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Abstract

This study investigates the application of the Haar wavelet method as
an innovative and effective approach for valuing financial derivatives, par-
ticularly cash-or-nothing options. Valuing derivatives is a complex task in
finance, requiring advanced numerical methods that can adapt to various
models and scenarios. Cash-or-nothing options are popular for their sim-
plicity and cost-effectiveness in market speculation and risk hedging, but
their pricing is challenging due to several influencing factors. The study pro-
vides a comprehensive overview of the Haar wavelet method, demonstrating
through numerical examples its precision and stability in option pricing.
Additionally, it examines critical risk parameters, such as delta and gamma,
essential for managing and hedging risks associated with these options.
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1. Introduction
The valuation of options is an essential component of contemporary finance, serv-
ing as a determining factor in investment decision-making, risk management, and
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trading. To estimate the fair value of options, numerous numerical methods have
been devised, ranging from the conventional Black-Scholes model to more sophisti-
cated approaches. The present literature review delves into the numerical methods
and their practical implementations in the domain of option pricing, emphasizing
the use of Haar wavelets in particular. The Black-Scholes model, proposed by
Black and Scholes in 1973 [1], is a notable advancement in the domain of option
pricing as it provides a mathematical equation for determining the value of Euro-
pean options. However, it is crucial to recognize that this method has numerous
limitations, one of which is its assumption of uniform volatility. Researchers have
extended this framework to include intricacies observed in real-life scenarios, lead-
ing to the development of computational techniques like Monte Carlo simulation
[2] and finite difference methods [3, 4].

Binomial tree models, such as the Cox-Ross-Rubinstein model (CRR) [5], are
widely used for pricing American options. These models employ time discretiza-
tion and utilize a tree structure to compute option pricing. Scientists have made
additional improvements to these models in order to address unusual alternatives
and intricate payoffs [6].

The Haar wavelet transform, initially developed for signal processing, has re-
cently gained recognition in the finance industry. The efficient representation of
discontinuities makes it a compelling choice for option pricing. The application
of Haar wavelets in pricing European options and stochastic differential equations
has been studied in [7, 8].

Numerical approaches are essential for options that include intricate features
such as early exercise rights or dividends. The utilization of the Haar wavelet
method has demonstrated potential in effectively accommodating these intricacies.
The use of wavelet-based numerical approaches in finance is growing due to their
ability to capture irregular patterns in financial time series data. Atilla Cifter [9]
utilized wavelet analysis to enhance the precision of implied volatility estimation,
showcasing the promise of wavelets in the fields of risk management and option
pricing. Luis and Oosterlee [10] introduced a method for pricing European options
based on the wavelet approximation method and the characteristic function. They
approximate the density function associated to the underlying asset price process
by a finite combination of jth order B-splines, and recover the coefficients of the
approximation from the characteristic function.

Liu et. al [11] analyzed a nonlinear fractional Black and Scholes model, and
they found the solution by using a numerical method, based on a mixture of
efficient techniques. In particular, they combine (1) the Haar wavelet integration
method which transforms the PDEs into a system of algebraic equations, (2) the
homotopy perturbation method in order to linearize the problem, and (3) the
variational iteration method for fractional option pricing problems. Devendra and
Komal [12] presented a Haar wavelet-based approximation for pricing American
options under linear complementarity formulations. They also proposed [13] a two-
dimensional Haar wavelet-based approximation technique to study the sensitivities
of the price of an option. Other types of wavelets are employed to address diverse
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linear or nonlinear problems. Chebyshev cardinal wavelets [14] have been used to
solve nonlinear Volterra integral equations of the second kind, whereas Legendre
wavelets [15] have been utilized for the fractional order reverse osmosis desalination
model.

2. Options
Options are financial instruments that grant their holders the privilege, without
imposing a duty, to purchase (call option) or sell (put option) a designated un-
derlying asset, such as stocks, commodities, or currencies, at a predefined price
(strike price) during a specified timeframe (expiration date). Options are exten-
sively utilized in financial markets and serve multiple crucial purposes.

Hedging is a key application of options, mostly used for risk management pur-
poses. Options can be utilized by investors and corporations as a means of safe-
guarding their portfolios or assets against unfavorable price fluctuations.

