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Abstract

New definitions employing the golden ratio as the characteristic param-
eter are proposed. The definitions are classified into two categories: Geo-
metrical and Physical properties. In the first category, the golden ratio tree
is defined, and its properties are discussed through theorems. Then, decay-
ing and growing type golden ratio spirals are proposed and discussed. The
equation producing the golden ratio heart in the analytical two-dimensional
space is given. Regarding the second category, the golden ratio ball is de-
fined with respect to collisions with the ground and the collision coefficient
is determined. Golden ratio damping is another new definition in which the
dimensionless damped parameter is determined in terms of the golden ratio.
Theorems are posed and proven regarding the properties of the definitions.
Numerical solutions in the form of plots are given when necessary.
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1. Introduction

The ratio of the successive terms converges to the golden ratio as the number of
terms increases in a Fibonacci sequence. The golden ratio is encountered in nature
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frequently [1]. It is used in the arts frequently to produce more aesthetic geome-
tries. The golden ratio penetrated into our daily lives, for example, in fashion
designs of bags, scarves, and small accessories [2]. To produce more beautiful and
harmonic forms, the golden ratio and the Fibonacci sequence have been success-
fully implemented in the design of Ladies’ clothing [3]. The Fibonacci sequence
and the golden ratio are employed in textile design [4]. The beauty of the golden
spiral to Fibonacci spiral was compared from the perception point of view of atten-
dees of the experiment. The curvature of the golden spiral changes continuously,
whereas that of the Fibonacci spiral is discontinuous and %80 of the participants
preferred the golden spiral [5]. Various spirals including, the golden and Fibonacci
spirals, are discussed in detail [6]. With inspiration from the discrete relation of
Fibonacci sequences, a continuous differential equation has been derived that pro-
duces special spirals [7]. Golden fractal trees are mathematically investigated in
detail [8].

Due to the importance and wide usage of the golden ratio, in this work, new
definitions are proposed related to this ratio. The definitions are classified under
two general categories: 1) Geometrical definitions, 2) Physical property definitions.
Under the former category, a golden ratio tree is proposed first. It is somewhat
different from the ones proposed in the literature [8, 9] in the sense that the trunk
and branches of the tree possess diameters, not represented by one-dimensional
lines. It is shown that while the total length of all branches is infinity, the volume
of the tree is finite. The total distance travelled by a liquid drop starting from
the trunk and selecting one of the branches at each bifurcation point is also finite.
Golden ratio spirals are defined next. The spirals may be growing (the distance
to the origin increases with counterclockwise rotation) or decaying (the distance
to the origin decreases with counterclockwise rotation). For a detailed analysis of
various types of spirals, including more general types than proposed here, see [6].
The curvature of the spiral is continuously increasing/decreasing, which makes it
more aesthetic compared to the traditional Fibonacci spiral, which possesses con-
stant curvatures at each 900 of rotation [5]. Finally, an algebraic equation of a
single parameter, being the golden ratio is presented to draw the two-dimensional
heart. There are numerous heart equations resembling the shape of the heart,
which can be traced in an internet search. The one-parameter golden ratio heart
equation is, however, unique to this work and was not reported before. Under the
second category, the golden ratio ball is defined first. Using the definition, the
elastic coefficient, the total distance and the time until the ball reaches its static
position after bouncing indefinitely from free fall are given. For linear oscillatory
systems, golden ratio damping is proposed and the dimensionless damping ratio is
expressed in terms of the golden ratio based on the definition. It is shown that the
system is lightly damped. While similar definitions, if not exactly the same, can
be traced in the literature for the first category, the second category definitions
are original, and similar definitions do not exist in the literature.
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Table 1: The Fibonacci Sequence.
F 0 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13

0 1 1 2 3 5 8 13 21 34 55 89 144 233

2. Preliminaries
The preliminary knowledge about the Fibonacci sequence and its properties is
given in this section [10]. The Fibonacci sequence is calculated by the difference
equation

Fj+2 = Fj+1 + Fj , j = 0, 1, 2 . . . , (1)

with F 0=0 and F 1=1 and the first 14 terms are listed in Table 1. In the sequence,
each term is the sum of the previous two terms.

