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Abstract

For a graph G = (V,E) and a vertex subset D ⊆ V , a vertex v ∈ V is
called a dominator of D if v is adjacent to every vertex in D, and an anti-
dominator of D if v is not adjacent to any vertex in D. Given a coloring
C = {V1, V2, . . . , Vk} of G, a color class Vi is a dominating color class (resp.
an anti dominating color class) for a vertex v if v dominates all vertices in
Vi (resp. v dominates no vertex in Vi). A coloring C is a global dominator
coloring if each vertex in G has both a dominating and an anti-dominating
color class. The global dominator chromatic number, denoted by χgd(G), is
the minimum number of colors required for a global dominator coloring of
G. In this paper, we investigate the global dominator chromatic number for
various classes of graphs.
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1. Introduction
Let G be an undirected graph without loops or multiple edges. For a vertex v
in G, the vertex neighborhood of v, denoted by N(v), is the set of all vertices
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adjacent to v. The vertex and its neighbors, denoted by N [v], form the closed
neighborhood of v. Given a subset D of vertices in G, the vertex neighborhood of
D, denoted by N(D), is the union of the neighborhoods of all vertices in D and
the closed neighborhood of D, denoted by N [D], is the union of D and its vertex
neighborhood.

A subset D of vertices is called a dominating set of G if every vertex in G is
either in D or adjacent to a vertex in D. The minimum size of the dominating set
of G is denoted by γ(G). A vertex subset D of G is said to be a global dominating
set of G, if D is a dominating set of both G and its complement G. The smallest
possible size of a global dominating set in G is the global domination number,
denoted by γg(G) or simply γg. Several concepts blending domination and coloring
have been explored, including dominator coloring and total dominator coloring.
The concept of dominator coloring was introduced and studied by Gera, Horton
and Rasmussen [1]. In a dominator coloring, every vertex must dominate all
vertices of at least one color class. A total dominator coloring of an isolated free
graph G, is a proper coloring of the vertices of G in which every vertex of the
graph is adjacent to every vertex of some color class. The dominator chromatic
(total dominator chromatic) number χd(G)(χ

t(G)
d ) of G, is the minimum number

of colors among all dominator coloring (total dominator coloring) of G (see [2, 3]).
A vertex v is a dominator of a set D if it is adjacent to every vertex in D and

v is an anti-dominator of D if it is not adjacent to any vertex in D. Consider a
coloring C of G that partitions its vertex set into k color classes V1, V2, . . . , Vk.

A color class Vi is termed a dominating color class or an anti-dominating color
class for a vertex v if v dominates all vertices in Vi or none, respectively. A color-
ing C is a global dominator coloring if each vertex in G is assigned a color class
that it both dominates and anti-dominates. The smallest number of colors needed
to achieve a global dominator coloring of G is the global dominator chromatic
number, denoted by χgd(G). They introduced this parameter in [4]. Hamid and
Rajeswari calculated the global dominator chromatic number for several standard
graph classes, including paths, cycles, complete multipartite graphs, and the Pe-
tersen graph. They identified graphs G with global dominator chromatic numbers
2 and 3, and for connected bipartite graphs G of order n with at least 4 ver-
tices, they established the sharp bounds 4 ≤ χgd(G) ≤ bn2 c + 2. Rangarajan
and Kalarkop, in [5], determined the structure of trees T with at least 6 vertices
and χgd(T ) = bn2 c + 2, and also provided examples of graph families with global
dominator chromatic number 4.

Since a vertex v is always adjacent to itself, v dominates the singleton set {v}
but does not anti-dominate it. Hence a graph G does not admit a global dominator
coloring when ∆(G) = n − 1. For example the friendship graph Fn which is the
join of K1 and nK2 does not admit a global dominator coloring.

Askari, Mojdeh and Nazari in [6] have initiated a study on total global domi-
nator coloring and studied the complexity of total global dominator coloring. Also
they obtained some bounds in terms of order, chromatic number and domination
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parameters for the total global dominator chromatic number and classified the
total global dominator coloring of trees.

This paper extends the investigation of the global dominator chromatic number
(gdc number) by determining its value for specific graph classes. Section 2 focuses
on the gdc number of corona products of certain graphs and gdc number of grid
graphs (Cartesian products of two paths). In Section 3, we delve into cactus chains
and compute their gdc numbers. Finally, Section 4 explores the gdc number of
cubic graphs of order at most 10.