Numerous traders employ options for speculative endeavors. If individuals an-
ticipate an increase in the price of the underlying asset, they may elect to purchase
call options. Conversely, if they anticipate a decrease in price, they may choose to
purchase put options. Speculation in this context enables traders to generate prof-
its from price fluctuations without possessing the underlying asset, hence offering
the advantages of leverage and the potential for increased returns.

Utilizing options can enhance the diversification of investment portfolios. By
incorporating more choices into a collection of conventional assets, investors can
augment risk-adjusted returns and diminish the overall risk of their portfolio.

Options are frequently employed in the commodities market to mitigate the
risk associated with price volatility. Producers and customers can utilize options
to establish fixed prices for future deliveries, guaranteeing consistency in their
financial planning and business activities.

In the subsequent subsections, we assume that the stock price adheres to a
geometric Brownian motion with a consistent drift (µ) and volatility (σ).

dS(t) = µS(t)dτ + σdW (t), (1)

which W (t) is a Brownian motion. In each of the shapes presented in Figure 1,
five sample trajectories of stock prices are illustrated. Various values for drift and
volatility have been taken into account to emphasize the distinctions in the range
of stock price fluctuations across these different scenarios.

2.1 Cash-or-nothing options
A cash-or-nothing option is a binary option that provides a predetermined payout
or no payoff at all when the option expires, depending on the fulfillment of a
certain condition. For a cash-or-nothing option, the condition usually pertains to
the value of the underlying asset.
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Figure 1: Sample pathes of stock price with different values of µ and σ.

Cash-or-nothing options exhibit a binary or "all-or-nothing" payout structure.
At expiration, the option holder will receive a predefined "cash" amount if the
specified condition is met, or nothing if the condition is not met.

The available choices can be derived from a range of underlying assets, such
as equities, foreign exchange (forex), commodities, or indices. The condition for
the payout of the option is frequently linked to the price or performance of the
underlying asset.

There are two main categories of cash-or-nothing options: cash-or-nothing call
options and cash-or-nothing put options.

1. Cash-or-nothing call option: A fixed cash amount is paid out by this type
if, upon expiration, the price of the underlying asset exceeds the strike price.
If the condition is not satisfied (specifically, if the price is equal to or lower
than the strike price), the option holder does not get any compensation.

2. Cash-or-nothing put option: This particular type of option provides a
predetermined cash payout if, upon reaching the expiration date, the price
of the underlying asset is lower than the striking price. If the condition is
not satisfied (specifically, if the price is equal to or higher than the strike
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price), the option holder does not get any compensation.

Cash-or-nothing options possess a pre-established strike price, which acts as the
benchmark for assessing the fulfillment or non-fulfillment of the condition. The
predetermined cash amount, referred to as the "cash" component, is fixed and
independent of the extent of the price disparity between the strike price and the
asset’s price at the end of the contract. Cash-or-nothing options, similar to other
alternatives, possess an expiration date, which signifies the point in time when the
payout for the option holder is determined.

Cash-or-nothing options are characterized by their simplicity and comprehen-
sibility, which contributes to their popularity among traders seeking binary risk-
reward outcomes. An inherent benefit of cash-or-nothing options is that the max-
imum potential loss for a trader is limited to the original price paid for the option.
Unlike typical options, which may lead to endless losses for the buyer, this option
offers a different outcome.

2.1.1 Black-Scholes model for cash-or-nothing options

The Black-Scholes model, alternatively referred to as the Black-Scholes-Merton
(BSM) model, holds significant prominence in contemporary financial theory. This
mathematical equation calculates the theoretical value of derivatives by consider-
ing the influence of time and various risk factors, while also considering other
investment instruments. Created in 1973, it continues to be widely recognized as
one of the most effective methods for determining the price of an options contract.

The payoff of a cash-or-nothing call option at the expiry date is

CCash(S(T ), T ) =

{
A, S(T ) > E,
0, S(T ) < E.

(2)

For a cash-or-nothing put option, the following applies:

PCash(S(T ), T ) =

{
A, S(T ) < E,
0, S(T ) > E.

(3)

In both of the equations mentioned above, the value of A is held constant, and E
represents the striking price.

