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Abstract

Consider a graph G = (V (G), E(G)), where a perfect matching in G is
defined as a subset of independent edges with |V (G)|

2
elements. A global

forcing set is a subset S of E such that no two disjoint perfect matchings
of G coincide on it. The minimum cardinality of global forcing sets of G is
called the global forcing number (GFN for short).
This paper addresses the NP-hard problem of determining the global forcing
number for perfect matchings. The focus is on a Genetic Algorithm (GA)
that utilizes binary encoding and standard genetic operators to solve this
problem. The proposed algorithm is implemented on some chemical graphs
to illustrate the validity of the algorithm. The solutions obtained by the GA
are compared with the results from other methods that have been presented
in the literature. The presented algorithm can be applied to various bipartite
graphs, particularly hexagonal systems. Additionally, the results of the GA
improve some results that have already been presented for finding GFN.
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1. Introduction
Matching theory plays a vital role in the connection between Graph Theory and
Chemistry [1, 2]. Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge
set E(G), where |V (G)| = n and |E(G)| = m. A subsetM ⊆ E(G) of non adjacent
edges of G is called a matching of G. A perfect matching in a graph G is a matching
M with |V (G)|

2 elements. A forcing set S of a perfect matching M in graph G is
any subset of M that does not appear in any other perfect matching of G. The
minimum cardinality of the forcing sets ofM is called the forcing number. In earlier
chemical literature, the concepts of perfect matching and the forcing number are
also called the "Kekulé structure" and the "innate degree of freedom", respectively.
These concepts were introduced in a paper by Harary, Klein and Zivković [3], with
their origins traced back to the work of Randić and Klein [4]. The forcing number
of a perfect matching finds resonance structures of a given molecule in organic
chemistry. Note that forcing sets and forcing numbers are defined with respect
to particular perfect matching of G. Vukičević et al. [5] classified all the Kekulé
structures of C60 into six classes based on their innate degree of freedom. However,
there were still considerable different structures among the Kekulé structures with
the same innate degree of freedom. Hence Vukičević and Sedler [2] introduced
the "global" concepts, considering all perfect matchings. They defined the global
forcing set (GFS) of G as a set S ⊆ E(G) that can distinguish all perfect matchings
of G. In other words, let µ(G) denote the set of all perfect matchings in G and
S = {e1, ..., eq} ⊆ E(G). In what follows, we will use notation M |S to denote
M ∩ S. We define r(M |S) = (d1, ..., dq) where di = 1 if ei ∈ M and di = 0
otherwise, i ∈ {1, . . . , q}. If r(M1|S) 6= r(M2|S) for each M1,M2 ∈ µ(G), then S
is termed the global forcing set for perfect matchings of G. Any GFS for µ(G)
in G with the smallest cardinality is called a minimum global forcing set and its
cardinality, denoted by ϕgm , is called the global forcing number (GFN) for perfect
matchings [6].

Example 1.1. Consider the graph Naphthalene (C10H8) shown in Figure 1,
which is an organic compound with two hexagons. Naphthalene contains three
different perfect matchings as follows:
µ(C10H8) = {M1 = {e2, e5, e7, e10, e11},M2 = {e2, e4, e6, e8, e10},M3 = {e1, e3, e5,
e7, e9}}.

The set S1 = {e2, e5, e7} is a GFS for G, since we have: r(M1|S1
) = (1, 1, 1);

r(M2|S1
) = (1, 0, 0); r(M3|S1

) = (0, 1, 1). However S1 is not minimum GFS be-
cause S2 = {e2, e5} is also a GFS with smaller cardinality. In addition, the set
S3 = {e2} is not GFS because r(M1|S3) = r(M2|S3) = 1.

The computation of the GFN for perfect matchings poses a formidable chal-
lenge due to the NP-hard nature of enumerating all perfect matchings, see [7].
Despite this complexity, efforts have been made to find GFN in certain families of
graphs. In [8], Vukičević and Sedler presented a bound on the GFN for the partic-
ular triangular grid graphs. Vukičević et al. [9] obtained a formula for the GFN
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Figure 1: Naphthalene.

of grid graphs. Klavžar et al. [10] proposed an integer programming model for
determining minimum GFS and GFN for perfect matchings of G. Their proposed
model is based on the fact that the GFS should have a non-empty intersection
with the symmetric difference of every pair of perfect matchings in G. Indeed,
the computational applicability of their model is limited since the number of con-
straints of the presented model is huge. In this paper, our focus is on bipartite
graphs, especially hexagonal systems. In the next section, we will discuss further
on the related works.