The difference equation can be solved by assuming a solution Fn = rn. Insert-
ing into (1) and simplifying yields

r2 − r − 1 = 0. (2)

The solution is

r1,2 =
1∓
√
5

2
. (3)

Hence, the general solution of the difference equation is

Fn = c1

(
1 +
√
5

2

)n
+ c2

(
1−
√
5

2

)n
. (4)

Applying the initial conditions F0 = 0 and F1 = 1, the coefficients are c1 = 1/
√
5,

c2 = −1/
√
5. Hence a direct formula to calculate the terms in a Fibonacci sequence

is derived

Fn =
1√
5

((
1 +
√
5

2

)n
−

(
1−
√
5

2

)n)
. (5)

Despite the irrational numbers in the formula, the results are always integers. If
one calculates the limit of the ratio as the terms get larger

lim
n→∞

Fn+1

Fn
=

1 +
√
5

2
∼= 1.6180339887, (6)

where ϕ = 1+
√
5

2 is called the Golden Ratio. This ratio has long been considered
as a measure of aesthetics in arts and architecture. The ratio was identified in the
structure of cosmic objects as well as in nature, such as seashells, vegetables, the
human body, the orientation of leaves, etc. The n-th power of the Golden ratio
can always be expressed as a linear function of itself

ϕn = Fnϕ+ Fn−1 n = 1, 2, 3, . . . (7)
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Another important property of the Golden ratio is that
1

ϕ
= ϕ− 1, (8)

as can be verified from Equation (2).

3. Geometrical definitions
Some new geometrical definitions are given in this section. Similar results, al-
though not exactly the same, can be retrieved from the literature.

3.1. Golden ratio tree
Golden ratio tree is defined in two-dimensional space as a tree having trunk with
length L and diameter D. The trunk bifurcates into two branches with each of them
having length L/ϕ and diamerer D/ ϕ, where ϕ = 1+

√
5

2
∼= 1.618034 is the famous

golden ratio which is the ratio achieved when limn→∞
Fn+1

Fn
with Fn representing

the n-th Fibonacci number. The bifurcation angle is 360
1+ϕ

∼= 137.5. The tree is
obtained by repeating the process up to infinity (Figure 1), and its properties are
summarized in the following definition:

Definition 3.1. The golden ratio tree is a slender tree with a specified trunk
length and diameter that bifurcates into two branches at the ends at each step up
to infinity. The length and diameter are reduced by the golden ratio after each
bifurcation with constant bifurcation angles 137.50 between the branches

A line version of the tree exists in the literature in which the diameters of all
branches are zero, but the bifurcation angles vary [9]. In fact, the tree possesses a
fractal geometry, which is a special case of the Mandelbrot fractal trees. Fractal
geometries are geometries that repeat themselves on different geometric scales.
Any small portion of the proposed golden ratio tree when magnified will resemble
the shape of the original tree. Within the specific contraction ratios 1

ϕ = 0.618034

and angles 137.50, the branches are avoiding type that is no branch intersects with
each other [8]. Although the analysis was presented in [8] for no thickness in the
branches, for sufficiently small slenderness ratios of DL � 1, theoretical results of
[8] will also apply to our case.

Assuming a liquid drop entering to the trunk from the roots of the tree, when
the fluid reaches the far end of one of the branches of the infinite tree, the total
distance travelled by the drop would be finite as stated by the following theorem.

Theorem 3.2. The liquid drop entering the trunk and reaching the far end of one
of the branches must travel a finite route of length

LT = L(1 + ϕ), (9)

subject to the condition that it does not split into parts during the travel.
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Figure 1: Golden Ratio Tree.

Proof. Add the total lengths travelled by the tiny drop

LT = L+
L

ϕ
+

L

ϕ2
+ · · · = L

(
1 +

1

ϕ
+

1

ϕ2
+ . . .

)
= L

1

1− 1
ϕ

= L
ϕ

ϕ− 1
= Lϕ2 = L(ϕ+ 1).

In the calculations, the properties 1
ϕ = ϕ− 1 and ϕ2 = ϕ+ 1 given in (7) and (8)

are used as can be verified numerically. Therefore, the total distance travelled is
approximately 2.618L

Theorem 3.3. The total length of the tree including the trunk and all branches
is infinite

Proof. Add the total length of the trunk and all branches

LT = L+ 2
L

ϕ
+ 22

L

ϕ2
+ · · · = L

(
1 +

2

ϕ
+

(
2

ϕ

)2

+ . . .

)

= L lim
n→∞

1−
(

2
ϕ

)n+1

1− 2
ϕ

=∞,

since for the geometric series, the ratio 2
ϕ > 1

Theorem 3.4. The total volume of the tree including the trunk and all branches
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is finite and equal to

VT =
πD2

4
L
2ϕ+ 1

2ϕ− 1
. (10)

Proof. Add the total volume of the trunk and all branches

VT =
πD2

4
L+

πD2

4
L

2

ϕ3
+
πD2

4
L

4

ϕ6
· · · = πD2

4
L

(
1 +

2

ϕ3
+

4

ϕ6
. . .

)
.

The parenthesis is a convergent series since the ratio 2
ϕ3 < 1. The result is

(
1 +

2

ϕ3
+

4

ϕ6
. . .

