λ = 0, such that

Xi =


0
1
xi3
...
xin

 ,

where xii =
−a

3
2
21

a
3
2
i1

and xil = 0 for l 6= 2, i.

It is also easy to see that (

√∑n
i=2

a3
i1

∆ ,X) and (

√∑n
i=2

a3
i1

∆ ,Y) are two eigen-

pair of R, where x1 = y1 = 1 and xi = −yi =
a

3
2
i1√
∆
× 1√∑n

i=2

a3
i1
∆

for i = 2, · · · , n.

This completes the proof.

Theorem 4.6. Let G = (V,E) be a multigraph with n vertices. Then we have

R−1(G) ≤ bn
2
c,

with equality if and only if G is composed of n
2 disjoint edges if n is even or is

composed of a multistar of order 2 and n−3
2 disjoint edges if n is odd.

Proof. The result follows by Theorem 4.2 and Lemma 4.4 and similar to the proof
of Theorem 3.2 in [29]. The main idea of the proof is that a multigraph with the
maximum R−1 must contain the maximum number of multistar.

Theorem 4.7. Let H be a k uniform hypergraph with n vertices, and C(H) be the
clique multigraph associated with the hypergraph H. Then we have:

n

2(k − 1)
(
n−1
k−1

) ≤ R−1(C(H)) ≤ n

2(k − 1)
,

with equality on the left if and only if H is a complete k uniform hypergraph. If
n = qk, equality in equality on the right holds if and only if H is composed of q
disjoint hyperedges.

Proof. First we prove the right inequality. According to the structure of C(H), this
multigraph is composed of a number of cliques (of k vertices) that may connect to
each other. Now by Theorem 4.2, R−1 is increased by deletion of an edge uv with
minimum weight in C(H) such that dC(H)

u , d
C(H)
v > a

C(H)
uv . Therefore if C(H) is

composed of disjoint cliques then it has the maximum R−1. Note that in such a
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multigraph it is not possible to remove the edge with the mentioned characteristics,
because it is in contradiction with the definition of C(H). Then we have:

R−1(C(H)) ≤
(
k

2

)
1

(k − 1)2
× n

k
=

n

2(k − 1)
.

Now we prove the left inequality. Let Wu be the sum of weights of the edges
incident with vertex u in C(H), then we have:

Wu ≥
du

du(k − 1)
(
n−1
k−1

) =
1

(k − 1)
(
n−1
k−1

) .
Thus,

R−1(C(H)) =
∑
vi∼vj

(a
C(H)
ij )2

d
C(H)
i d

C(H)
j

=
1

2

∑
u∈V

Wu

≥ 1

2

∑
u∈V

1

(k − 1)
(
n−1
k−1

) =
n

2(k − 1)
(
n−1
k−1

) .
It is clear that equality holds if and only if dC(H)

v = (k− 1)
(
n−1
k−1

)
for any v ∈ V, or

in other words H is a complete hypergraph.

Theorem 4.8. Let H be a k-uniform hypergraph without isolated vertices, then
we have:

n

(k − 1)
(
k−1
n−1

) ≤ RE(H) ≤ n
√

1

k − 1
, (4)

with equality on the left if and only if H = K2
2, and if n = qk, equality holds on

the right if and only if H is composed of q disjoint hyperedges.

Proof. In the proof of right inequality, Using Cauchy-Schwarz inequality and by
Lemma 3.1 we have:

RE(H) =

n∑
i=1

|ρi| ≤

√√√√n

n∑
i=1

ρ2
i =

√√√√2n
∑
vi∼vj

a2
ij

didj

≤
√

2n
n

2(k − 1)
= n

√
1

k − 1
. (5)

The last inequality in (5) follows by Equation(2) and Theorem 4.7. Right equality
holds in (4) if and only if ρ1 = · · · = ρn and H is composed of disjoint hyperedges
in case n = qk (by Theorem 4.7). So the result is valid.



Mathematics Interdisciplinary Research 9 (3) (2024) 269− 288 283

Now we prove the left inequlity. By Theorem 3.3 we have −1 ≤ ρi ≤ 1, for
i = 1, · · · , n, then ρ2

i ≤ |ρi|, for i = 1, · · · , n. Thus

RE(H) =

n∑
i=1

|ρi| ≥
n∑
i=1

ρ2
i = 2

∑
vi∼vj

a2
ij

didj
.

Now by Theorem 4.7, we have RE(H) ≥ n

(k−1)(n−1
k−1)

. The left equality holds in (4)

if and only if |ρi| = 1, for i = 1, · · · , n and H is a complete hypergraph, and by
Lemma 3.9, it is equivalent to H = K2

2.

Lemma 4.9. ([30]). Let M and N be two square matrices, then we have:

E(M +N) ≤ E(M) + E(N).