Although the GFN problem is an NP-hard combinatorial optimization problem
and the size of its solution space can grow with the problem dimension, heuristic
methods can be useful in solving such problems. In this paper, we present a genetic
algorithm that uses the binary encoding for the GFN problem. This algorithm can
be applied to any bipartite graph.

The rest of this paper is organized as follows. In Section 2, we present a
review of some results related to GFN for hexagonal systems and emphasize the
necessity of employing algorithms such as what we propose. In Section 3, we
propose a genetic algorithm for determining the GFN of perfect matchings in a
given bipartite graph. The computational results of the GA implementation on
various chemical graphs are presented in Section 4.

2. Background and some results

Let us now consider the related works on GFN of the hexagonal systems. We refer
the reader to [11, 12] for terminology and notation not defined here. A hexagonal
(benzenoid) system (HS) is a finite connected plane graph with no cut vertices
such that every interior region is a regular hexagon with a side length of one. The
benzenoid graphs are simple and bipartite, see [13, 14]. Let H be an HS. Graph
H is called catacondensed if each vertex of H is on the border of H, otherwise
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the graph is pericondensed. H is said to be normal, if each edge of H appears in
some perfect matching of H. It is clear that all catacondensed HS are normal.
In [11] Došlić et al. proved two results concerning GFN of catacondensed and
pericondensed HS.

Theorem 2.1. ([11]). Let H be a catacondensed benzenoid with f hexagons. Then
ϕgm(H) = f .

Theorem 2.2. ([11]). Let H be a pericondensed benzenoid with f hexagons. Then
ϕgm(H) ≤ f − 1.

Cai and Zhang [15] provided an exact formula for the GFN of two kinds of
pericondensed HS, parallelogram Bp,q and zigzag multiple chain Z(l, k).

Theorem 2.3. ([15]). Let Bp,q be a parallelogram with q rows, each row consisting

of p hexagons. If q ≤ p, then ϕgm(Bp,q) =
pq + q

2
if q is even and ϕgm(Bp,q) =

pq + p

2
otherwise.

Theorem 2.4. ([15]). Let Z(l, k) be zigzag multiple chain with l row and k

columns of hexagons. Then ϕgm(Z(l, k)) = ldk
2
e+ bk

2
c.

Cai and Zhang [12] gave a sharp lower bound on the GFN of a normal HS.
Besides, they presented a formula to find the GFN for a divisible HS.

Theorem 2.5. ([12]). Let H be a normal HS with f hexagons. Then ϕgm(H) ≥

d2f − |S0|
3

e, where S0 is a maximum subset of S such that any two edges of S are
not in a hexagon of H.

Based on the above theorems, there are few results for a pericondensed HS. It
is obvious that according to Theorem 2.2, only the upper bound can be obtained
for the GFN of pericondensed HS, in general. By Theorems 2.3 and 2.4, there
exist exact formulas for the GFN of two kinds of pericondensed HS, parallelogram
Bp,q and zigzag multiple chain Z(l, k). On the other hand, Došlić [11] proved that
the GFN of an HS is equal to the sum of the GFN of its normal component. Hence
it makes sense to achieve the GFN of normal HS. Theorem 2.5 provides a lower
bound for GFN of a normal HS, and the explicit value for GFN is not available.
Hence computing of the GFN for every kind of normal pericondensed HS is a
challenging task. In response to this challenge, our paper presents a genetic algo-
rithm for determining the GFN and minimum GFS of a bipartite graph including
hexagonal systems, in general. We present the results of our algorithm’s perfor-
mance on several normal pericondensed HS which involve, Benzo and Ovalene. In
the present work, we show that the results of our algorithm improve the bounds
for GFN presented in the mentioned theorems. For instance, we implement our
algorithm on two categories of HS to illustrate the process and the validity of the
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algorithm. These categories are some normal pericondensed graphs which includes
perylene, Benzo, coronene and Ovalene on one side, and HS including catacon-
densed, parallelogram, zigzag multiple chain on the other side, see Figures 2 to 4.

Figure 2: Catacondenesed: (a) Phenanthrene(C14H10) (b) Biphenylene(C12H8).