Define Ccash(S, t) as the value of the cash-or-nothing call option for a given
asset price S and time t. Similarly, let P cash(S, t) represent the value of the cash-
or-nothing put option for the same asset price S and time t. By employing the
hedging argument [16], we may derive the subsequent equations

∂CCash

∂t
+

1

2
σ2S

∂2CCash

∂S2
+ rS

∂CCash

∂S
− rCcash = 0. (4)

The cash-or-nothing call payoff function provides the final time conditions

lim
t→T−

CCash(S, T ) =


A, S > E,
A
2 , S = E,
0, S < E.

(5)
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When the value of S is equal to zero, the asset remains at zero indefinitely, resulting
in a payout of zero. This establishes the boundary condition.

CCash(0, t) = 0, for all 0 ≤ t ≤ T. (6)

For a sufficiently big value of S, the option is highly likely to yield the amount A.
Therefore, after discounting for interest, we determine that

CCash(S, t) ≈ Ae−r(T−t), for large S. (7)

A cash-or-nothing put and a cash-or-nothing call with identical strike prices and
expiry dates can be used in a portfolio to establish a relationship known as cash-
or-nothing put-call parity

CCash(S, t) + PCash(S, t) = Ae−r(T−t). (8)

Figure 2 illustrates the graphical representation of the payoff functions associated
with both call and put options. This depiction offers a comparative analysis of the
potential financial outcomes for investors engaging in these derivative instruments.
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Figure 2: Left: Payoff function for cash-or-nothing call option. Right: Payoff
function for cash-or-nothing put option.

3. Haar Wavelets and function approximation
Haar wavelets are one of the earliest and simplest types of wavelets used in sig-
nal processing and numerical analysis. They were developed by the Hungarian
mathematician Alfréd Haar in the early 20th century[17]. Haar’s work laid the
foundation for wavelet analysis, a mathematical framework that became increas-
ingly important in various scientific and engineering applications.
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In this work, he presented a compact and orthogonal set of functions that later
became known as Haar wavelets. These wavelets were the first known example
of a wavelet basis. Haar wavelets are piecewise constant and piecewise linear
functions. They consist of a mother scaling function (φ) and a mother wavelet
function (ψ) with compact support. The scaling and wavelet functions exhibit
specific localization and orthogonality properties, which make them valuable for
signal processing and solving partial differential equations. One of the key features
of Haar wavelets is their orthogonality. This means that the wavelet functions are
mutually uncorrelated. The orthogonality property simplifies the decomposition
and reconstruction of signals and data, contributing to efficient analysis. The
definition of the Haar scaling function is as follows:

ϕ(x) =

{
1, 0 ≤ x < 1,
0, elsewhere. (9)

This function will precisely define the Haar wavelet as follows:

ψ(x) = ϕ(2x)− ϕ(2x− 1) =

{
1, 0 ≤ x < 1

2 ,
−1, 1

2 ≤ x < 1.
(10)

Let j = 0, 1, 2, . . . , m = 2j , k = 0, 1, 2, . . . ,m − 1 and i = m + k + 1. Put
h1(x) = ϕ(x) and

hi(x) =

 1, α ≤ x < β,
−1, β ≤ x < γ,
0, elsewhere,

(11)

where
α =

k

m
, β =

2k + 1

2m
, γ =

k + 1

m
. (12)

The Haar wavelet family is generated by implementing the previously stated defini-
tions. If f is a square integrable function on the interval [0, 1), it can be expressed
as a linear combination of the Haar wavelet family in the following manner.

f(x) =

∞∑
i=1

aihi(x), (13)

where ai are constants for i = 1, 2, · · · . Assuming that J represents the highest
possible value for j and setting M equal to 2J , we may obtain an estimate for the
square integrable function f on the interval [0, 1) using the following method.

f(x) '
2M∑
i=1

aihi(x). (14)

In the subsequent sections, we employ the following notations to streamline the
calculations.

pi,1(x) =

∫ x

0

hi(t)dt, (15)
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pi,n+1 =

∫ x

0

pi,n(t)dt, n = 1, 2, . . . , (16)

Ci,n =

∫ 1

0

pi,n(x)dx, n = 1, 2, . . . . (17)

The relationships mentioned can be derived using the definition of the Haar wavelet
and conducting initial calculations, as stated in [18].

pi,n(x) =


0, 0 ≤ x < α,
1
n! (x− α)

n, α ≤ x < β,
1
n! [(x− α)

n − 2(x− β)n] , β ≤ x < γ,
1
n! [(x− α)

n − 2(x− β)n + (x− γ)n] , γ ≤ x < 1,

(18)

and

C1,n =
1

(n+ 1)!