2. Gdc number of certain graphs
In this section, we determine the value of χgd for some graphs. We need the
following results:

Lemma 2.1. ([4]).

(i) For the path graph Pn with n ≥ 4 vertices, the global dominator chromatic
number, χgd(Pn), is given by:

χgd(Pn) =





dn3 e+ 1, if n = 7,

dn3 e+ 2, otherwise.

(ii) For the cycle graph Cn with n ≥ 4 vertices, the minimum number of colors
needed for a global dominator coloring is χgd(Cn) = dn3 e+ 2.

Theorem 2.2. ([7]). For triangle-free graphs G, the domination number γ(G)
and the global domination number γg(G) are related by the following inequality:

γ(G) ≤ γg(G) ≤ γ(G) + 1.

Theorem 2.3. ([8]). The global domination number of a tree T exceeds its domi-
nation number by one if and only if T is either a star or a diameter-4 tree obtained
by joining the centers of several stars (each with at least two leaves) to a common
vertex.

Theorem 2.4. ([4]). For any tree T , the value of χgd is either γg(T ) + 1 or
γg(T ) + 2.

The corona product G◦H of graphs G and H is constructed by taking a single
copy of G and |V (G)| copies of H, then connecting each vertex of G to every vertex
in its corresponding copy of H. The following theorem gives the global dominator
chromatic number of corona of Pn and Cn with Ki, i.e., Pn ◦Ki and Cn ◦Ki.

Theorem 2.5. (i) For every n ≥ 4, χgd(Pn ◦Ki) = n+ 1.
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(ii) For every n ≥ 3, χgd(Cn ◦Ki) = n+ 1.

Proof. (i) Suppose that V (Pn) = {1, 2, ..., n} and L is the set of all leaves of
Pn ◦Ki. It is easy to see that {L}∪ {{1}, {2}, ..., {n}} is a global dominator
color class with minimum size. Therefore, we have the result.

(ii) It is similar to the proof of (i).

By Theorem 2.4, trees can be classified into two types: Class 1: Trees where
the global dominator chromatic number is one more than the global domination
number.

Class 2: Trees where the global dominator chromatic number is two more than
the global domination number.

Determining the class of a given tree is a nontrivial task (see [4]). By Theo-
rem 2.5 we have the following corollary:

Corollary 2.6. The graphs Pn ◦Ki are trees of Class 1.

1 2

3 4 5 6 7 8 9 10

1 2

3 4 5 6 7 8 9 10 11 12

{
{1}, {2}, {3, 5, 7, 8, 10, 12}, {4, 6}, {9, 11}

}{
{1}, {2}, {3, 5, 7, 9}, {4, 6}, {8, 10}

}

Figure 1: Global dominator coloring of P2 ◦ P4 and P2 ◦ P5.

The following theorem gives the global dominator chromatic number of corona
of some graphs:

Figure 2: Global dominator coloring of P4 ◦ P4 and P5 ◦ P3.

Theorem 2.7. (i) For every n ≥ 4, χgd(P2 ◦ Pn) = χgd(P3 ◦ Pn) = 5.

(ii) For every n ≥ 4, and m ≥ 2, χgd(Pn ◦ Pm) = n+ 2.

Proof. (i) Consider P2 ◦Pn. Let u, u1, u2, ..., un be the first vertex of P2 and the
vertices of the first path and v, v1, v2, ..., vn be the second vertex of P2 and
the vertices of the second path. Assume that c is a color function on P2 ◦Pn,
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such that c(u) = 1, c(v) = 2, c(u2i−1) = c(v2i−1) = 3, c(u2i) = 4, c(v2i) = 5
for 1 ≤ i ≤ n/2. Now the class with color 1 dominates the color classes 2, 4
and anti-dominates the color class 5, the class with color 2 dominates the
color classes 1, 5 and anti-dominate color class 4. Some vertices with color
3 dominate the color class 1 and anti-dominates color class 2, and some
vertices with color 3 dominate the color class 2 and the anti-dominates the
color class 1. The class with color 4 dominates the color class 1 and anti-
dominates color class 2 and the class with color 5 dominates the color class
2 and anti-dominates color class 1. Therefore χgd(P2 ◦ Pn) = 5 for n ≥ 4.
See Figure 1.