3. Genetic algorithm for the GFN problem
The GFN problem is a well-known NP-hard problem in combinatorial optimiza-
tion, where the size of its solution space exponentially increases with the problem,
see [16]. It is reasonable to seek an approach to solve such problems. One powerful
technique to solve this category of problems is the use of meta-heuristics. Although
meta-heuristic algorithms cannot always guarantee to obtain the true global op-
timal solution, they can provide results for a range of problems in a reasonable
amount of time.

In this section, we employ Genetic Algorithm (GA) as one of the meta-heuristic
tools. The basic steps of GA are described as follows:

1. Evaluation
At each iteration (generation), GA operates on a set of individual solutions

known as a population. Each individual in the population, referred to as a chro-
mosome, represents a potential solution to a given problem, starting from either
randomly or heuristically produced one. The fitness function is applied to rank
individuals and guides the algorithm in selecting candidates during the phase.
Hence a fitness score is assigned to each individual. In our algorithm, we have
considered fitness score as the cardinality of the GFS described by a chromosome.

2. Selection
The selection operator among the population selects the best individual that

has higher fitness scores for the next generation. Here, the selection operator
utilizes the roulette wheel. This selection is a technique to randomly choose parents
for reproduction based on their fitness scores.

3. Crossover
In the crossover stage, two individuals are chosen to be parents for the next

generation and some portions of chromosome are exchanged between the individ-
uals to produce the new chromosomes. There we have single-point crossover. This
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Figure 3: (a) Multiplechain (b) B3,2 (c) Perylene(C20H12) (d) Z(2, 2).

crossover is a technique where the selected two parents, is cut at the crossover
point to create the child.

4. Mutation
By applying the mutation operator, new individuals are created and they re-

place some of the individuals from the current population.
A cycle of the selection, crossover, and mutation forms one iteration in GA.

In this section, we describe a GA algorithm for determining the GFN for perfect
matchings of a given bipartite graph G. The main reason for focusing on bipartite
graphs is that the enumerating of all the perfect matchings in a graph is NP-
hard in general [17]. Fukuda[18] presented a polynomial time algorithm to find
all the perfect matchings for bipartite graph, where the input of this algorithm is
an initial perfect matching of the graph. Thereby, we apply Fukuda’s algorithm
to find all the perfect matchings of the bipartite graph. The details of our GA
implementation are given in Algorithm 1. The binary encoding of the fitness score
of individuals used in presented Algorithm 2. Each solution S (candidate for a
GFS) is presented in the population by a string of length m. Character 1 at the
i-th place of the string shows that edge i belongs to S, while 0 denotes that it
is not. If vectors of r(Mi|S) for all Mi ∈ µ(G) are different, then S is a GFS.
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Figure 4: Normal pericondensed HS: (a) Coronone(C24H12) (b) Benzo(C22H12)
(c) Ovalene(C32H14).

Algorithm 2 is applied in order to determine whether S, current individual by
code ind, is a GFS and if the answer is positive, to reduce its cardinality.

Algorithm 1 GA
1: Generate the initial population of m chromosomes randomly.
2: while number of iterations<Max do
3: fitness evaluation by Fitness-Function.
4: selection based Roulette Wheel selection.
5: crossover based Single-Point crossover.
6: mutation based Swapping.
7: return the GFN of the best solution.
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Algorithm 2 Fitness− Function
1: for solution S, sort all vectors r(Mi|S) for all Mi ∈ µ(G), i = 1, . . . , t accord-

ing to the lexicographically increasing (or decreasing) order in the sequence
r(M1|S), ..., r(Mt|S).

2: for i = 1, ..., t− 1 do
3: find j(i) as the minimal coordinate where the vectors r(Mi|S) and
r(Mi+1|S) are different.

4: end for
5: if for some i, r(Mi|S) = r(Mi+1|S) (S is not a GFS) then choose an additional

edge randomly from E \ S and add to S and go to step 1.
6: determine r = max{j(1), j(2), ..., j(t− 1)} and keep in S the first r elements.