)
= lim
n→∞

1−
(

2
ϕ3

)n+1

1− 2
ϕ3

=
ϕ3

ϕ3 − 2
=

2ϕ+ 1

2ϕ− 1
.

Note that ϕ3 = 2ϕ + 1 from (7). Hence the total volume is VT = πD2

4 L 2ϕ+1
2ϕ−1 or

1.894 times the volume of the trunk.
It is interesting for the golden ratio tree that while the total length is infinite,

the total volume is finite.

3.2. Golden ratio spiral

A slightly different definition from the existing golden spirals in the literature
is given here. The spirals are given in polar coordinates and in the exponential
function form with a decaying or growing nature.

Definition 3.5. A golden ratio spiral is defined in polar coordinates as

r = r0e
∓αθ, (11)

where α = 2
π lnϕ with π

2 radians corresponding to the constant step size in which
the radial distance grows or diminishes by the golden ratio. Positive sign corre-
sponds to the growing and negative sign to the decaying behaviour.

It can be verified from the definition that at each step size π
2 , the radial distance

grows by a factor of ϕ (positive case) or decays by a factor of 1/ϕ (negative case).
Sample plots of growing and decaying golden ratio spirals are given in Figures 2
and 3. Although both spirals can be derived from each other, the important issue
is the control of the initial value. In a growing spiral, one has control over the
minimum radial distance value, whereas in a decaying spiral, one can fix the largest
value. In standard Fibonacci spirals, the radial distance is constant within each
π
2 step size. However, a gradual increase/decrease is achieved in this exponential
form. By defining the Fibonacci differential equation from the Fibonacci series,
a different continuous form of the spiral was also proposed by Pakdemirli (2023).
The step size in that definition turns out to be 44.610.
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Figure 2: Golden ratio spiral with distance to origin growing with counterclockwise
rotation.

Figure 3: Golden ratio spiral with distance to origin decaying with counterclock-
wise rotation.
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3.3. Golden ratio heart

There are tremendous numbers of different heart equations suggested. An internet
search will reveal the different types of such equations describing the shape of a
heart in two-dimensional analytical space. A simple and aesthetic heart equation
is proposed here for the first time by employing the golden ratio. The definition
is as follows:

Definition 3.6. Golden ratio heart is defined with the following Cartesian rela-
tionship

x2 +
(
y − (x2)

1/ϕ2)2
= 1. (12)

A plot of the golden ratio heart is given in Figure 4.

Figure 4: Golden ratio heart.

4. Physical property definitions

In this section, the golden ratio is employed in defining physical properties of
the dynamical systems. The definitions are quite original, and similar definitions
cannot be traced in the literature.
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4.1. Golden ratio ball
The golden ratio ball is defined as follows:

Definition 4.1. If the golden ratio ball is dropped from a reasonable height h,
which is not great to the smooth ground, it bounces back to a height h/ϕ and
continues to bounce back at the same ratio of 1/ϕ of the previous height indefinitely
(Figure 5).

Figure 5: Golden ratio ball.

The following theorem is an immediate consequence of the definition.

Theorem 4.2. The elastic collision coefficient of a golden ratio ball neglecting air
friction is

e =
1
√
ϕ
. (13)

Proof. In calculating (13), air friction is neglected. For a free fall, the ball starts
from zero velocity and attains its maximum value at the collision with the ground.
If the dropped height is not great, the velocities are not high, ensuring that the air
friction (drag force) can be neglected. However, for dropping from extremely high
positions, the drag force cannot be neglected since it is an increasing function of
the velocity (linear or quadratic, depending on the magnitude of velocity). At a
critical intermediate height, the gravitational force and the drag force equal each
other, maintaining a constant velocity drop in the remaining part of the motion.
The elastic collision coefficient can be measured by taking the ratio of final to
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initial velocities of an object just after and before collision if one of the objects
is stationary (infinite mass), such as the smooth ground [11]. Hence the velocity
just before collision is

√
2gh from energy conservation and the velocity just after

collision is
√
2g hϕ if air friction (drag force) is neglected. The ratio of the velocities

is the elastic coefficient e = 1√
ϕ
∼= 0.786.

If e = 1, there is no energy loss in the collision, and the ball retains its original
height, which is called a pure elastic collision. If e = 0, the other limiting value,
the collision is pure plastic and the ball does not bounce back at all. The golden
ratio ball has an elastic-plastic collision property with its elastic behaviour being
more pronounced compared to its plastic behaviour.

Theorem 4.3. When dropped from an height h, the golden ratio ball travels a
total height of

HT = h(2ϕ+ 1). (14)

Proof. Writing the heights at each interval and adding up them

HT = h+2
h

ϕ
+2

h

ϕ2
+· · · = 2h

(
1 +

1

ϕ
+

1

ϕ2
+ . . .

