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Abstract

In this article, first we review some basic definitions and results about
fuzzy sets and intuitionistic fuzzy sets; then we state the definitions of
intuitionistic fuzzy (m,n)-sub near rings and intuitionistic fuzzy ideals of
(m,n)-near rings, which are generalizations of intuitionistics subrings and
intuitionistic fuzzy ideals of rings and near-rings, respectively. We provide
several examples for the definitions and discuss and investigate some results
in this respect. Finally, we investigate the direct product of intuitionistic
fuzzy (m,n)-sub near rings of two (m,n)-near rings and state and prove
some results on these topics.
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1. Introduction

The theory of fuzzy sets proposed by Zadeh [1] has achieved great success in various
fields. Out of several higher-order fuzzy sets, intuitionistic fuzzy sets introduced
by Atanassov [2-4] have been found to be highly useful to deal with vagueness.

A function g : R — [0,1] in a set R is called a fuzzy set [1]. Let Im(u) denote
the image set of p. Set o = {z € R | p(x) > o} and pS = {z € R | u(z) < a}
where « € [0, 1].

*Corresponding author (E-mail: davvaz@yazd.ac.ir)
Academic Editor: Mahdi Dehghani
Received 8 November 2024, Accepted 9 February 2025
DOI: 10.22052/MIR.2025.255768.1485
(© 2025 University of Kashan

@ This work is licensed under the Creative Commons Attribution 4.0 International License.


https://orcid.org/0000-0003-1941-5372

200 F. Mohammadi et al. / Intuitionistic Fuzzy Ideals in...
__________________________________________________________________________________________________________|]
Definition 1.1. Assume that X is a set and D is a subset of X. In this case

() 1, ifze D,
xTr) =
#p 0, ifz¢D,

is said characteristic function of the set D in X.
Example 1.2. Assume that B = {z € N| £ € N} and
1, if z€ B,
Hp(z) = {o, if » ¢ B.
In this case pp is the characteristic function of the set B in N.

Definition 1.3. ([3]). An intuitionistic fuzzy set @) in W is given by:

Q ={(z,u(2),n(2)) | z€ W},

where p: W — [0,1] and n : W — [0, 1], with the condition 0 < u(z)+n(z) <1
for all z € W. The numbers p(z) and 7(z) denote, respectively, the degrees of
membership and non-membership of the element z € W to the set Q.

Every fuzzy set corresponds to the following intuitionistic fuzzy set:
FS:{(z,1(2),1 = p(2)) | =€ W}

Example 1.4. Assume that ju(2) = 5755, n(2) = ﬁ and A = {(N, u(2),n(2)) | z €

X}. In this case, A is an intuitionistic fuzzy set.

Definition 1.5. ([3]). For each intuitionistic fuzzy set A, there is another param-
eter 7(z), called the degree of non-determinacy of the membership of z of the set
A,

m(2) =1 — p(z) = n(2).

Example 1.6. In Example 1.4, 7(z) = 1 — p(z) —n(z) = 1 —

1—(22;;12):1—%:%sow(z):%.

z —

_z o _1
2242 2242

Definition 1.7. ([3]). Let D = {{w, u(w),n(w)) | w € X} and E = {{w, ¢/ (w), 0’ (w))
| w € X} be any two intuitionistic fuzzy sets of X, then

(1) D C E if and only if p

—~

w) < p/(w) and n(w) > n'(w) for all w € X,

(2) D=EFE if and only if p

—~

w) = p'(w) and n(w) = n'(w) for all w € X,

(w), (n ') (w)) [ w € X}, where (u N p')(w

(8) DNE = {{w,(un s )
w) A g/ (w) and (n O ') (w) = max{y(w), ' (w)}

min{p(w), @' (w)} = p
n(w) V' (w),

~—

—~
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(4) DUE = {{w,(pUp)(w),(nuUun)(w) | we X}, where (uU p')(w) =
HzaX){u( () l)t( )} u(w) p(w) and (n Un')(w) = min{n(w),n'(w)} =
n(w

Definition 1.8. Let (G, f) be an m-ary group. An intuitionistic fuzzy set A =
{{w, p(w),n(w)) | w € G} of G is said to be an intuitionistic fuzzy subgroup of G
if
(1) forallwy,wa, ..., wy € R, pu(f(wi,wa, ..., wy)) > min{u(wr), p(ws), ..., w(wy)},
(2) for all a*,b € R and 1 < i < n there is x; € R so that f(a} ™', z;,a%;) = b
and p(x;) > min{p(ar), p(az), .., plai-1), p(@iv1), ..., wlan), p(b)},
(3) forall wy, wa, ..., wn € R, n(f (w1, wa, ..., wy,)) < max{n(wl)m(wg), oy n(wm) },
(4) for all w",b € R and 1 <4 < n there is z; € R so that f(w} ", z;,w,) =b
and (@) < masx{(1). 7(102). e (w0-1), 1(W551), s (103), n(b)}-
Definition 1.9. Let (G, f) be an m-ary group. An intuitionistic fuzzy subgroup

A= {(w, p(w),n(w)) | w e G},

of GG is said to be an intuitionistic fuzzy normal subgroup of G if for every permu-
tation v of {1,2,...,m} and wy,ws, ..., w, € G,

(1) :u(f(wlvw% ""wm)) = /ff(f(w’h’w’yw ceey w’}'m))»

(2) n(f(wlaw27 ,U}m)) = n(f(w’h?w’}?’ "'7w"/m))'

For more details about the intutionistic fuzzy sets, we refer to [5-8].

A near ring is a non-empty set with two binary operations, addition and mul-
tiplication, satisfying all the ring axioms except possibly one of the distributive
laws and commutativity of addition.

For details about near ring theory and applications, we refer to [9, 10]. For
fuzzy sets and fuzzy groups, we refer to [1, 11, 12]. For fuzzy ideals of near rings,
we refer to [13-17]. In [18], Mohammadi and Davvaz characterized a new class of
n-ary algebras that we call (m,n)-near rings. They investigated the notions of i-
R-groups, i-(m, n)-near field, prime ideals, primary ideals and subtractive ideals of
(m,n)-near rings. Then, in [19], they studied fuzzy ideals. We recall the definition.

Definition 1.10. Let U be a non-empty set and h, k be m-ary and n-ary opera-
tions on U, respectively. Then (U, h, k) is called an i-(m, n)-near ring, if

(1) (U,h) is an m-ary group (not necessarily abelian),
(2) (U, k) is an n-ary semigroup,

(3) the n-ary operation k is i-distributive with respect to the m-ary operation
h.
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We define i-distributive low, for every ¢, d{* € U as follows:
If i = n, then
k(cy™ ' h(di,do, ooydm)) = h(k(ch ™ dr), k(ch ™ da), ooy k(P dim)).
If i = 1, then
k(h(dy,da,...,dm), c3) = h(k(dy,c}), k(d2, c5), ..., k(dm, c5)).
If 1 <i < mn, then

k(e h(dy,do, ..., dpm), )
= h(k(czl_lv dlv C?+1), k(czl_lv d27 C?+1)a [ k(czl_la dmvc?Jrl))'

Example 1.11. We know (R, +, ) is an (m, n)-near ring with two binary opera-
tions m-addition and n-multiplication. The element 1 € R is an identity element
in (R, +,-).

Example 1.12. Assume that Z is a set of integer numbers and h, k are m-ary and
n-ary operations on Z, respectively, which are defined below; in this case (Z, h, k)
is an (m,n)-near ring. For all 01,09..., 00, f1, fo, .., fn € Z

h(o1,09,....,0mm) = 01 + 02 + ... + O,

k(fhf% afn) = fn

It is clear that (Z, h) is an m-ary group. We prove that (Z, k) is an n-ary semigroup.
If 1 <i<mn, then

k(fliilﬂ k(fzv fi+17 ey fn+i,1)7 fn+ia ceey f2n71) = f2n71o

If i = n, then

k( ?_lvfn—lak(fmfn-i-lv ---7f2n—1)) = k(fﬂ7f71+17 ---af2n—1) = f2n—1~

We prove that the n-ary operation k is n-distributive with respect to the m-ary
operation h. We have

k(flv f27 ceey fn717 h’(oh 02, ...y O’m)) = h(017 02, ..., Om)
h(k(f1, f25 o frm1,01), K(f1; fo5 ooy fnm1,02), s K(f1, f25 0 frm1,0m)) =

h(01, 02, ...,Om)).