[
(x− α)n+1 − 2(x− β)n+1 + (x− γ)n+1

]
, (19)

where n = 1, 2, · · · and i = 2, 3, . . . . For the given scenario when i is equal to 1,
the following statement holds:

p1,n =
xn

n!
, n = 1, 2, . . . , (20)

and

C1,n =
1

(n+ 1)!
, n = 1, 2, . . . . (21)

4. Implementation of the method

The domain of the stock price (spatial domain) in Equation (4) is the interval
[0,∞). To solve this problem using Haar wavelets, we begin by replacing the
semi-finite interval [0,∞) with a finite interval [0, Smax]. The value of Smax must
be chosen carefully to ensure that a satisfactory level of approximation is achieved
for the interval [0, Smax]. In certain research papers, Smax = 4E is commonly
used. Furthermore, we employ the newly introduced variable x = S

Smax
to trans-

form the spatial domain from [0, Smax] to [0, 1], enabling us to effectively utilize
Haar wavelets in addressing the problem. In order to convert the problem from
a backward to a forward time domain, we utilize the variable τ = T − t. By im-
plementing the aforementioned modification of variables to Equation (4), we will
derive the subsequent equations for the cash-or-nothing call option:

− ∂CCash

∂τ
+

1

2
σ2x

∂2CCash

∂x2
+ rx

∂CCash

∂x
− rCcash = 0, τ ∈ [0, T ], x ∈ [0, 1]. (22)
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4.1 Pricing cash-or-nothing options
By using a θ-weighted (0 ≤ θ ≤ 1) approach for the spatial component and utilizing
the forward difference method for the temporal component of Equation (22), we
obtain the following result:

CCashk+1 (x)− θdτ
[
σ2

2
x2CCashk+1,xx(x) + rxCCashk+1,x(x)− rCCashk+1 (x)

]
= CCashk (x) + (1− θ)dτ

[
σ2

2
x2CCashk,xx (x) + rxCCashk,x (x)− rCCashk (x)

]
.(23)

The function CCashk (x) represents the cash value at time τk. The value of τk+1 is
obtained by adding the time step dτ to the current value of τk. Now, calculate an
approximation of the mixed-order derivative using Haar wavelets in the following
manner:

CCashk+1,xx(x) ≈
2M∑
i=1

αihi(x). (24)

By performing calculations using integration and substitution [7], we obtain the
following equations.

CCashk+1,x(x) ≈
2M∑
i=1

αi(pi,1(x)− pi,2(1)) + CCashk+1 (1)− CCashk+1 (0), (25)

CCashk+1 (x) ≈
2M∑
i=1

αi (pi,2(x)− xpi,2(1)) + x
(
CCashk+1 (1)− CCashk+1 (0)

)
+ CCashk+1 (0).

(26)
For the purpose of simplification, we employ the following notations.

CCashk+1,xx(
−→x ) ≈ αk+1H (−→x ), (27)

CCashk+1,x(
−→x ) ≈ αk+1P(−→x ) + ck+1, (28)

CCashk+1 (−→x ) ≈ αk+1Q(−→x ) +−→x ck+1 + dk+1, (29)

where
−→x = [x1 x2 · · · x2M ] , (30)

αk+1 =
[
αk+1
1 αk+1

2 · · · αk+1
2M

]
,

H =
[
h1(
−→x ) h2(

−→x ) · · · h2M (−→x )
]T
,

P =
[
p1,1(
−→x )− p1,2(1) p2,1(

−→x )− p2,2(1) · · · p2M,1(
−→x )− p2M,2(1)

]T
,

Q =
[
p1,2(
−→x )−−→x p1,2(1) p2,2(

−→x )−−→x p2,2(1) · · · p2M,2(
−→x )−−→x p2M,2(1)