(ii) Let the vertices of the graph Pn ◦Pm be {1, ..., n, n+1, ..., n+nm}, as shown
in Figure 2. The global dominator coloring class of Pn ◦ Pm

{
{1}, {2}, ..., {n}, {n+ 1, n+ 3, ..., }, {n+ 2, n+ 4, ...}

}
,

has the minimum size. This class has the minimum size, because with
the smaller size, some vertices does not have a dominating or/and an anti-
dominating color class. Therefore, we have the result.

Figure 3: Global dominator coloring of P5 ◦ C3 and P5 ◦ C4.

Below, we obtain, we obtain the global dominator chromatic number of P2 ◦Cn

for even n.

Theorem 2.8. For even n, χgd(P2 ◦ Cn) = 5.

Proof. Consider P2 ◦ Cn. Let v, v1, v2, ..., v2k be the vertices of the first cycle
and the first vertex of P2 and u, u1, u2, ..., u2k be the vertices of the second cycle
and the second vertex of P2. Assume that c is a color function on P2 ◦ Cn,
such that c(v) = 1, c(v2i) = 2, c(v2i−1) = 3 for 1 ≤ i ≤ k, also c(u) = 4,
c(u2i) = 2, c(u2i−1) = 5 for 1 ≤ i ≤ k. Now, vertex v dominates color class 4 and
anti-dominates color class 5. The vertices v2i and v2i−1 dominate color class 1 and
anti-dominate color class 5. Vertex u dominates color class 1 and anti-dominates
color class 3. The vertices u2i and u2i−1 dominate color class 4 and anti-dominate
color class 3. Therefore χgd(P2 ◦ Cn) = 5 for even n.

Theorem 2.9. (i) χgd(P2 ◦C3) = 5 and for every odd n ≥ 5, χgd(P2 ◦Cn) = 6.
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(ii) For even n ≥ 3, χgd(P3 ◦ Cn) = 6, and for odd n 6= 3, χgd(P3 ◦ Cn) = 7.

(iii) For every n ≥ 4 and m ≥ 3,

χgd(Pn ◦ Cm) =





n+ 2, if m is even,

n+ 3, if m is odd.

Proof. (i) Consider P2 ◦ Cn for odd n. Let u, u1, u2, ..., u2k+1 be the vertices of
the first cycle and the first vertex of P2 and v, v1, v2, ..., v2k+1 be the vertices
of the second cycle and the second vertex of P2. Assume that c is a color
function on P2 ◦ Cn, such that c(u) = 1, c(v) = 2, c(u2k+1) = 3, c(v2k+1) =
4, c({u2i−1, v2i}) = 5, c({u2i, v2i−1}) = 6 for 1 ≤ i ≤ k.
Now, vertex u dominates color class 3 and anti-dominates color class 4. The
vertices u2i and u2i−1 dominate color class 1 and anti-dominate color class
4, the vertex v dominates color class 4 and anti-dominates color class 3, the
vertices v2i and v2i−1 dominate color class 2 and anti-dominate color class
3. Therefore χgd(P2 ◦ Cn) = 6 for odd n.

(ii) Proof is similar to proof of (i).

(iii) As we see in Figure 3, to obtain a global dominator color class with minimum
size, we put any n vertices of Pn in the class of size one and for the cycle Cm

with even m we have two classes of size m/2 and for odd m, we have three
classes. This coloring has the minimum size. Therefore, we have the result.

Using similar methods as those used in the proof of Theorem 2.9, we have the
following result.

Theorem 2.10. (i)

χgd(C3 ◦ Cm) =





6, if m = 3, m is even,

7, if m is odd.

(ii) For every n ≥ 4 and m ≥ 3,

χgd(Cn ◦ Cm) =





n+ 2, if m is even,

n+ 3, if m is odd.

Here, we compute the global dominator chromatic number of the cartesian product
of two paths, i.e., Pn�Pm. First we state some examples:
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Example 2.11. (i) As we can see in Figure 4 for the graph P2�P8, the global
dominator color class

{
{1}, {4}, {7}, {10}, {13}, {16}, {2, 5, 8, 11, 14},

{3, 6, 9, 12, 15}
}
has the minimum size, and so χgd(P2�P8) = 8.