Therefore, we obtain

k(f1, f25 s fn—1,h(01,02, ..., 0m)) =
h’(k(fla f27 "’7fn71701)7k(f17 f27 °"7fn71702)7 "'7k(f17f27 "'7f’n7170m))~
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2 Intuitionistic fuzzy (m,n)-subnear ring
Definition 2.1. Let (R, f, g) be an (m, n)-near ring and A = {{w, p(w), n(w)) | w €
X} be an intuitionistic fuzzy set of R. In this case, A is called an intuitionistic
fuzzy (m,n)-subnear ring of R, if

(1) for all wy,ws,...,wy € R,

N(f(wlvw?a ) wm)) 2 min{:u(wl)nu(wQ)u B3] N(wm)}7

(2) for all d*,b € R and 1 <i < n there is z; € R so that

Fd @i, diyy) = b,
N(wZ) > min{/f“(dl)v M(d2)7 () /J“(difl)v /ff(diJrl)v () N(dm)ﬂ N(b)}7

(3) for all wy,ws,...,w, € R,

ILL(g(U)l,U)Q, "'7wn)) > min{/u‘(wl)a ﬂ(’w2), “ﬂlLL(wn)}a

(4) for all wy,wa, ..., wy, € R,

n(f(wla W2, «evy wm)) < max{n(wl)’ n(wQ)v B U(wm)},

(5) for all a*,b € R and 1 < i < n there is x; € R so that

f(dzi_lvxiv d;ﬁ»l) = ba
77(951) < maX{??(dl)a n(dQ)v s n(di—l)’ n(di-‘rl)a sy n(dm)a n(b)}v

(6) for all wy,ws,...,w, € R,

n(g(wl,wg, ...,wn)) < max{n(wi),n(wz), ..., n(wy,)}.

Example 2.2. In Example 1.12, let

0.9, if we 2Z,
p(w) = .
0.3, if w¢ 2Z,

04, if we2Z,
n(w) = :
0.6, if w¢ 2Z.

In this case, we have pg.9 = 2Z and pg.3 = Z are both subnear-rings and 77(%4 =27

and n§6 = Z are both subnear-rings, hence p and 7 are fuzzy subnear-rings of
(Z,h,k). So according to Theorem 2.6, A = {{(w,u(w),n(w)) | w € Z} is an
intuitionistic fuzzy subnear-rings of the (m,n)-near ring (Z, h, k).
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Theorem 2.3. Assume that A = {{z, u(2),n(2)) | z € X} is an intuitionistic fuzzy
subnear-ring of an (m,n)-near ring (R, f,g), then A" = {{z, u(z), u°(2)) | z € X'}
is an intuitionistic fuzzy subnear-ring of R.

Proof. All the conditions of the definition for u are satisfied, it is enough to check
the conditions stated for u© in the definition

,uc(f(zl,zQ, 7zm)) =1- u(f(zl,zg,

Il
=)
]
"
—~
=
—~
W
-
=

Sy
N
D
e
=

a
—~
W
g

for all d7",b € R and 1 <1 < n there is x; € R so that

f(dl ! x’udi-i-l) ba
pulwi) = min{p(dy), p(dz), - pldi1), pldig1), s p(dm ), 1(0)}

SO

=

(xz) =1- U( z)

1 — min{u(d), H(dz) (dz 1), i(dig1), s p(dim), p(b
1 —min{l — p(dy), ... ué(di—1), 1 —p (d1+1) .1
max{°(d1), p°(d2), ... ( 1), #(dit1)s -, pf(d ) I

/f(g(vl,vg, ...,Un)) =1- u(g(vl,v27. . n))
< 1 —min{pu(v1), M(UQ)v' o i(vn)}
=1—min{l — p(v1),1 — p(va), ... 1(vp)}
= max{p(v1), C(Uz), ( n)}-

=

)}
— p(dm), 1 — po(b)}
“(0},

I IA

O

Theorem 2.4. Let A = {{(z, 1(2),n(2)) | z € X} be an intuitionistic fuzzy subnear-
ring of an (m,n)-near ring (R, f,g). Then A" = {{z,n°(2),n(2)) | z € X} is an
intuitionistic fuzzy subnear-ring of R.

Proof. Assume that A = {(z, u(z),n(2)) | z € X} is an intuitionistic fuzzy subnear-
ring of an (m, n)-near ring (R, f,g). All the conditions of the definition for n are
satisfied, 1t is enough to check the conditions stated for n¢ in the deﬁmtlon

For all z{7', 27,2 € Rand 1 < j < m, there is a € R that f(z]~ z,z]_H) =
F7 Y a 2f), n(a) < n(z), son(a) = 1= n(a) > 1 - n(z) = n°(2).

For all 27,z € Rand 1 <% <mn, n(g(zifl,z,z?“)) < n(z), then

n°(9(a7 " 2 200)) = L=n(g( 7 2. 2f)) 21— n(2) = n°(2).
Forall k #1i, 1 <k <m, dj” ,d?_H,z1 € R and z;, € R there is hy € R so that
g(dll_la f(z1, 22, ... Zm)adz+1) = f( (dzl_lvZlad?+1)vg(dll_1v22>d?+1)a '-~7g(d11_17

21, dq )y e, (AT 21, A ), oo 9(d Y 2 dP ) and m(hy) < n(z).
Thus 7°(hg) =1 - (hk) > 1—n(2k) = n°(2k). O
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Lemma 2.5. The set A = {{w, p(w),n(w)) | w € X} is an intuitionistic fuzzy
subnear-ring of an (m,n)-near ring (R, f,g) if and only if u and n° are fuzzy
subnear-rings of R.

Proof. Assume that A = {{w, p(w),n(w)) | w € X} is an intuitionistic fuzzy set
of an (m,n)-near ring (R, f,g). Clearly u is a fuzzy subnear-ring. Moreover, we
have

nc(f(wl,wg, ey wm)) =1- n(f(wl, Wa, ..., wm))

1 — max{n(wi), n(wz), ..., n(wm)}

min{l — n(w),1 — n(ws),...,1 — n(wm)}
= min{n°(w1),n°(w2), ..., n°(wm)}.

v

For all di*,b € R and 1 < i < n there is ; € R so that

Fd Y @i, dfly) = b,
n(z;) < max{n(di),n(d2), ....n(di—1),n(di+1), .., n(dm), n(b) },
and so
n (xz) =1- ( )
> 1 — max{n(dy), (dg) ( ), (dit1)s - n(dm),n(b)}
= min{1l — n(dy),1 (dz) n(di— 1),1 N(dig1), - 1 —=n(dm), 1 —n(b)}
:mn{n d1> (dz) 7 C( l+1)7 ( )ﬂ?C(b)}

Also, we have

n°(9(qr, g2, an))  =1—=n(9(q1, 42, qn))

1 — max{n(q1), 71(612), 5n(qn)}
mln{l_ ( ) ((] ),-n, _n(Qn)}
= min{n°(q1),1°(¢ ) n°(qn)}-

Therefore n° is a fuzzy subnear-ring of R.
Conversely, assume that p and 7° are fuzzy subnear-rings of R. Then, we have

v

n(f(wlv w2, ""wm)) =1- Wc(f(wl,wm ---,wm))
< 1 —min{n®(w1),n(wa), ..., n(wm)}
=1- min{l - 77(“’1)7 1- n(U)Q)» eyl = n(wm)}
=1— (1 — max{n(wy),n(wa), ....n(wm)})
= max{n(wy ), n(wa), ..., n(wm) }.

For all di*,b € R and 1 < i < n there is z; € R so that

f(d2 ! $17dz+1) = b
770(%') > min{ﬁc(d1)7ﬁc(d2) (d )7776( z+1)7~-7770(dm)7’70(b)}7
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and so

n(zi) =1-n°(zi)
<1- min{nc(d1)7nc(d2)7 ---7776(d¢—1), nc(di+1)7 ---77ic(dm)77lc(b
=1- min{l - n(dl)a vy 1= n(di*1)7 1- n(di+1)a eyl — n(dm)v
= maX{??(dl)a U(d2)» --~>77(di71)a n(di+1)> ~-->77(dm)777(b)}~

Also, we have

—n(b)}

77(9(511aQ2»~-~»(1n)) = 1_776(9(Q1»Q2a~-,%))
<1- min{nc((ﬁ)?nc((h)a ) nC(Qn)}
=1- Inll’l{l - n(QI)? 1- 77(612), eyl = n(Qn)}
= min{??((h)a 77((12)a Ly U(QH)}'

This yields that A is an intuitionistic fuzzy subnear-ring of R. O

Theorem 2.6. The set A = {{z,p(x),n(x)) | x € X} is an intuitionistic fuzzy
subnear-ring of an (m,n)-near ring (R, f,g) if and only if for all s,t € [0,1], the
non-empty sets ji; and ns are subnear-rings of R.