Theorem 4.10. Let H = (V, E) be a k-uniform hypergraph of order n and A,
R be the adjacency and Randić matrices of H, respectively. Suppose that C =
{v1, · · · , vt} ⊆ V, such that

aij 6= 0 → vi ∈ C or vj ∈ C,

and let N ′i = N(vi) \ {v1, · · · , vi−1}. Then we have :

ER(H) ≤ 2 min
C

√√√√t

t∑
i=1

∑
vj∈N ′i

a3
ij

∆i
,

where ∆i =
∑
vj∈N ′i

aij for i = 1, · · · , t.

Proof. We define symmetric matrices A1, · · · ,At as follows:

a(i)
rs =

 aij , if r = i & s ∈ N ′i ,

0, otherwise,

where i = 1, · · · , t and 1 ≤ r, s ≤ n. We show that A = A1 + · · ·+At.
Suppose that aij 6= 0 and without loss of generality suppose that i < j; by the

assumption vi ∈ C or vj ∈ C. There are two cases:

I . vi ∈ C and vj /∈ C, then it is clear that aij = a
(i)
ij and a(k)

ij = 0 for all k 6= i.

II . vi ∈ C and vj ∈ C, then it is clear that aij = a
(i)
ij and a

(k)
ij = 0 for

all k 6= i. Note that a(j)
ij = 0, since vi ∈ {v1, · · · , vj−1} and then vi /∈

N(vj) \ {v1, · · · , vj−1}.
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Then we have A = A1 + · · · + At, and thus with the notations in the proof of
Theorem 3.4, R = R1 + · · ·+Rt, in which Rl = D̃− 1

2AlD̃−
1
2 for l = 1, · · · , t.

Now by Lemma 4.9, ER(H) ≤ E(R1) + · · · + E(Rt). On the other hand

by Lemma 4.5, E(Ri) = 2

√∑
vj∈N ′i

a3
ij

∆i
(note that Ri is the Randić matrix of

the multistar of size ∆i and the heart vi together with some isolated vertices).
Therefore by using Cauchy-Schwarz inequality we have:

ER(H) ≤ 2

√√√√ ∑
vj∈N ′1

a3
1j

∆1
+ · · ·+ 2

√√√√ ∑
vj∈N ′t

a3
tj

∆t

= 2

t∑
i=1

√√√√ ∑
vj∈N ′i

a3
ij

∆i

≤ 2

√√√√t

t∑
i=1

∑
vj∈N ′i

a3
ij

∆i
,

and this completes the proof.

Lemma 4.11. Let ai (1 ≤ i ≤ n) be real numbers and bi (1 ≤ i ≤ n) be non-
negative real numbers such that

∑n
i=1 bi = 1. Then we have:

0 ≤
n∑
i=1

a2
i bi −

( n∑
i=1

aibi
)2 ≤ 1

2
(M −m)

n∑
i=1

bi|ai −
n∑
i=1

aibi|,

where m = min1≤i≤nai and m = max1≤i≤nai.

Proof. See [31].

Theorem 4.12. Let H = (V, E) be a k-uniform hypergraph of order n and 1 =
ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the eigenvalues of its Randić matrix. Then we have:

ER(H) ≥ 2

√√√√∑
vi∼vj

a2
ij

didj
− n

2(n− 1)
.

Proof. By using Lemma 4.11 and setting ai := ρi and bi := 1
n−1 for i = 2, · · · , n,

we have:

1

n− 1

n∑
i=2

ρ2
i −

1

(n− 1)2

( n∑
i=2

ρi
)2 ≤ ρ2 − ρn

2(n− 1)

n∑
i=2

∣∣∣∣∣ρi − 1

n− 1

n∑
i=2

ρi

∣∣∣∣∣.
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Hence,

1

n− 1

2
∑
vi∼vj

a2
ij

didj
− 1

− 1

(n− 1)2
≤ ρ2 − ρn

2(n− 1)

n∑
i=2

∣∣∣∣ρi +
1

n− 1

∣∣∣∣
≤ ρ2 − ρn

2(n− 1)

n∑
i=2

(
|ρi|+

1

n− 1

)
=

ρ2 − ρn
2(n− 1)

ER(H).

Now by Theorem 3.7 and simple calculations we have:

2(n− 1)
∑
vi∼vj

a2
ij

didj
− n ≤ (n− 1)

√√√√∑
vi∼vj

a2
ij

didj
− n

2(n− 1)
ER(H).

Therefore,

ER(H) ≥
2(n− 1)

∑
vi∼vj

a2
ij

didj
− n

(n− 1)

√∑
vi∼vj

a2
ij

didj
− n

2(n−1)

= 2

√√√√∑
vi∼vj

a2
ij

didj
− n

2(n− 1)
.

5. Conclusions
In recent years, the matrix representation of hypergraphs has very much attracted
researcher’s attention. In this paper, we define the Randić matrix of a uniform
hypergraph as a generalization of the Randić matrix of a graph and study some
its spectral properties. We also define the Randić energy of a uniform hypergraph
and determine some upper and lower bounds for it.
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