(ii) We see in Figure 4, that for the graph P4�P8, the global dominator color
class

{
{1}, {4}, {7}, {11}, {14}, {18}, {21}, {24}, {26}, {29}, {32},

{3, 6, 9, 12, 15, 17, 20, 23, 27, 30}, {2, 5, 8, 10, 13, 16, 19, 22, 25, 28, 31}
}
has the

minimum size, and so χgd(P4�P8) = 13.

(iii) For the graph P3�P6, the global dominator color
{
{1}, {4}, {7}, {10}, {14}, {17},

{2, 5, 9, 12, 15, 18}, {3, 6, 8, 11, 13, 16}
}
has the minimum size, and so χgd(P3�P6) =

8 (see Figure 4).

(iv) It is easy to see that χgd(P5�P6) = 12 (see Figure 4).

Figure 4: Global dominator coloring of some grid graphs.

The following theorem gives an upper bound for χgd(Pn�Pm) based on the
order of grid, i.e., |V | = mn. This upper bounds is sharp for many m and n.

Theorem 2.12. (i) χgd(P2�P4) = 4 =

⌈
nm

3

⌉
+ 1.

(ii) For any n,m ≥ 2, we have χgd(Pn�Pm) ≤
⌈
nm

3

⌉
+ 2.

Proof. (i) Suppose that ui and vi (1 ≤ i ≤ 4) are the vertices of the first and the
second copy of P4, respectively in the graph P2�P4. The color function c with
c(ui) = i and c(v1) = 2, c(v2) = 1, c(v3) = 4, c(v4) = 3 is a global dominator
coloring of this graph with minimum size. Therefore χgd(P2�P4) = 4.
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1 2 34 4 4 4

5 5 5 5 5 5

Figure 5: Chain triangular cactus T6.

(ii) As we can see in Figure 4, if nm is even, then there are two global dominator
color classes of sizes dnm

3
e − 1, dnm

3
e and nm + 1 − 2dnm

3
e classes of size

one. If nm is odd, then there are two global dominator color classes of size
dnm

3
e and nm− 2dnm

3
e of size one. Therefore, we have the result.

3. Gdc number of some cactus chains

This section focuses on a specific type of linear polymer known as a cactus chain.
Cactus graphs, initially referred to as Husimi trees, were introduced over sixty
years ago in the context of cluster integrals within statistical mechanics (see [9–
11]). For more details on various graph parameters of cactus graphs, please refer
to [12–14]. A cactus graph is a connected graph where no edge is shared by more
than one cycle. Consequently, each block of a cactus graph is either a single edge
or a cycle. When all blocks of a cactus G are cycles of the same size k, we call it
a k-uniform cactus.

In this section, we concentrate on 3-, 4-, and 6-uniform cactus graphs, appear
naturally in chemistry. A triangular cactus is a specific type of 3-uniform cactus,
where all blocks are triangles.

A triangular cactus is a graph composed solely of triangle blocks. A vertex
shared by multiple triangles is termed a cut-vertex. A chain triangular cactus is a
specific type of triangular cactus where each triangle has at most two cut-vertices,
and each cut-vertex is shared by exactly two triangles.

By replacing triangles with 4-cycles in the definition of a chain triangular cac-
tus, we obtain square cacti. These squares can be classified as ortho-squares (cut-
vertices are adjacent) or para-squares (cut-vertices are not adjacent) (see [15]).

We begin by analyzing chain triangular cacti. Figure 5 illustrates an example
of such a cactus. The length of a chain triangular cactus is defined as the number
of triangles it contains. It is clear that chain triangular cacti with the same length
are isomorphic. Consequently, we denote a chain triangular cactus of length n by
Tn.

In the following, we determine the global dominator chromatic number of Tn.
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1 2 3 4 n

n+ 1 n+ 2 2n+ 1

2n+ 2 2n+ 3 2n+ 4 3n+ 1

2n

Figure 6: Para-chain square cactus graph Qn.

Theorem 3.1. For every n ≥ 3,

χgd(Tn) =





dn2 e+ 3, if n = 3, 4,

dn2 e+ 2, otherwise.