Proof. Suppose that u is a fuzzy subnear ring and p; # 0, then for all g1, go, ..., ¢m €
,ufta
:u(f(qh q2, 7qm)) > mln{M(Ql)aM(CD% 7M(qm)} > t.

Then :u(f(QMqQa ,Qm)) > ts0 f(qla qz2, -, qm) Ev/j/t' Hence (/'(‘fn f) is a Semigroup'
For all d~',d,b € p; there is z; € R that f(d{™ ', z;,d™,) = b and
(i) = min{p(dr), p(da), o pp(di—1), pldi1), ooy po(dim) } > 2.

Hence z; € pt, and so (¢, f) is an m-group. For all wy,wa, ..., w, € u; we have

U(g(wlvw% "'7wn)) > min{:u(wl)v U(wQ)a "'hLL(wn)} 2>t

Thus u(g(wl,wg,...,wn)) > t, this gives that g(wy,ws,...,w,) € ps. Therefore
(w4, g) is an n-semigroup. Then the level subset p;, t € (0,1], is a subnear-ring of
R.
Assume that = # (). Then for all dy,ds, ..., d,, € 7S, we have
n(f(dla d27 EE) d’m)) < maX{U(d1)7 U(d2)7 (a3} n(dm)} <s.

Then n(f(dl,dg,...,dm)) < s, and so f(dy,da,...,d,) € NS, hence (1, f) is a
semigroup. _
For all d;~',d",b € 1S there is z; € R such that f(d}" ", 2;,d ) = b and

n(x;) < max{n(di),n(dz), ..., n(di-1),n(di+1), .-, n(dm)} < s.

Thus, we have x; € n;, which implies that (ns, f) is an m-group. For all wy, ..., w,, €
1s we have

n(g(wr, wa, ..., wn)) < max{n(wy),n(ws),...,n(wn)} < s.
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Thus n(g(wl,wg, ,wn)) <'s, and so g(wy,ws, ..., w,) € ns. Consequently, (s, g)
is an n-semigroup. This yields that the level subset 7, for s € (0, 1], is a subnear-
ring of R.

Now, suppose that the level subset us, ¢ € (0,1], is a subnear-ring of R.
For all wy,wsa, ..., wy, € R let b = min{u(wy), ..., u(wm)} so for all 1 < i < m,
p(w;) > b As a result wy,wa,...,wm € pp, flwi,wa,...,wy) € pp, and so
,u(f(wl,wg, ...,wm)) > b, or

w(f (w1, wa, ..oy wy)) = min{p(wr), p(wa), ..., wlwm)}-

For all q1,¢2,...,¢n € Rlet a = min{u(q1), p(qa), ..., 11(qn)}, then for all 1 <i <n,
1(gi) > a. As a result q1,G2,...,qn € fla, and s0 g(q1,qz2,..,qn) € fiq. Hence
M(g((h, q2, ..., qn>) > a, or equivalently

w(g(ar, g2, -, qn)) = min{pu(qr), n(g2), -, 1(qn) }-

For all di_lv d?}rp b€ Rletd = mln{,u'(dl)a ,u'(dQ)a ) ,u'(di—l)a N(di—‘—l)a S /u‘(dm)a :U‘(b)}7
then dzl_l,d?j_l,b € pq. Hence, there is x; € ug so that b = f(dzl_l,xi,d:-’il),

() > d = min{pu(dy), j(da)s oo j(di1)s (i) ooy (), (B}

Therefore, i is a fuzzy subnear-ring.

Now, suppose that the level subset 7=, s € (0,1], is a subnear-ring of R. For
all wy,wa,...,wy, € R let b = max{n(wi),n(wa),....n(wm)} so for all 1 < i <
m, n(w;) < b. As a result wy,wa, ..., w,m € M, f(wi,wa,...,;wm) € My, and so
n(f(wr, wa,...;wn)) <b

n(f(wl,wg, ey wm)) < max{n(wy),n(wa), ..., n(wm)}

For all ¢1,q2,....,qn, € R let a = max{n(q1),n(q2),...,7(gn)}, so for all 1 < i <

n, n(g;) < a. As a result q1,92,...,qn € 7o 50 g(q1,92,,qn) € 7a. Hence
n(9(q1, @2, --.,qn)) < a, which implies that

n(9(q1, 42, - qn)) < max{n(q1),n(q2), .-, n(qn)}-

Foralldi™!,df% 1, b € Rlet d = max{n(dy),n(d2), ..., n(di-1), 1(di1), - 1(dim), 1(b) 3,
so di~',d" |, b € ng. Hence there is x; € 14 so that b= f(di™", z;,d",),

s Y410
n(ml) <d= max{n(dl)v n(d2)v ] n(di*1)7 n(diJrl)v ey 7](dm)v 7](b)}
Therefore 7 is a fuzzy subnear-ring. O

Example 2.7. In Example 1.11, let

0.7, fweZ,
p(w) = .
0.2, ifwé¢?Z.

0.2, if weZ,
0.9, if w¢Z.
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In this case, we have pug.7 = Z and pg.o = R are both subnear-rings, and 77(%2 =7
and 77(%9 = R are both subnear-rings. Hence p and 7 are fuzzy subnear-rings, of
(R,+,-). So, according to Theorem 2.6, A = {{(w, p(w),n(w)) | w € X} is an
intuitionistic fuzzy subnear-ring of (R, f, g)

Definition 2.8. Assume that (R, h,k) is an (m,n)-near ring and W is a non
empty subset of R. The intuitionistic characteristic function of W is denoted by

Xw = (Hxw:Txw)) and is defined by

1, ifweW,

:R— 10,1 — =
Hoxw 0,1] | w Hxew {0’ ifw g W,

0, ifweW,

:R— 10,1 — =
Txw 0,1] [ w — nyy {17 it w g W

Example 2.9. In Example 1.11, let A = {2w | w € N} and

)1, ifwe A
Hxa =30, ifwgaA,

)0, ifweA,
ATV fwg A

Then x4 = (x4, My4) 1S intuitionistic characteristic function of A.

Lemma 2.10. Let I be a subset of an (m,n)-near ring (R, f,g9). Then I is a
subnear-ring of R if and only if the intuitionistic characteristic function x; =
(Bxrs My ) of I is an intuitionistic fuzzy subnear-ring of R.

Proof. Assume that the intuitionistic characteristic function x7 = (ty,,7y,) of I
is an intuitionistic fuzzy subnear-ring of R.

(1) Let wi,wa, ..., Wy, € I, then py, (w1) = py, (w2) = ... = piyy, (W) =1, and
SO
Mt (f(wlaw27 --'7wm)) > min{uXI(wl)aﬂXI(w2)7 "'7#X1(wm)} =1
Let wi,wsa,...,wy € I, then n,,(w1) = ny,(w2) = ... = 1y, (wy) = 0, which

implies that

Mxr (f(wla W2, ...y wm)) < maX{nXI (wl)’ Mxr1 (wQ)a wo Ty (wm)} =0.
Therefore f(wy,wsa, ..., wy) € I. ,
(2) Let d,b € I, then there is z; € R, 1 <14 < n, so that f(d}" ", 2;,d",) = b

and Hxr (xl) > Inin{:uXI (dl)MLLXI (d2)7 ey My (di—l)a:U'XI (di+1)7_~~~7u>{1 (dn)a Hxr (b } =
1. Let d7,b € I, then there is z; € R, 1 <i < mn, so that f(d{ ", z;,d},) = b and



Mathematics Interdisciplinary Research 10 (2) (2025) 199 — 229 209

nXI(xi) < max{nXI(dl)anI(d2)7"'777X1(di—1)777><1(di+1)7"'anXI( ) 77XI( )} =0,
and so x; € I.

(3) Let wy,ws,...,w, € I, then p,, (w1) = pxr(we) = ... = py, (Wm) = 1,
which implies that

frer (9(w1, wa, oy wy)) > min{ ey, (1), pog, (W2), .oy fiy, (W)} = 1.
Let wy,wa, ..., wy, € I, then n,, (w1) = 1y, (w2) = ... = 1y, (wy,) = 0, and hence

Mer (w1, wa, ...;wy)) < max{n,, (w1), My, (W2), ..., My, (wn)} = 0. This implies
that g(wy,wa, ..., w,) € I.

Conversely, assume that [ is a subnear-ring of R.