As mentioned in step 5 of Algorithm 2, if the solution S is not a GFS, then
the "reparation" technique is applied: S is updated randomly by adding an edge
from E \S to S, and Algorithm 2 is applied again. This would be iterated until S
becomes a GFS. The cardinality of the final GFS, S, becomes the fitness score for
the current individual. In step 6, r is the maximum of the minimal coordinate j(i)
where the vectors r(Mi|S) and r(Mi+1|S) are different. Thus the vectors r(Mi|S)
for all Mi ∈ µ(G), i = 1, ..., t are different at the first r elements i.e. r is minimum
GFS for the current solution.

4. Experimental results

In this paper, we provide a genetic algorithm for determining the minimum GFS
and GFN for perfect matchings of a bipartite graph G. Oskoueian et al. [19] pre-
sented a hybrid greedy approximation algorithm to find the minimum GFS and
GFN for the perfect matchings of a bipartite graph G. Their algorithm generates
a solution with acceptable approximation ratio. They implemented the proposed
algorithm on several functional chemical graphs and obtained the minimum GFS
and GFN for these graphs. Table 1 compares the results obtained by the GA with
the result of the greedy algorithm (Gd) presented in [19]. The fourth column of
Table 1 contains the best greedy GFN and the fifth column contains the minimum
GFS. It can be seen that for graphs such as Coronone, Benzo, and Ovalene the
generated GFN obtained by GA is better than the generated GFN obtained by
the greedy algorithm. Besides, the mentioned graphs are in the category of nor-
mal pericondensed. For this category of HS, Došlić [11] computed a bound for
the GFN. In Table 1, Ub denotes the upper bound of GFN for pricondensed HS.
Meanwhile, GA gave a better GFN than bound. Also, in Table 1, Ev denotes
the exact value of GFN for catacondensed HS and some pericondensed HS that
is described by Theorems 2.1, 2.3 and 2.4. Observe that the results obtained by
GA match the exact value of GFN for these graphs. In addition, it is important
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to notice that the minimum GFS is not necessarily unique and so the set S ob-
tained by GA may be different from the set S obtained by the greedy algorithm.
Algorithms 1 and 2 has been coded in MATLAB R2019b (Intel(R) Pentium(R)
CPU2117U@1.80GHz). The performance plot of GA for Ovalene are shown in

Table 1: Results on chemical graphs.

Chemical name GAbest SGA Gdbest SGd Ub Ev

Phenanthrene 3 {e9, e10, e14} 3 {e1, e3, e4} - 3
Biphenylene 3 {e9, e11, e14} 3 {e1, e3, e4} - 3

Z(2, 2) 3 {e7, e8, e17} 3 {e3, e12, e13} 3 3
Perylene 4 {e9, e10, e14,

e17}
5 {e1, e2, e3,

e14, e16}
4 -

Multiplechain 5 {e3, e13, e17,
e23, e29}

5 {e1, e4, e17,
e21, e25}

6 5

B3,2 4 {e1, e6, e10,
e19}

4 {e5, e11, e15,
e17}

5 4

Coronone 6 {e5, e11, e15,
e17, e24, e28}

7 {e1, e2, e5,
e8, e9, e17, e20}

6 6

Benzo 5 {e6, e9, e10,
e22, e24}

6 {e1, e2, e6,
e9, e15, e24}

5 -

Ovalene 9 {e3, e9, e15,
e16, e20, e31,
e38, e40}

9 {e1, e6, e7,
e12, e15, e20,
e21, e31, e39}

9 -

Figure 5. The parameters setting of GA in our algorithm are detailed in Table 2.

Table 2: The GA parameters setup.

Parameters Value
Population size 25

Mutation probability 0.3
Number of iteration 100
Crossover probability 0.8

5. Conclusion

The development of the GFS concept in graph theory has been significantly influ-
enced by applications in chemistry. It would be useful to precisely determine the
GFN for perfect matchings in a graph G. However, this is challenging to calculate,
as finding all perfect matchings is generally considered NP-hard. As discussed in
Section 3, there have been efforts to find the GFN for perfect matchings in specific
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Figure 5: Performance plot for Ovalene with 100 generations.

graphs, including hexagonal systems. The algorithm described here can be applied
to various bipartite graphs, particularly hexagonal systems. Additionally, the re-
sults of the genetic algorithm (GA) improve the results presented in the theorems
mentioned in Section 3 for finding the GFN.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

Acknowledgments. Research of the first author, Sara Oskoueian, and the sec-
ond author, Mostafa Tavakoli, supported in part by the Ferdowsi University of
Mashhad.

References

[1] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, John
Wiley & Sons, (2008).