)
−h = 2h lim

n→∞

1−
(

1
ϕ

)n+1

1− 1
ϕ

−h,

or

HT = 2h
1

1− 1
ϕ

− h = 2hϕ2 − h = 2h (ϕ+ 1)− h = h(2ϕ+ 1) ∼= 4.236h.

Theorem 4.4. When dropped from a height h, the total time elapsed up to static
position for a golden ratio ball is

τ =

√
2g

h

√
ϕ+ 1
√
ϕ− 1

. (15)

Proof. The time elapsed for a free falling ball starting with no initial velocity and
attaining a velocity v at the collision is v/g or if the height is h, it is

√
2gh
g =

√
2h
g .

Adding all times

τ =

√
2h

g
+ 2

√
2h

gϕ
+ 2

√
2h

gϕ2
+ · · · = 2

√
2h

g

(
1 +

1
√
ϕ
+

1

ϕ
+

1

ϕ3/2
. . .

)
−

√
2h

g
,

or

τ = 2

√
2h

g

1

1− 1√
ϕ

−

√
2h

g
=

√
2h

g

(
2
√
ϕ

√
ϕ− 1

− 1

)
=

√
2g

h

√
ϕ+ 1
√
ϕ− 1

.

Since
√
ϕ+1√
ϕ−1

∼= 8.352, the total time elapsed is 8.352 times the time to the first
collision.
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4.2. Golden ratio damping
In mechanical vibrations, one of the fundamental systems is the free vibration of
viscous damped systems. For linear systems, the response is harmonic and at each
period, the maximum amplitude becomes a constant fraction of the previous am-
plitude. The response approaches to zero as time tends to infinity. The following
definition is given for the golden ratio damped system:

Definition 4.5. Golden ratio damped system is defined as the viscously damped
system where the ratio of the (n+1)-th maximum amplitude to the n-th maximum
amplitude is 1

ϕ , i.e.,
xn+1

xn
= 1

ϕ .

The dimensionless viscosity coefficient is the most important parameter char-
acterizing such systems. The following theorem gives the viscosity coefficient for
golden ratio damped systems.

Theorem 4.6. For a golden ratio damped system, the dimensionless viscosity
coefficient is

ζ =
lnϕ√

4π2 + ln2ϕ
. (16)

Proof. For a viscously damped system, the equation of motion is [12]

d2x

dt2
+ 2ζω

dx

dt
+ ω2x = 0, (17)

where t is the time, x (t) is the vibrational response, ζ is the dimensionless damping
and ω is the natural frequency of the system. The response is solved from above

x (t) = ae−ζωtcos(ω
√
1− ζ2t+ γ), (18)

where ae−ζωt is the decaying amplitude of vibrations and γ is the phase angle.
The period of the damped system is

τ =
2π

ω
√

1− ζ2
. (19)

The ratio of the (n+ 1)-th peak to the n-th peak response is then

xn+1

xn
=
ae−ζω(n+1)τcos(ω

√
1− ζ2(n+ 1)τ + γ)

ae−ζωnτcos(ω
√
1− ζ2nτ + γ)

= e−ζωτ , (20)

since cosine terms attain their maximum values of 1 at the peak points. Sub-
stituting the period from (19) with successive maximum amplitudes being 1

ϕ by
definition

1

ϕ
= exp

(
−ζ 2π√

1− ζ2

)
, (21)
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and solving for the damping coefficient, the result is

ζ =
lnϕ√

4π2 + ln2ϕ
. (22)

When the golden ratio is substituted, the numerical value of the damping
coefficient is ζ ∼= 0.076 which indicates that the system is lightly damped. A
sample plot of the golden ratio damped system is given in Figure 6.

Figure 6: Golden ratio damped system.

5. Concluding remarks
New definitions incorporating golden ratios are proposed in this work. Specific
properties of the suggested definitions are worked via theorems and numerical re-
sults. This work may open new horizons for developing new definitions related to
the golden ratio. Two and three-dimensional new geometric objects with an imple-
mentation of the golden ratio can be proposed. The ratio can also be implemented
in two and three-dimensional analytical geometry equations. Physical quantities
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other than those appearing in the worked examples (bouncing ball, damped os-
cillations) can also be expressed in terms of the golden ratio with appropriate
definitions. Applications to nature and real-life problems need further investiga-
tion. One wide application topic is the spiral forms observed in nature. There are
debates about the match of these forms with the classical Fibonacci spirals, which
have a constant radius of curvature for each 900. The match might be better if
spirals in which the radius of curvature changes continuously, as outlined in this
work, can be implemented.
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regarding the publication of this article.
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