(1) Let wy,wa, ..., wy, € R. If there is 1 < ¢ < m that w; ¢ I, then

min{:uXI (w1), Hoxr (w2), ..., Hxr (W)} =0,
Hxr (f(wla w2, .. wm)) = min{“xz (w1)7 Hoxr (w2)7 o Hx g (wm)}

Otherwise, wy,wa,...,w,, € I and I is an ideal of R so f(wy,wa,...,wy,) € 1.
Hence, we get

Hxr (f(w1,UJ2,.. )) L,
Mot (f(wl’w% ooy Wi )) > mln{“XI(wl) :U’XI( )7 "'7”X1(wm)}'

(2) Let d7,b € R. Since R is an (m,n)-near ring, it follows that forall 1 <i <n
there is z; € R, f(dﬁfl,xi,d;’ﬁ_l) = b. If there is 1 < ¢ < m such that d; € I or
b¢& I, then

min{p’XI (.dl)a Koy (d2)7 cees Mxr (di—l)v Hoxr (di+1)7 cees Mxr (dn)v Hxr (b)} = Oa
Hxr (l‘l) > mln{/J'XI (dl)a Hx 1 (d2)7 ey Boxr (di—l)v K1 (di+1), ey Boxr (dn)a Hx 1 (b)}
Otherwise, di*,b € I and I is an ideal of R. Hence, x; € I which implies that
i, (@) = 1 and
Hoxr (xl) > min{/’(’XI (dl)a Hox (d2)7 oo Mxr (di—1)7 Hoxr (di-‘rl): oo My (d”)v Hoxr (b)}v
(3) Let wy,ws, ..., w, € R. If there is 1 < i < n such that w; & I, then
min{p(wy), p(wsa), ..., p(wy,)} = 0 and
Myt (g(wh W2, -y wn)) > min{ﬂxz (w1)7 Hox (w2)> ooy My (wn)}
Otherwise, wy, wa, ...,w, € I and I is an ideal of R, and so g(w1,ws,...,w,) € I.
This gives that
Hox (g(wlaw27 7wn)) =1,
Moy (g(wla W2, .-y wn)) > min{uxz (wl)v Hx 1 (w2)’ ooy Mxr (wn)}
(1) Let wy,wa, ..., wy, € R. If there is 1 < ¢ < m such that w; & I, then
maX{??x; (w1)777XI (w2)7 o Ty (wm)} =1,
M1 (f(wlv w2, ..y wm)) < maX{T]XI (wl)’ 1 (w2)7 <o Mxr (wm)}

Otherwise, wy,wa,...,w,, € I, and I is an ideal of R so f(wi,ws,...,w,,) € I.
Hence, we have
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Mys (f(wl,wQ,...,wm)) =0,
Mxr1 (f(whw?a ) wm)) < maX{Uxf (wl)v Mxr (wQ)v co Ty (wm)}

(2) Let df,b € R. Since R is an (m, n)-near ring, it follows that for all 1 <7 <n
there is z; € R, f(dﬁ_l,xi,dﬁl) =b. Ifthereis1 <i<msothatd; € I orb¢ I,
then

maX{UXI (dl)v 1 (dQ)a o Mxr (difl)v 1 (di+1)a o Thxr (dn)’ Mxr (b)} =1,
x1 (.’1%) < maX{’ix; (d1>7 Nxr (d2)7 —o Ty (difl)v M1 (diJrl)’ <o Ty (dn)’ Tixr (b>}

Otherwise, d7*,b € I and [ is an ideal of R so z; € I. Consequently, we get
Nxr (ml) =0 and
1 (l‘l) < maX{UXI (dl)v M1 (d2)7 —o Ty (di—l)v i (di-',-l), ~o Ty (dn)a Mxr (b)}
(3) Let wy, wa, ..., w, € R. If there is 1 < i < n such that w; & I, then
ma‘X{TIXI (wl)v TIxr (wQ)a <o Txy (wn)} =1 and
Nxr (g(wlv W2y -evy wn)) < maX{T}X} (wl)v Tixr (wQ)a ceos Tixr (wn)}

Otherwise, wy,ws, ...,w, € I and I is an ideal of R so g(w1,wa, ...,w,) € I. This
yields that hence

nXI(g(wth,...,wn) =0,
s (901w, wn)) < max{iny (w1), 7y (w2), o ()}

O

Definition 2.11. Let I be a non-empty subset of an (m,n)-near ring (R, f, g).
Then I is called an ideal of R if

(1) I is a subgroup of m-ary group (R, f), (I, f) is an m-ary group,
(2) for every qi,qz, ..., 4n S R> g(q§_717 I7q?+1) g I

(3) for all r{fl,rﬂl,sfl,syﬂ € Rand 1 <k <n,del, there exists [ € I so
that

9(5{715 f(rllc_lvdv T?Jrl)’ 5;‘L+1)

= f(g(sji_la 1, S?+1),g(3{_1,T2, S?+1)a "'ag(s{_lvrk—17 S;L+1), lvg(sjl_la Tk+1,
i—1

S?+1)7"'7g(sjl ,7"7“5‘?_‘_1))-

Note that I is called an i-ideal of R if it satisfies (1) and (2) and I is called
a j-ideal of R for j # i if it satisfies (1) and (3).

Also, if for every 1 < i < n, I is an i-ideal, then [ is called an ideal of R.
In general, every ideal in an (m,n)-near ring is an (m,n)-subnear ring, but the
converse is not true.
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Example 2.12. In Example 1.12, the subset 27Z is an n-ideal of (Z, h, k). Also,
(2Z,h) is a normal subgroup of m-ary group (Z,h). For all s1,s2,...,8, € Z,
k(st1 27Z) = 27 C 27Z.

Definition 2.13. Let (R, f, g) be an i-(m, n)-near ring and A = {(x, u(z), n(x)) |
x € X} be an intuitionistic fuzzy set of R. We say that A is an intuitionistic fuzzy
ideal of R, if

(1) for all wy,ws,...,wy € R,
/L(f(whw% [X3) wm)) > Inin{lu(wl)nu’(w2)a B3] ,u(wm)},

(2) for all a]*,b € R and 1 < i < n there is z; € R so that

fla Y w,afty) = b,
M(‘rl) > min{:u(al)a IU'(G'Q)’ () N(aifl)’ M(ai+1)a B3] :U'(am)v /j'(b)}v

(3) for all wi™ ", w,,w € R and 1 < j < m, there is a € R that

i—1

F]™ wwhy) = fwi™ a,wity), pla) > p(w),

(4) for all wy,ws,...,w, € R,

1(g(wi, wa, ...y wy)) > min{p(ws), p(ws), ..., p(wn)},

(5) for all w?,w € Rand 1 <i<n,
p(g(wi™w,wi ) > plw),

(6) forall k #£i, 1 <k <m,d"",d? ,w € R and wy, € R there is hy € R so
that

g(diiaf(wl, "',wm)adzn-i,-l) = f(g(dlif%w17d?+1)7g(d§717w27d?+1), "')g(diia
wkflud?ﬁ-l)a hk7g(diilvwk+17d?_~_1)» ~~~7g(diilawm7d?+1)) and M(hk) Z M(wk)7
(7) for all wy, wa, ..., wy, € R,
n(f(wly w2, .-, wnb)) < maX{U(wl)a 77(7«02), ) n(wm)}a

(8) for all d*,b € R and 1 < ¢ < n there is w; € R so that

Fli" wi, dity) = b
77(101) S max{ﬁ(dﬁ, n(dg), ceny n(di—l)a 7’](di+1), ceny ’r](dm), 'r](b)}7

(9) for all wi™ ", wt,,w € R and 1 < j < m, there is a € R so that
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1 o
f('UJ{ vawﬁl) = f(wi 17a’a w'ﬁ»l)a W(a) S T]('UJ),

(10) for all wy,ws,...,w, € R,

Tl(g(wl,w% e wn)) < max{n(wl)a 77(w2), "'777(wn)}7

(11) for all wi,z € Rand 1 < i <mn,
n(g(wiilaw7w;ﬂ+l>) < n(w)v

(12) for all k # i, 1 <k <m, d{"",d?, |, w € R and wy, € R there is hy € R so
that

g(di_17 f(wla ~'~7wm)a d?+1) = f(g(dzi_17wlvd?qu)vg(dil_l)wQa d?+1)? "'ag(di_la
w1, Ay )y b, g (A wign, Ay ), e g (A Wi, Ay )) and () < (wy).
Note that A is an intuitionistic fuzzy i-ideal of R if it satisfies 1,2,...,5,7,....,11

and A is an intuitionistic fuzzy j-ideal, j # 4, of R if it satisfies 1,2, 3,4,6,...,10,12,
1<4,5<n.