]T
,

ck+1 = CCashk+1 (1)− CCashk+1 (0),

dk+1 = CCashk+1 (0).
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By substituting Equations (24), (25), and (26) into Equation (23), using the col-
location points xj = j+0.5

2M and the notations introduced in (27)-(29), we can
construct the following system of algebraic equations:

αk+1G = αkN +R1 −R2, (31)

where

G = (1 + θrdτ)Q − θrdτ−→x P − 1

2
θσ2−→x 2H , (32)

N = [1− (1− θ)rdτ ]Q + (1− θ)rdτ−→x P +
1

2
(1− θ)σ2−→x 2H , (33)

R1 = ck+1−→x + rθdτdk+1 + dk+1, (34)
R2 = ck−→x − (1− θ)rdτdk + dk. (35)

The value of α1 can be readily derived from the following equation.

CCash(0,−→x ) = α1Q +−→x (CCash(0, 1)− CCash(0, 0)) + CCash(0, 0). (36)

5. Numerical examples
To validate the efficacy of the proposed approach, a series of test issues are solved.
We seek to obtain a numerical solution for both the cash-or-nothing call option
and the cash-or-nothing put option, which will serve as two test cases. For com-
parison, each numerical result has been juxtaposed with the precise answer for
each scenario, which is displayed below. The findings demonstrate that the ap-
proach outlined in the research is a remarkably precise and effective one. Given
the significance of option prices when initiating a trade, we have placed particular
emphasis on error-checking during this stage. We performed all computations and
simulations in this paper using Python 3.10.

5.1 Pricing cash-or-nothing call option
The cash-or-nothing call option pricing problem is described by a partial differ-
ential equation, which is accompanied by its corresponding boundary conditions.
The subsequent equations are derived from the variable transformations covered
in the preceding sections.

− CCash
τ +

1

2
σ2xCCash

xx + rxCCash
x − rCcash = 0, τ ∈ [0, T ], x ∈ [0, 1], (37)

CCash(x, T ) =


A, x > E

Smax
,

A
2 , x = E

Smax
,

0, x < E
Smax

,

(38)
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CCash(0, t) = 0, (39)
CCash(1, t) = Ae−r(T−t). (40)

Given Equations (37)-(40) and the values r = 0.03, T = 1, K = A = 100, and
dτ = 0.01, the numerical solutions are depicted in the figures. Figure 3 shows
the numerical solution of this problem based on the Haar wavelets method. As
previously mentioned, the option price at time t = 0 holds significant importance.
Therefore, we will examine the error in the option price at this specific time. In
Figure 4, on the left side, it is observed that when the value of J increases, the
error value decreases rapidly. The errors curves for three distinct values of J are
depicted in this figure. The right side of Figure 4 illustrates the option pricing at
time t = 0 for different values of σ.

Stock Price0 100 200 300 400
Time

0.0
0.2

0.4
0.6

0.8
1.0

Option Price

0
20
40

60

80

100

Figure 3: Plot of the approximate solution for the cash-or-nothing call option
problem.

5.2 Pricing cash-or-nothing put option
Similarly, in the case of a cash-or-nothing put option, we have

− PCash
τ +

1

2
σ2xPCash

xx + rxPCash
x − rP cash = 0, τ ∈ [0, T ], x ∈ [0, 1], (41)
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Figure 4: Left: Error plot at time t = 0 with varying values of J and σ = 0.2.
Right: Exact and approximated pricing of a cash-or-nothing call option at time
t = 0 with varying values of σ.

PCash(x, T ) =


0, x > E

Smax
,

A
2 , x = E

Smax
,

A, x < E
Smax

,

(42)

PCash(0, t) = Ae−r(T−t), (43)
PCash(1, t) = 0. (44)

Figure 5 shows the numerical solution of this problem based on the Haar wavelets
method. In Figure 6, on the left side, it is observed that when the value of J
increases, the error value decreases rapidly. The errors curves for three distinct
values of J are depicted in this diagram. The right side of Figure 6 illustrates the
option pricing at time t = 0 for different values of r.

5.3 The Greeks: Delta and Gamma

Attempting to forecast the price movement of a single option or a complex option
position in response to market fluctuations can be a challenging endeavor. To fully
comprehend the movement in the price of an option and its correlation with the
underlying asset, it is crucial to grasp the contributing elements and their impact.