Proof. To have a global dominator coloring of Tn, first we should choose the ver-
tices with the maximum degree (which have degree four in Tn) as single classes,
because they dominate more vertices. But since we are looking for the smallest
possible size of the global dominator coloring, we must choose them in such a way
that they have dominator class and also have anti-dominator class. We consider
the path Pn+1 with vertex set, say {v0, v1, ..., vn} (an induced path in Tn whose
edges are the bases of triangles, see Figure 5). We select the vertices v1, v3, v5, ...
of this path and assign them a color (we have used dn2 e colors so far). Now it is
enough to assign one color to all other vertices of the path (i.e., vertices v2, v4, ...)
and another color to the top vertices of triangles. Such a coloring is a a global
dominator coloring with minimum size. Therefore we have the result.

By substituting triangles in the definition of the triangular cactus Tn with 4-
cycles, we obtain cacti whose blocks are all 4-cycles. These cacti are referred to
as square cacti. Figure 6 illustrates an example of a square cactus chain. The
internal squares in a square cactus chain can be connected to their neighbors in
two ways:

Ortho-square: The cut-vertices of the square are adjacent.
Para-square: The cut-vertices of the square are not adjacent.
We focus on para-chains, denoted by Qn, as depicted in Figure 6. The following

theorem provides the global dominator chromatic number of Qn.

Theorem 3.2. For every n ≥ 1,

χgd(Qn) =





n+ 3, if n = 1,

n+ 2, otherwise.
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Figure 7: Ortho-chain square cactus graph On.

Proof. To construct a global dominator color class with minimum size of Qn, we
consider two induced path P2n+1 (one path has vertices {n+ 1, 2n+ 2, n+ 2, 2n+
3, ..., 3n + 1, 2n + 1} which is indicated by thicker edges in Figure 6 and another
path has vertices {n+1, 1, n+2, 2, ..., n, 2n+1}). We select the vertices with label
2n+2, 2n+3, ..., 3n+1 of one of this path and also the vertices with label 1, 2, 3, ..., n
and assign them a color, say n+ 2 and assign another colors, say, 1, 2, ..., n+ 1 to
other vertices of P2n+1. This coloring is a global dominator coloring of Qn with
minimum size. Therefore we have the result.

Now we consider another kind of square cactus chain and compute its global
dominator chromatic number (Figure 7). The following theorem gives the global
dominator chromatic number of On.

Theorem 3.3. For every n ≥ 2,

χgd(On) =





n+ 2, if n = 2,

n+ 3, otherwise.

Proof. To construct a global dominator color class with minimum size of On, we
color all n + 1 vertices on the induced path Pn+1 (which is indicated by thicker
edges in Figure 7) by different colors (so we use n + 1 colors for Pn+1) and color
the right corners of the squares by (n + 2)-th color (red color) and use (n + 3)-
th color (black color) to color the left corners as shown in Figure 7. Therefore,
χgd(On) = n+ 3.

4. Gdc number of cubic graphs of order at most 10

In this section, we compute the global dominator chromatic number of the cubic
graphs of order at most 10. Recently, Alikhani, Golmohammadi and Konstantinova
in [16] have studied the coalition numbers of all cubic graphs of order at most 10.
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Also Alikhani and Peng have studied the domination polynomials (which is the
generating function for the number of dominating sets of a graph) of cubic graphs
of order 10 in [17]. As a consequence, they have shown that the Petersen graph is
determined uniquely by its domination polynomial.

4.1 Results for the cubic graphs of order 6 and 8

In this subsection, we compute the global dominator chromatic number of the
cubic graphs of order 6 and 8. First, we consider the cubic graphs of order 6 that
are shown in Figure 4. Observe that for the graph G1, the global dominator color
class

{1, 5}, {2}, {3}, {4}, {6},

is with minimum size and for the graph G2, the global dominator color class

{1, 5}, {2, 4}, {3}, {6},

is with minimum size. So we have the following observation:

G1 G2

1

2

3

4

5

6

1

2

3

4

5

6

Figure 8: Cubic graphs of order 6.

Observation 4.1. If G1 and G2 are the cubic graphs of order 6 (Figure 8), then
χgd(G1) = 5 and χgd(G2) = 4.

Here, we obtain the global dominator chromatic number of the cubic graphs of
order 8 as shown in Figure 9.

Theorem 4.2. For the cubic graphs of order 8 in Figure 9,

(i) χgd(G1) = χgd(G4) = χgd(G5) = 4.

(ii) χgd(G2) = χgd(G3) = χgd(G6) = 5.