Example 2.14. In Example 1.12, let

0.8, if we 2Z,
p(w) = .
0.2, if w ¢ 2Z.

0.1, if w e 22,
n(w) = .
0.7, if w¢ 2Z.

In this case, we have s = 2Z and po.2 = Z are both n-ideals of (Z, h, k) and
77(%1 = 27 and n§7 = 7 are both n-ideals of (Z, h, k), hence y and < are fuzzy
n-ideals of (Z, h, k). So, according to Theorem 2.19, A = {{w, p(w), n(w)) | w € Z}
is an intuitionistic fuzzy n-ideal of the (m,n)-near ring (Z, h, k). Using the above
definition, we can prove that A = {{w, u(w),n(w)) | w € Z} is an intuitionistic
fuzzy n-ideal of the (m,n)-near ring (Z, h, k).

Theorem 2.15. Assume that A = {{z, u(x),n(x)) | © € X} is an intuitionistic
fuzzy ideal of an (m,n)-near ring (R, f,g), then A" = {{z, p(z), p(z)) | = € X}
s an intuitionistic fuzzy ideal of R.

Proof. Assume that p is a fuzzy ideal of (R, f,g). Then, by Theorem 2.3, A’ =
{{z, u(x), p(x)) | * € X} is an intuitionistic fuzzy subnear-ring of an (m, n)-near

ring R and for all wifl,w?j_l,w € R and 1 < j < m, there is a € R such that

— o
Flwl™wwity) = fwi™, a,wity), pla) > pw),

and so 1(a) = 1 — p(a) < 1 — pu(w) = p°(w).
For all w},w € Rand 1 <17 <n,
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H(Q(wi_17w7w?+1)) Z ,LL(’LU),

hence 1 (9w}~ w,wfyy)) = 1 — plg(wi™ w,wfy,)) < 1 p(w) = pe(w).

Forallk #¢, 1<k <m, d’i_l,dg_l, 7 € R and wy € R there is hy € R so
that

g(dg_la f(w17 .. )7 d:}]) = f(g(dll_la wl'a d?+1)a g(di_lv w2, d?+1)7 eeey g(dli_17
wk*lvd?}l)vh’ka (dl 7wk+17d?+1)7"'7g(d11717wm7d?+1)) a'nd /J‘(h’k) Z /J‘(:Ek)
Therefore, we have p®(hyx) =1 — p(hy) <1 — plag) = pc(wg). O

Theorem 2.16. Assume that A = {{z,u(z),n(x)) | z € X} is an intuitionistic
fuzzy ideal of an (m,n)-near ring (R, f,g). Then A" = {{z,n(z),n(z)) | z € X}
18 an intuitionistic fuzzy ideal of R.

Proof. Assume that A = {{z, u(z),n(x)) | © € X} is an intuitionistic fuzzy ideal
of an (m,n)-near ring (R, f,g). Then A" = {{x,n°(x),n(z)) | + € X} is an
intuitionistic fuzzy subnear-ring of R.

For all wifl,wﬁ_l,w € R and 1 < j <m, there is a € R such that

Flwd ™ w,wly) = flwi a,wity), n(a) < n(w),
and so n°(a) =1 —n(a) > 1 —n(w) = n°(w)
For all w},w € Rand 1 <7 <n,

n(g(wi™ w,w?, ) < n(w).

This implies that, n°(g(w} ™", w,wl,)) = 1 —n(g(wi " w,wl,)) > 1 —nw) =
n°(w).
Forallk #4,1 <k <m, dlfl,alg_l,w’fT € R and w, € R there is hy € R so
that . .
g(dll_17f(w1’""wm>7d?+1) = (g(d ! » W1, z+1) (dll_lvw27d?+1)7"'7g(d11_17
W1, A1), e 9(d T i1, A7)y g(d Y Wi, i) and (k) < m(wy).
Thus, we get n°(hi) =1 —n(he) = 1 = n(we) = n°(we). O

Lemma 2.17. A = {(z,pu(z),n(z)) | = € X} is an intuitionistic fuzzy ideal of an
(m,n)-near ring (R, f,g) if and only if p and n° are fuzzy ideals of R.

Proof. Let A be an intuitionistic fuzzy ideal of R. Clearly u is a fuzzy ideal. Thus
by Lemma 2.5, n°¢ is a fuzzy subnear-ring of R. For all wifl,wm_l,w € R and
1 <5 < m, there is a € R such that

1 i
f(W{ 5w7w;'r}k1) = f(wi 17 a, wﬁ1)7 n(a) S U(w)7

and thus n°(a) = 1 —n(a) > 1 — n(w) = n°(w).
For all w},w € Rand 1 <7 <n,

n(gwi™ w,wly ) < n(w).

This gives that nc(g(wi_l,w, wf+1)) = lfn(g(wi_l, w,wgﬂrl)) > 1—n(w) = n°(w).
For all k #i, 1 <k <m, di 1,(1@14_17111’1ﬂ € R and wy € R there is hy, € R so that
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g(d’i_17 f(U)1,U)2, [EES) wM)a dzn+1) = f(g(di_lvwla dﬁrl)ag(di_la w2, d?Jrl)a "'ag(dg_lv
W1, dq)s e, g(dT Wi, A )y e, g(dS T Wi, APy ) and n(hy) < n(wg).

Thus 7°(he) =1 —n(he) > 1 —n(we) = n°(we).

Therefore, we conclude that 7¢ is a fuzzy ideal of (R, f,g), t € [1(0),1].
Conversely, if 4 and n¢ are fuzzy ideals of R, then by Lemma 2.5, A is an

intuitionistic fuzzy subnear-ring of R. For all wl 1 wiy, w € Rand 1 <75 <m,

there is a € R such that

Fw]™hwwh ) = fwi™a,wihy), n(a) = 1—n%a) < 1-n(w) = n(w), so
n(a) < n(w).

For all w},w € Rand 1 <7 <n,
n(glwi™hw,wi ) =1 —=n(gwi™ w,wly)) < 1—n(w) = n(w),

hence n(g(wi_l,w,wz’-;l)) § n(w).

Forall k #i, 1 <k <m, d;"',dl,;,w] € R and wy, € R there is hy € R so that
g(d3717 f(wla W2, -y wm)7 d;n+1> = f(g<d7171a w1, d;:-l)a g(dZ1717 w2, dzn-i,-l)a cey
g(diila W1, d?+1)a hka g(dzlila Wk+1, dln+1)7 ceey g(dllil, W, d:l+1))
and
n(hi) =1 —=n(hx) < n°(wi) = n(wg). Thus, n(hi) < n(wg).

Therefore, all the conditions of the definition are satisfied. Consequently, A =

{{z, u(x),n(z)) | x € X} is an intuitionistic fuzzy ideal of (R, f, g). O

Theorem 2.18. ([20]). Assume that A = {{x,u(z),n(x)) | x € X} is an in-
tuitionistic fuzzy set of an (m,n)-near ring (R, f,g). Then A is an intuition-
istic fuzzy ideal of R if and only if B = {{x,u(x),p(x)) | z € X} and C =
{{z,n%(x),n(x)) | © € X} are intuitionistic fuzzy ideals of R.

Proof. If A is an intuitionistic fuzzy ideal of R, then p = (u€)¢ and n° are fuzzy
ideals of R by Lemma 2.17. Hence, B and C' are intuitionistic fuzzy ideals of R.
Conversely, if B and C are intuitionistic fuzzy ideals of R, then the fuzzy sets u
and 7n¢ are fuzzy ideals of R. Therefore, A is an intuitionistic fuzzy ideal of R. O

Theorem 2.19. The set A = {(z, u(z),n(x)) | © € X} is an intuitionistic fuzzy
ideal of an (m,n)-near ring (R, f, g) if and only if for all s,t € [0, 1], the non-empty
sets py and ns are ideals of R.

Proof. Suppose that the level subset g, t € (0,1], is an ideal of R. Then y; is a
subnear ring of R. By using Theorem 2.6, p is a fuzzy subnear ring of R.

(1) Let wi_l,wﬁ_l € R, w; € Rand t = p(w;). Then w; € py and py is an
ideal of R, and so for all 1 < j < m there is a; € u; so that f(wifl,wi,wfj_l) =
fwl™ aj, ;"4_1) and p(aj;) > ¢t = p(w;). Therefore p(a;) > p(w;).