Option traders frequently use the terms Delta:=
∂C

∂S
(measures the change in

an option’s price resulting from a change in the underlying security), Gamma:=
∂2C

∂S2
( measures the rate of change in the delta for each one-point increase in the

underlying asset), Vega:=
∂C

∂σ
(measures the sensitivity of the price of an option
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Figure 5: Plot of the approximate solution for the cash-or-nothing put option
problem.
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to changes in volatility), and Theta: =
∂C

∂t
(it explains the effect of time on
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the premium of the options purchased or sold) to describe the characteristics of
their option holdings. The Greeks collectively refer to these phrases and provide
a means to quantify the impact of various factors on the price of an option. The
terminology may appear perplexing and daunting to novice option traders, but,
when dissected, the Greeks denote uncomplicated ideas that can enhance one’s
comprehension of the risk and potential gain associated with an option position.

In this section, by employing the methodology utilized in the preceding section,
it is possible to directly acquire two Greek individuals. Once the values of vectors
αk is obtained in Equations (36) and (31), it is simply a matter of substituting
these values into Equations (28) and (27) to determine the Greeks Delta and
Gamma respectively. Figure 7 displays the Delta and Gamma surfaces for the
cash-or-nothing call option. In this figure, we have utilized the following constants:
K = A = 100, r = 0.03, σ = 0.2, T = 1, J = 6 and dτ = 0.001. Delta is a risk met-
ric utilized to approximate the price volatility of a derivative, such as an options
contract, in response to a one-percent change in the underlying security. Addition-
ally, the delta provides options traders with the hedging ratio required to achieve
delta neutrality. The probability of finishing in the money is a third interpretation
of the Delta of an option. Positive or negative delta values are possible, contingent
upon the nature of the option. Gamma, which represents the rate of change in an
option’s Delta for each one-point movement in the price of the underlying asset,
is an option risk metric. As previously stated, Delta indicates the magnitude of
the premium (price) variation in an option in response to a one-point change in
the price of the underlying asset. Consequently, Gamma represents the rate at
which the price of an option reacts to changes in the underlying security price.
As Gamma increases, the volatility in the option’s price also increases. Gamma
is a significant indicator of the degree to which the value of a derivative is convex
in relation to the underlying asset. It is greatest when an option is in the money
and decreases as the option moves further out of the money. Gamma is also great-
est for options approaching their expiration date compared to those with a later
date, assuming all other factors remain constant. It is utilized to determine how
changes in the fundamental asset will impact the value of an option. By employ-
ing Delta-Gamma hedging, an options position is protected from fluctuations in
the underlying asset. At this moment, singularities are possible due to the inher-
itance of the mentioned risk parameters and the discontinuity of the solution at
the expiration date.

6. Conclusions

In this article, we have explored the application of the Haar wavelet method for
pricing cash-or-nothing options, which are a type of binary or digital option that
pays a fixed amount if the underlying asset is above or below a certain level at
maturity. The Haar wavelet method can approximate the functions involved in
the Black-Scholes partial differential equation, which is the standard model for
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Figure 7: Left: Delta surface for the cash-or-nothing call option. Right: Gamma
surface for the cash-or-nothing call option.

option pricing. We have also provided several examples of cash-or-nothing options
and solved them by using the Haar wavelet method. The results have demon-
strated the accuracy and efficiency of the Haar wavelet method in valuing cash-or-
nothing options, as well as its adaptability to different pricing models, such as the
Black-Scholes model and its extensions. The Haar wavelet method is a promising
technique for solving option pricing problems, as it offers several advantages over
other numerical methods, such as simplicity, stability, and scalability. Other types
of options and financial derivatives, such as asset-or-nothing options, barrier op-
tions, and exotic options, can also benefit from the application of the Haar wavelet
method. We hope that this article will inspire further research and development
of the Haar wavelet method and its applications in finance.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

References

[1] F. Black and M. Scholes, The pricing of options and corporate liabilities, J.
Political Econ. 81 (1973) 637− 654.

[2] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer Sci-
ence & Business Media, 2004.