[2] N. Trinajstic, Chemical Graph Theory, CRC press, 2018.

[3] F. Harary, D. J. Klein, and T. P. Živkovič, Graphical properties of polyhexes:
perfect matching vector and forcing, J. Math. Chem. 6 (1991) 295 − 306,
https://doi.org/10.1007/BF01192587.

[4] D. J. Klein and M. Randić, Innate degree of freedom of a graph, J. Comput.
Chem. 8 (1987) 516− 521, https://doi.org/10.1002/jcc.540080432.



Mathematics Interdisciplinary Research 9 (4) (2024) 413− 424 423

[5] D. Vukičević and M. Randić, On kekulé structures of buck-
minsterfullerene, Chem. Phys. lett. 401 (2005) 446 − 450,
https://doi.org/10.1016/j.cplett.2004.11.098.

[6] D. Vukičević, S. Zhao, J. Sedlar, S.-J. Xu and T. Došlić, Global forc-
ing number for maximal matchings, Discrete Math. 341 (2018) 801 − 809,
https://doi.org/10.1016/j.disc.2017.12.002.

[7] L. Lovász and M. D. Plummer, Matching Theory, American Mathematical
Soc. 367 2009.

[8] D. Vukičević and J. Sedlar, Total forcing number of the triangular grid, Math.
Commun. 9 (2004) 169− 179.

[9] D. Vukicevic and T. Došlić, Global forcing number of grid graphs, Australas.
J. Combin. 38 (2007) 47− 62.

[10] S. Klavžar, M. Tavakoli and G. Abrishami, Global forcing number for maxi-
mal matchings in corona products, Aequationes Math. 96 (2022) 997− 1005,
https://doi.org/10.1007/s00010-022-00869-3.

[11] T. Došlić, Global forcing number of benzenoid graphs, J. Math. Chem. 41
(2007) 217− 229, https://doi.org/10.1007/s10910-006-9056-2.

[12] H. Zhang and J. Cai, On the global forcing number of hexag-
onal systems, Discrete Appl. Math. 162 (2014) 334 − 347,
https://doi.org/10.1016/j.dam.2013.08.020.

[13] M. Sinan Oz and I. Naci Cangul, Computing the Hosoya and the Merrifield-
Simmons indices of two special benzenoid systems, Iranian J. Math. Chem.
12 (2021) 161− 174, https://doi.org/10.22052/IJMC.2021.243008.1580.

[14] Z. Yarahmadi, A note on the first geometric-arithmetic index of hexago-
nal systems and phenylenes, Iranian J. Math. Chem. 2 (2011) 101 − 108,
https://doi.org/10.22052/IJMC.2011.5217.

[15] J. Cai and H. Zhang, Global forcing number of some chemical graphs, MATCH
Commun. Math. Comput. Chem. 67 (2012) 289− 312.

[16] P. Adams, M. Mahdian and E. S. Mahmoodian, On the forced match-
ing numbers of bipartite graphs, Discrete Math. 281 (2004) 1 − 12,
https://doi.org/10.1016/j.disc.2002.10.002.

[17] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM
J. Comput. 8 (1979) 410− 421, https://doi.org/10.1137/0208032.

[18] K. Fukuda and T. Matsui, Finding all the perfect matchings in bipartite
graphs, Appl. Math. Lett. 7 (1994) 15 − 18, https://doi.org/10.1016/0893-
9659(94)90045-0.



424 S. Oskoueian et al. /Genetic Algorithm for Finding the Global ...

[19] S. Oskoueian, M. Tavakoli and N. Sabeghi, Finding the minimum global forc-
ing set for maximal and perfect matchings using a greedy algorithm, Submit-
ted.

Sara Oskoueian
Department of Applied Mathematics,
Faculty of Mathematical Sciences,
Ferdowsi University of Mashhad,
Mashhad, I. R. Iran
e-mail: sara.oskoueian@hotmail.com

Mostafa Tavakoli
Department of Applied Mathematics,
Faculty of Mathematical Sciences,
Ferdowsi University of Mashhad,
Mashhad, I. R. Iran
e-mail: m_tavakoli@um.ac.ir

Narjes Sabeghi
Department of Mathematics,
Faculty of Basic Sciences,
Velayat University,
Iranshahr, I. R. Iran
e-mail: sabeghinarjes@gmail.com