(2) Let w},w 6 R. Then there is b € (0, 1] such that u(w) = b. pp is an ideal
of R, and so g(w{™", uy, wl, ;) C pp. This implies that g(w} ™", w,wl ) € mp, and
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so pu(g(wi™ w,wl,)) > b = p(w). Therefore, for all wy,ws, ..., w,, w € R and
1 <1 < n, we have

,LL( ( i 1,w,w?‘+1)) Zu(w)

(3) Let k #i, 1 < k < n, d* ,dl_H,w1 ,€ R and d € R. Then there is
b € (0,1] so that pu(d) = b. Slnce Uy is an ideal of R, it follows that there exists
l € pp such that 4

g(sll_la f(rlf_17 da rlran/rl)’ S;L+1) = f(g(sll_17 1, 317']4-1)’ A}

g(siila Tk—1, S;r'LJrl)a L g(siilv Tk+1, S?Jrl)v sy 9(81717 Tn, s?+1))'

I € ppsop(l) >b=pu(d).

Now, suppose that the lower level cut subset =, t € (0,1], is an ideal of R. Then
ntg is a subnear ring of R.

(1) Let wi™",w, € R, w; € R and t = n(w;). Hence, w; € ne and S is an
ideal of R. Thus for all 1 < j < m there is a; € 7, so that f(wifl,wi,wﬁl) =
f(w{_l,aj, w?i ) and n(a;) <t = n(w;). Consequently, n(a;) < n(w;).

(2) Let w},w € R. Then, there is b € (0,1] so that pu(w) = b. Since up is an
ideal of R, it follows that g(w} ", m, wP ) C np. Hence, g(wi ", w,wl ) € np,
and so n(g(wifl,w,wﬁ_l)) < b = n(w). Therefore, for all wy,ws,...,wp,x € R
and 1 < i < n, we have

n(gwi™ w,wly ) < n(w).

(3) Let k # i, 1 < k < n, di~ 1,d?+1,w1 ,€ Rand d € R. Then, there is
b € (0,1] such that n(d) = b. Since 7, is an ideal of R, it follows that there exists
l € np such that

g( i 1,f(7"1 ' d Tk+1)75?+1) = f(g(sllilarlvsl?-i-l)? sty

9(31 yTk—1, z+1)’ L g(Sll ! » Tk+15 SzT‘LJrl)’ sy 9(811_17 Tn, 8?+1))'

Lenyson(l) <b=n(d).

So A = {{x,u(x),n(x)) | x € X} is an intuitionistic fuzzy ideal of (R, f,g).

Conversely, suppose that A = {(z, u(x),n(x)) | © € X} is an intuitionistic
fuzzy ideal of an (m,n)-near ring (R, f,g). Then p is a fuzzy subnear-ring of R.
By using Theorem 2.6, p; is a subnear-ring of R.

(1) Let wi™, wity € R, w; € py and p be an ideal of R. Then, forall 1 < j <m,
there is a; € R so that f(w] ", w;, wi;) = f(w{_l,aj,w;’_ﬂ_l) and p(aj) > p(w;) =
t. Hence a; € pi;.

(2) Let wy,wa,...,w, € R and w € p;. Then u(g(wi_l,w,wﬁ_l)) > p(w),
and so u(g(wi_l,w,wgﬁrl)) > t. Hence, g(wi_l,w,wgﬁrl) € py which implies that
g(wiilﬂ Iu't7w;l+1) C .

(3) Let k #4,1 <k <n,d ", dP,,wl € R,wy, € ji. Then, there is hy, € R
so that

g(dﬁ_l,f(wl,w%...,w ),d1+1) ‘

:f_(g(dzl_lvwlvd;@rl) 7g(d s W — 17d1+1) hk,g(dﬁ_lawklead?Jrl)v"'a

gldy wi, d7y ),
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and

p(hi) > p(wy) > t, so hy, € py.

Therefore, all conditions in the definition of ideal are met, and consequently p; is
an ideal.
By using Theorem 2.6, 77? is a subnear-ring of R.

(1) Let wi™ ', wi"; € R, w; € ne and p is an ideal of R. Then, forall 1 < j <
there is a; € R so that f(w]™", w;, wh,) = f(w{fl,aj,w;?il) and n(a;) < n(w;) =
t. Hence a; € ;.

(2) Let wy,ws, ..., w, € R and w € n. Then n(g(wi™, w,wp ) < n(w), and

thus n(g(w;™",w,w?,)) < t, which implies that g(w} ', w,wy, ) € ps and so

g(wi™h i wiy) s

(3) Let k #4, 1 <k <mn, d;"*,d?,,,w € R,wy € n;. Then there is hy, € R
so that

g(dzfl,f(w17w27...7wm),d?+l1) ‘

= f(g(dll_la Wi, d?+1)7 =0y g(d11_17 Wk—1, d?+1)7 hkvg(dzl_la Wk+1, dﬁn+1)’ eey

9(di ! Wi, d}y ),

and

n(hi) < n(wg) <t, and so hy, € ne.
Therefore, all conditions in the definition of ideal are met, and consequently ntg is
an ideal. O

m,

Formally, if {u;| i € A} is a family of fuzzy sets in an (m,n)-near ring R, then the
union \/ p; of {y; | i € A} is defined by
[ISYAN

(,;/A pi)(w) = sup{p;(w) [ i € A},
for all w € R.

Definition 2.20. ([2]). Assume that A = {(w, p(w),n(w)) | w € X} is an intu-
itionistic fuzzy set. In this case, we define characteristic function of A by

Qa((w,a,b)) = {17 if p(w) = a and n(w) = b,

0, otherwise.

Definition 2.21. ([3]). Assume that A = {{z,u(z),n(x)) | x € X} is an intu-
itionistic fuzzy set. In this case, we define complement of A by

A = {(z,n°(x), u(2)) | © € X}

Definition 2.22. ([21]). Assume that «, 8 € [0,1] with a + 5 < 1. An intuition-
istic fuzzy point, written as w(q g is defined to be an intuitionistic fuzzy subset
of R, given by

) ? if = b
v ={ o7
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An intuitionistic fuzzy point z(, g) is said to belong to an intuitionistic fuzzy
set (u,7n) denoted by w4, g) if p(w) > o and n(w) < B and for w,y € R we have

f(wl(tlysl)7"‘7wm({,,"l)svn)) = f(w17w27 "’7w’m)(tl/\.../\tm,sl\/...Vsm))7
g(wl(tl.sl)7 cey wTL(tn,Sn)) = g(wla wa, ..., wn)(tl/\.../\tn,81\/...\/sn))'

Definition 2.23. An intuitionistic fuzzy ideal of an (m,n)-near ring (R, f, g),
not necessarily non-constant, is called intuitionistic fuzzy prime ideal, if for any
intuitionistic fuzzy ideals Wi, Wa, ..., W,, of R (W; = {{(z, u;(z),n:(z)) | * € R},
i € {1,2,...,n}) the condition g(Wy, Wa,...,W,,) C P implies that either W; C P
or Wo CPor...or W, CP.

Definition 2.24. ([6]). Assume that W is intuitionistic fuzzy set of a universe
set X. Then (a, 5)-cut of A is a crisp subset Cy (W) of the intuitionistic fuzzy
set W is given by

CopgW)={w|weW, pnw)>aand n(w) < B} for o, € [0,1] with « + 5 < 1.

Theorem 2.25. If I is an i-ideal of an (m,n)-near ring (R, f,g), then for any
t,s € (0,1) there exists an intuitionistic fuzzy i-ideal x(; ) of R such that C 5 =
1.