Proof. (i) The graphsG1 andG4, have the global dominator color class {1, 3, 6},
{2, 5, 7}, {4}, {8} with the minimum size. Also for the graph G5, the global
dominator color class {1, 3, 5}, {2, 6, 8}, {4}, {7} has the minimum size. There-
fore, we have the result.
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G1 G2 G3

G4 G5 G6

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

34

5

6

78

Figure 9: Cubic graphs of order 8.

(ii) The graphG2 has the global dominator color class {1, 6}, {3, 5, 7}, {2}, {4}, {8}
with the minimum size. For the graph G3, the global dominator color class
{1, 4, 7}, {2, 5}, {3}, {6}, {8} has the minimum size and the graph G6 has the
global dominator class {1, 5}, {2, 6}, {4, 8}, {3}, {7}. Therefore, we have the
result.

4.2 Results for cubic graphs of order 10

In this subsection, we compute the global dominator chromatic number of cubic
graphs of order at most 10. There are exactly 21 cubic graphs of order 10 given
in Figure 10 (see [17]). Note that the graph G17 is the Petersen graph.

Theorem 4.3. For the cubic graphs of order 10 in Figure 10,

(i) If G ∈ {Gi} for any i ∈ {1, 2, ..., 21} \ {10, 20, 21}, then χgd(Gi) = 5.

(ii) χgd(G10) = χgd(G20) = χgd(G21) = 6.

Proof. (i) The graphsG1 andG2, have the global dominator color class {1, 4, 8},
{2, 5, 7, 10}, {3}, {6}, {9} with the minimum size. For the graph G3, the
global dominator color class {1, 5, 8}, {2, 4, 7, 9}, {3}, {6}, {10} has the mini-
mum size. For the graphG4, the global dominator color class {1, 4, 9}, {3, 5, 10},
{6, 8}, {2}, {7} has the minimum size.
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Figure 10: Cubic graphs of order 10.

For the graphG5, the global dominator color class {1, 4, 9}, {3, 5, 7, 10}, {2}, {6},
{8} has the minimum size.

For the graphG6, the global dominator color class {1, 5, 7}, {2, 4, 8, 10}, {3}, {6},
{9} has the minimum size.

For the graphG7, the global dominator color class {2, 4, 6, 9}, {3, 7, 10}, {1}, {5},
{8} has the minimum size.

For the graphG8, the global dominator color class {2, 5, 7, 10}, {1, 3, 9}, {4}, {6},
{8} has the minimum size.

For the graphG9, the global dominator color class {1, 4, 9}, {3, 6, 8, 10}, {2}, {5},
{7} has the minimum size.

For the graphG11, the global dominator color class {1, 3, 5, 8}, {2, 7, 9}, {4}, {6},
{10} has the minimum size.
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For the graphG12, the global dominator color class {1, 4, 7, 9}, {2, 6, 8}, {3}, {5},
{10} has the minimum size.

For the graphG13, the global dominator color class {3, 5, 7, 10}, {2, 6, 9}, {1}, {4},
{8} has the minimum size.

For the graphG14, the global dominator color class {1, 5, 8}, {2, 4, 6, 9}, {3}, {7},
{10} has the minimum size.

For the graphG15, the global dominator color class {1, 4, 7, 9}, {2, 6, 8}, {3}, {5},
{10} has the minimum size.

The global dominator color class {1, 3, 5, 9}, {2, 6, 8}, {4}, {7}, {10} has the
minimum size for the graph G16.

The global dominator color class {1, 7, 10}, {2, 4, 6, 8}, {3}, {5}, {9} has the
minimum size for the graph G17.

The global dominator color class {1, 4, 7, 10}, {3, 5, 8}, {2}, {6}, {9} has the
minimum size for the graph G18.

The global dominator color class {2, 4, 6, 10}, {5, 7, 9}, {1}, {3}, {8} has the
minimum size for the graph G19.

(ii) For the graphG10, the global dominator color class {1, 3, 5, 7, 9}, {2}, {4}, {6},
{8}, {10} has the minimum size.

For the graphG20, the global dominator color class {1, 5, 7}, {2, 4, 8}, {3}, {6},
{9}, {10} has the minimum size.

For the graphG21, the global dominator color class {1, 3, 8}, {2, 4, 7}, {5}, {6},
{9}, {10} has the minimum size.