[3] P. Wilmott, Paul Wilmott Introduces Quantitative Finance, John Wiley &
Sons, 2007.

[4] D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial
Differential Equation Approach, John Wiley & Sons, 2013.



330 S. Vahdati et al. / Timeline and Wavelets Method for Pricing Cash...

[5] J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: a simplified ap-
proach, J. Financ. Econ. 7 (1979) 229 − 263, https://doi.org/10.1016/0304-
405X(79)90015-1.

[6] R. Geske and H. E. Johnson, The american put option valued analyti-
cally, J. Finance. 39 (1984) 1511 − 1524, https://doi.org/10.1111/j.1540-
6261.1984.tb04921.x.

[7] S. Vahdati, M. R. Ahmadi Darani and M. R. Ghanei, Haar wavelet-based
valuation method for pricing European options, Comput. Methods Differ. Equ.
11 (2023) 281− 290, https://doi.org/10.22034/CMDE.2022.52027.2177.

[8] S. Vahdati, A wavelet method for stochastic Volterra integral equations and
its application to general stock model, Comput. Methods Differ. Equ. 5 (2017)
170− 188.

[9] A. Cifter, Value-at-risk estimation with wavelet-based extreme value theory:
evidence from emerging markets, Physica A Stat. Mech. Appl. 390 (2011)
2356− 2367, https://doi.org/10.1016/j.physa.2011.02.033.

[10] L. Ortiz-Gracia and C. W. Oosterlee, Robust pricing of European options with
wavelets and the characteristic function, SIAM J. Sci. Comput. 35 (2013)
B1055−B1084, https://doi.org/10.1137/130907288.

[11] L. Meng, M. Kexin, X. Ruyi, S. Mei and C. Cattani, Haar wavelet transform
and variational iteration method for fractional option pricing models, Math.
Methods Appl. Sci. 46 (2023) 8408−8417, https://doi.org/10.1002/mma.8343.

[12] D. Kumar and K. Deswal, Haar-wavelet based approximation for pric-
ing American options under linear complementarity formulations, Nu-
mer. Methods Partial Differential Equations 37 (2021) 1091 − 1111,
https://doi.org/10.1002/num.22568.

[13] D. Kumar and K. Deswal, Two-dimensional Haar wavelet based approx-
imation technique to study the sensitivities of the price of an option,
Numer. Methods Partial Differential Equations 38 (2022) 1195 − 1214,
https://doi.org/10.1002/num.22729.

[14] B. Salehi, L. Torkzadeh and K. Nouri, Chebyshev cardinal wavelets for non-
linear volterra integral equations of the second kind, Math. Interdisc. Res. 7
(2022) 281− 299, https://doi.org/ 10.22052/MIR.2022.243395.1325.

[15] O. Belhamiti and B. Absar, A numerical study of fractional or-
der reverse osmosis desalination model using legendre wavelet
approximation, Iranian J. Math. Chem. 8 (2017) 345 − 364,
https://doi.org/10.22052/IJMC.2017.86494.1289.



Mathematics Interdisciplinary Research 9 (3) (2024) 315− 331 331

[16] D. J. Higham, An Introduction to Financial Option Valuation: Mathematics,
Stochastics and Computation, Cambridge University Press, 2004.

[17] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69
(1910) 331− 371, https://doi.org/10.1007/BF01456326.

[18] S. −u. Islam, I. Aziz and A. S. Al-Fhaid, An improved method based on Haar
wavelets for numerical solution of nonlinear integral and integro-differential
equations of first and higher orders, J. Comput. Appl. Math. 260 (2014) 449−
469, https://doi.org/10.1016/j.cam.2013.10.024.

Saeed Vahdati
Department of Mathematics,
Khansar Campus, University of Isfahan,
Isfahan, I. R. Iran.
e-mail: s.vahdati@khc.ui.ac.ir & sdvahdati@gmail.com

Foad Shokrollahi
Department of Mathematics and Statistics,
University of Vaasa,
P.O. Box 700, Fin-65101 Vaasa, Finland.
e-mail: foad.shokrollahi@uwasa.fi


	Cash-or-nothing options
	Black-Scholes model for cash-or-nothing options 

	Pricing cash-or-nothing put option
	The Greeks: Delta and Gamma