Proof. Let u: R — [0,1] and n° : R — [0, 1] be fuzzy sets defined by:

Lt s == .
W= 0,1, ifyel,

where ¢, s are fixed numbers in (0,1). Then clearly Cy; o = I.
(1) Let wy,wa, ..., wy, € R. If there is 1 < ¢ < m such that w; & I, then

min{#(wl)»ﬂ(w2)7 7H(wm)} =0,
w(f (w1, wa, ..oy wy)) = min{p(wr), p(wa), ..., plwm)}-

Otherwise, wy,wa, ..., w,, € I and I is an ideal of R. Then f(w;,ws,...,wy,) € I,
and hence

u(f(wla w2, awm)) = ta
:UJ(f(wtha 7wM)) > min{:u(wl)? :u(w2)a B :U(wm)}

(2) Let df,b € R. Since R is an (m, n)-near ring, it follows that for all 1 <7 <n
there is w; € R so that f(dlfl7wi,d;11) =b. If thereis 1 < j <mso that d; €I
or b ¢ I, then

min{/u(dl)v /u(dQ)v ) /u(di—l)v ,u(di-i—l)’ ) /u(dn)’ :u(b)} =0,
/J’(wl) 2 min{u(dl)a u(dQ)a ) u(di—l)’ M(di-‘rl)) ) /J’(dn)7 /J’(b)}

Otherwise, d*,b € I and [ is an ideal of R, then w; € I and hence u(w;) = t,
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,LL(U),’) > min{u(dl)’ :U“(dQ)a ) :U“(di—l)’ :u(di-‘rl)v s U(dn)v U(b)}

(3) Let wlfl, wit, € R, w € R. If w € I, because [ is an ideal of R, then for
all 1 < j < m there is a € I so that

f(wi_lvwvwﬁl) = f(wi_laaaw?}rl)v
and so t = p(a) > p(w). Hwgl, b= f(wi_l,mwﬁl) and wy = y1, wa = Y2, ...,

Wi—1 = Yi—1, Wil = Yi»--r» Wm = Ym—1, then by the definition of (m,n)-near ring
for y’f%l, b € R there is a € R so that b = f(y{_l7 a, y;’“l). Hence, we obtain

Fi™ w,wi ) = fyia g™, pa) >0 = p(w).
(4) Let wy, wa, ..., w, € R. If there is 1 < ¢ < n so that w; & I, then

min{ﬂ“(wl)v M(w?)? ceey :u(wn)} =0,
1(g(wr,wa, ...;wy)) > min{p(ws), p(ws), ..., w(wn)}.
Otherwise, wy, wa, ...,w, € I and I is an ideal of R so g(wy,ws, ..., w,) € I. Hence,
we have

u(g(wl,w27...,wn)) =t,
w(g(wr, wa, ...;wy)) > min{p(ws), p(ws), ..., p(wn)}.

(5) Let wl,w € Rand 1 <i < n. If w € I, then g(w}™",w,wl,) € I and so
pw) = p(g(wi™ w,wiyy)) =t I w @ 1, then 0 = p(w) < p(g(wi™ w,why,)).

(6) Let k £1i,1 <k <n, dll_l,d?ﬂ,w{” € R and wy, € I. Then, thereis h, € I
so that 4

g(di_la f('lUl,’UJQ, "'7w7n)7d?+1) = f(g(di_lﬂwlvd?f1)7 sy

g(dll_lawk—lvd?+1)7hkag(dﬁ_lawk—i-hdgrl% ey g(dll_17wmad?+1))'

So ju(hy) = u(wg).

(1) Let wy, wa, ..., wy, € R. If there is 1 < ¢ < m that w; & I, then

max{n(wl)vn(MQ)v '“777(wm)} =1,
n(f(wr, wa, .. wn)) < max{n(wi), n(ws), ..., (W)}
Otherwise, wy, ws, ..., w,, € I and I is an ideal of R, then f(wy, wa, ..., wy) € T
and hence
77(f(1U177~U27 7w’m)> =1,
n(f(wlv W2, vy wm)) < max{n(wl)a 77(“’2)» ey n(wm)}

(2) Let df,b € R. Since R is an (m, n)-near ring, it follows that for all 1 <i <n
there is w; € R so that f(dll_l,wi,dﬁl) =b. If thereis 1 < j <mso that d; € I
or b ¢ I, then

maX{??(dl)a n(dQ)’ ) n(di—l)’ U(di+1)7 i) n(dn)a Tl(b)} =1,
n(wl) < maX{U(d1)7 U(d2)7 ] n(di—l)v n(di—l-l)’ ] n(dn)’ U(b)}

Otherwise, d7",b € I and I is an ideal of R and so w; € I. Thus n(w;) =t,
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n(wi) < max{n(di), n(da), -, n(di-1),7(dis1); - n(dn), 7(b) }-

(3) Let wi_l,wﬁl € R, we R. If we I, since I is an ideal of R, it follows
that for all 1 < j < m there is a € I so that

f(w’i ! w7wﬁ-l) = f(wi_laavwml)v

and so t = n(a) < p(w). w1, b= f(w} " w,wh,) and w; = y1, w2 = ya, ...,
wi_1 = yz 1, Wit1 = Yis -y Wi = Ym—1, then by the deﬁnltlon of (m,n)-near ring,
for y~1,b € R there is a € R so that b= f(y) ', a, Y ~1). Hence, we obtain

f(wi Lw s wity) = f(il/l La y;n ), m(a) <1 =n(w).
(4) Let wy,ws, ...,w, € R. If there is 1 < i < n such that w; & I, then

max{n(wl)77’(w2)7 W(wn)} =1,
n(g(w17w27“'7wn)) < max{n(wl),n(w2)v"'777(wn>}'

Otherwise, wy, wa, ...,w, € I and I is an ideal of R and so g(wy,wa, ...,w,) € I.
This implies that

n(g(wi, wa, ..., wn)) =t,
n(g(wl,wg,...,wn)) > max{n(wi), n(ws), ...,n(wy)}.

(5) Let wl,w €Rand1<i<n. Ifze€l, then g(w] ", w,wl,) € I and so
(U)) ( ( 1awawi+1)) _t Ifw ¢ Ia then 1 - 77( ) = n(g(wi_17waw?+l))'

(6 )Letk:;éz, 1<k<n,d'dP,wi* € Rand wy € I. Then, there is hy, € I
so that

g(dlfl,f(w17w27...,w )7dz+1) 4

= f(g(dzl_lawladgrl) 7g(d y W — 17dl+1) hkvg(dll_lawk—klvd;zrl)a ceey

g(dzl_law7nad?+1))~

Therefore, we get n(hi) < n(wg). O

Lemma 2.26. If I is a subset of an (m,n)-near ring (R, f,g), then I is an ideal
of R if and only if the intuitionistic characteristic function X1 = (fby;Nx,) of I is
an intuitionistic fuzzy ideal of R.

Proof. Assume that the intuitionistic characteristic function x7 = (ty,,7y,) of I
is an intuitionistic fuzzy ideal of R.

(1) Let wy,wo,...,wy € I. Then p,, (w1) = py, (we) = Py (
and thus Hx 1 (f(wl,w% B3] wm)) > Inin{:u’XI (wl)VN“XI (wQ)a )/u’XI( )} =
so f(wi,wa,...,wy) € I.

(2) Let d*,b € I. Then there is w; € R, 1 <4 < m, so that f(d}"', w;,d% ;) =
b and N’XI(wi) > min{/‘xr(dl)v'“a:uxz(di—l)a,u')a(di+l)a“'nu'XI( ) :LLXI( )} =1,
and so w; € I.

(3) Since p,, is a fuzzy ideal of R so for all wi_l,wﬁl € R, we I and

1 < j < m, there is a € R so that f(w! ™' a ywity) = fwi " w,w)) and
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fix; (@) > jiy, (w), and hence a € I. Thus, for all wi™", w; € R and w € I there
is @ € I so that

1 .
f(w{ aavwﬁ—l) = f(wi 1vwa wﬁ-l) and Hxr (a) > Hxr (w)

(4) Let w1, wa, ..., wn € I. Then py, (w1) = py, (w2) = ... = py, (wy,) =1, and
thus

Hox ¢ (g(wlaw27 7wn)) > min{N’XI(wl)hu’XI(wQ)v ooy Hxr (wn)} =1
Hence, g(w1, we, ...,w,) € I. _
(5) For every df,w € I and 1 <i < n, 1 = p,, (w) < py, (9(di " w, dy)),
and so

g(d  w,dpy ) €1

(6) For all k # i, 1 <k <m, d;" ', d, v € R and wy € I there is hy € R
so that

g(dll_l,f(wl,wg,...,w )7dz+1> .

= fg(di  wr, dFy ), ey g(d W, A7), s g(dy ™ Wiy diy)s ey

g(d " wy, ) and iy, (hy) > oy, (wy), thus hy € 1.

(1) Let wq,wa,...,wy, € I. Then ny, (w1) = 1y, (w2) = ... = 0y, (wy) =
0, and so 0y, (f(wi, w2, ..., wn)) < max{ny, (w1),my, (W2), ..; Ny, (W)} = 0 so
f(wi, wa, ...ywy,) € 1.

(2) Let d",b € I. Then thereisz; € R, 1 <i < m, so that f(d} ", z;,d%,) =b
and 1 (xt) < maX{nXI(d1)7nX1(d2)v"'777X1(di—1)777)<1(di+1)7 "'777X1( m) 77><1( )} -
0, and so z; € I.

(3) For all wi™* w wit, € R, w € land 1 < j < m, there is a € R so that

f(w{ La le) f(wi ! sw,wih ) and 7y, (a) <1y, (w), hence a € I.