5. Conclusion

This paper calculates the global dominator chromatic number (gdc number) for
several classes of graphs, including grid graphs (cartesian products of two paths)
and corona products of specific graphs. We also determine the gdc number for
certain cactus chains and cubic graphs of order at most 10.

Several open problems remain for future research. Some of these are:

(i) Graph Products: What is the gdc number of products of graphs, e.g., carte-
sian„ corona, join, and lexicographic products?

(ii) Graph Operations: How do vertex and edge operations on a graph impact
its global domination number γg and global dominator chromatic number
χgd(G)?



Mathematics Interdisciplinary Research 10 (2) (2025) 183− 198 197

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

Acknowledgements. The authors would like to express their gratitude to the
referees for their careful reading and helpful comments.

References

[1] R. Gera, C. Rasmussen and S. Horton, Dominator colorings and safe clique
partitions, Congr. Numer. 181 (2006) 19− 32.

[2] S. Alikhani, N. Ghanbari and S. Soltani, Total dominator chromatic num-
ber of k-subdivision of graphs, Art Discrete Appl. Math. 6 (2023) #1.10,
https://doi.org/10.26493/2590-9770.1495.2a1.

[3] H. B. Merouane and M. Chellali, On the dominator colorings in trees, Discuss.
Math. Graph Theory 32 (2012) 677− 683.

[4] I. S. Hamid and M. Rajeswari, Global dominator coloring of graphs, Discuss.
Math. Graph Theory 39 (2019) 325−339, https://doi.org/10.7151/dmgt.2089.

[5] R. Rangarajan and D. A. Kalarkop, A note on global dominator col-
oring of graphs, Discrete Math. Algorithms Appl. 14 (2022) #2150158,
https://doi.org/10.1142/S1793830921501585.

[6] S. Askari, D. A. Mojdeh and E. Nazari, Total global dominator chromatic
number of graphs, TWMS J. App. and Eng. Math. 12 (2022) 650− 661.

[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs:
Advanced Topics, Marcel Dekker, New York 1998.

[8] S. Arumugam and R. Kala, A note on global domination in graphs, Ars
Combin. 93 (2009) 175− 180.

[9] F. Harary and G. E. Uhlenbeck, On the number of Husimi trees, I. Proc. Nat.
Acad. Sci. U.S.A. 39 (1953) 315− 322.

[10] K. Husimi, Note on Mayer’s theory of cluster integrals, J. Chem. Phys. 18
(1950) 682− 684, https://doi.org/10.1063/1.1747725.

[11] R. J. Riddell, Contributions to the theory of condensation, Ph.D. Thesis,
Univ. of Michigan, Ann Arbor, 1951.

[12] M. Chellali, Bounds on the 2-domination number in cactus graphs, Opuscula
Math. 26 (2006) 5− 12.



198 H. Nouri Samani et al. / Global Dominator Chromatic Number of...

[13] N. Ghanbari and S. Alikhani, Sombor index of cer-
tain graphs, Iranian J. Math. Chem. 12 (2021) 27 − 37,
https://doi.org/10.22052/IJMC.2021.242106.1547.

[14] S. Majstorović, T. Došlić and A. Klobučar, k-domination on hexagonal cactus
chains, Kragujevac J. Math. 36 (2012) 335− 347.

[15] S. Alikhani, S. Jahari, M. Mehryar and R. Hasni, Counting the number of
dominating sets of cactus chains, Opt. Adv. Mat. Rapid Comm. 8 (2014)
955− 960.

[16] S. Alikhani, H. R. Golmohammadi and E. V. Konstantinova, Coalition of
cubic graphs of order at most 10, Commun. Comb. Optim. 9 (2024) 437−450.

[17] S. Alikhani and Y. H. Peng, Domination polynomials of cubic graphs of order
10, Turkish J. Math. 35 (2011) 355−366, https://doi.org/10.3906/mat-1002-
141.

Hadi Nouri Samani
Department of Mathematical Sciences,
Yazd University,
Yazd, Iran
e-mail: hadinourisamani@gmail.com

Saeid Alikhani
Department of Mathematical Sciences,
Yazd University,
Yazd, Iran
e-mail: alikhani@yazd.ac.ir

Nima Ghanbari
Department of Mathematical Sciences,
Yazd University,
Yazd, Iran
e-mail: n.ghanbari.math@gmail.com


	Results for the cubic graphs of order 6 and 8
	Results for cubic graphs of order 10