Thus, for all w} ™", wm; € R and = € I there is a € I so that

m

f(w{_lv a, wﬂl) = f(wi ! , W wz+1) and 77X1 (a) S 77)(1 (’LU)

(4) Let w1, wa, ..., wy, € I. Then ny, (w1) = 1y, (w2) = ... = 7y, (W) = 0, thus

Nxr (g(wl’w% '~'7wn)) S maX{T]XI(w1)777XI (U)?)’ ""nXI(wn)} = 0’
and so g(wy, wa, ..., wy) € I. '
(5) For every di,z € I and 1 <4 <mn, 0 =1y, (z) > ny, (9(di" ", 2,d7,,)), we
have

g(di ' z,d ) € 1.

(6) For all k £ 4, 1 < k < m, di_l,d?ﬂ,w{" € R and wy € I thereis hy € R
SO thatA

g(d71717f(’lU1,1,l}2,..., )7d;’L—i-1> )

= f(g(dllilﬂulvd?.kl) 7g(d s W — 17d1+1) hkvg(diilawk+17d?+1)7 ceey
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g(dzl_la W, d?Jrl))
and 7y, (hi) < 0y, (wg). Thus by € 1.
Conversely, assume that [ is an ideal of R.
(1) Let wy, wa, ..., wy, € R. If there is 1 < ¢ < m that w; & I, then

min{:U’XI (w1)7 Hoxr (w2)a oy Hoxr (’Ujm)} = 07
Hoxr (f(wla W2y ey ’U}m)) > Inin{MXI (wl)a Hoxr (’(1)2), coey Hoxr (wm)}

Otherwise, wy, ws, ..., w,, € I and I is an ideal of R and so f(wy,wsa, ..., wy,) € I.
Hence

12599 (f(w1,w2, ...,wm)) = 1,
Mot (f(wlaw27 ---vwm)) > min{ﬂxr (wl)v Koy y (w2)7 cees Mxr (wm)}

(2) Let di*,b € R. Since R is an (m,n)-near ring, it follows that for all
1 < i < m there is w; € R, f(d’l_l,wi,dﬁl) = b. If there is 1 < i < m such that
d; € T orb¢l, then

min{:uXI (d1)7 125 (d2)v o Hxr (di—1)7 Hoxr (di-‘rl)a oy Hoxr (dm)v Hxr (b)} = 07
Hxr (wl) > min{lu‘XI (dl)v Hxr (d2)a ooy oxp (difl)a Hx (diJrl)? ooy Mxp (dm)v Hxr (b)}

Otherwise, di*,b € I and I is an ideal of R so w; € I hence p,, (w;) = 1 and

Hx 1 (’w,) > min{MXI (dl)a Hxr (d2)7 <oy Hoxr (di—l)v 125 (di-‘rl): o Hoxr (dn)a Hx 1 (b)}

(3) Let wi™ ', w,,w € R. If w € I, because I is an ideal of R, then for all
1 < j < m there is a € I so that f(wi_l,w,wﬁl) = f(wi_l,a,wﬁl), a € I and
50 1= puy,(a) = piy, (w).

Ifxgl b= f(wzl_l,w,wﬁ_l) and Wy = Y1, Wy = Yo, wovy Win] = Yi1, Wit] =
Yir -y Wi = Ym_1, then by the definition of (m,n)-near ring, for y ' b € R
there is a € R so that b = f(y{;l7 a,y;"fl). Hence, we have

Fai™ wowly) = fulm ey, i (a) > 0 = py, (w).

(4) Let wy,wa, ..., w, € R. If there is 1 < i < n such that w; ¢ I, then

in{ iy (101 fxs (102), o iy ()} = O and
Hxr (g(wlvw% >wn)) > min{:“’xz (wl)nuXI <w2)> ey Mxr (wn)}

Otherwise, w1y, wa, ...,w, € I and I is an ideal of R so g(w1,wa, ..., w,) € I. Hence,
we obtain

1
Hxr (g(wla w2, 7wn)) > min{p“xz (wl) Hx 1 (w2)7 ooy Mxr (w’ﬂ)}
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(5) Let w?,w € Rand 1 < i < n. If w € I, then g(w} ", w,wl,) €
and so uxi(w) = iy, (g(wi™ w,wpy ) = 1. Ifw & I, then 0 = g, (w)
/J’XI (g(wzl_ 7w’w?+1))' )

6) Let k#4,1<k<n,d *d" ,,w" € Rand wy € I. Then there is hj, € I

1 i+1 1

so that

g(dll_l‘af(wlvw27"'7wm)7dzn+1) = )

f(g.(d71717 wy, d;q.l)a "'ag(d§717wk71a d;:-l)a h’/wg(dzlilvwk*HJ d?+1)7 ceey

g(diilawmad;ﬂ-}-l))a

and fiy, (hk> 2 Hx; (wk)

(1) Let wy, wa, ..., wy, € R. If there is 1 < ¢ < m that w; & I, then

1
<

maX{??x; (w1)777XI (w2)7 c Mxr (wm)} =1,
Nxr (f(wlva’ [ wm)) < maX{T/X{ (wl)a Mxr (w2)7 o Ty (wm)}

Otherwise, wy, wa, ..., w,, € I and I is an ideal of R so f(wy,wa, ..., wy,) € I. This
implies that

(2) Let di*,b € R. Since R is an (m,n)-near ring, it follows that for all
1 < i < m there is z; € R, f(dzfl,;vi,dm_l) = b. If there is 1 < 7 < m so that
d; ¢ Torbé¢l, then

ma‘X{nXI (d1)777XI (d2)7 o Mxg (di—1)7n>(1 (di+1)7 o Mxa (dm)anI (b)} =1,
Mxr (xl) < max{% (dl)’ Mxr (d2)7 <o Txr (difl)a Thxr (di+1)v <o Txr (dm)v Mxr (b)}
Otherwise, d*,b € I and I is an ideal of R so w; € I. Hence n(w;) =1 and

U(wi) < maX{Tl(dl)a n(d2)7 sy n(di—l)’ n(di+1)7 3 n(dm)a n(b)}

(3) Let wi_l,wﬁl,w € R. If w € I, because I is an ideal of R, then for all
< j < m there is a € I so that f(wi ", w,w,) = f(w]"" awm,), a €I so

77X1 (a‘) S 77>(1(w>-4 1
fwgl, b= flwy ,wwll) and wy = y1, W = Yo, ..., Wi—1 = Yi—1, Wit1 =

1
0
Yir -y Wiy = Ym_1, then by the definition of (m,n)-near ring, for y" ' b € R
there is a € R so that b = f(yj_l7 a, y;”_l). Hence, we get

f(wjililvwawm-l) = f(ygilaavy;nil)a 77x1(a) S 1 = sz(w)~
(4) Let wy,wa, ..., w, € R. If there is 1 < i < n such that w; ¢ I, then

maX{nXI (w1>777xz (wQ)’ —o Ty (wn)} =1 and
Mxr (g(wla w2, ..., 'Ll}n)) < max{nXI (w1)7 Txr (wQ)a ces Tixsr (wn)}

Otherwise, wy, wa, ...,w, € I and I is an ideal of R and so g(w1,wa, ...,w,) € I.
This yields that
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M (9(w1, wa, oy wy)) =
Mxr (g(w17w27"'7w7l)) < maX{UXI (wl)ﬂlx (w2) 7nX1(w7l)}'

(5) Let wf,w € Rand 1 < i < n. If 2 € I, then g(w} " w,wlly,) €
I and so n(w) = n(g(wi ! ,w,awh ) = 0. If w ¢ I, then 1 = ny,(w) >
M (9(wi™ s w,wiy)).

(6) Let k #4, 1 <k <n,d ",d%,w" € R and wy, € I. Then there is hy € I
so that

g(dll_l,f(wl,wQ,..., )7d?+1)

Flo(d  wr, dyy)y e g(dy ™ wpem, A7y ), B, (di Wi, dy ), ey

g(dy™" wm, dyy),

and 1y, (hi) < 0y, (w). ]

3 Direct product of (m,n)-near rings

If (R1,f,9) and (Ra, f,g) are (m,n)-near rings, then direct product Ry X Ry of
R; and Ry is an (m, n)-near ring with F' and G defined as

F((s1, k1), (s2,k2), o (Sms km)) = (F (51,82, 05 8m), [ (K1, kas ooy km)),
G((c1,dv), (c2,da), ..., (Cnsdn)) = (glcr, c2, o0y cn), g(dr, da, .y dy)),s

respectively, for every (s;, k;), (¢j,d;) € Ri x Ry sothat 1 <i<mand1<j<n.
Likewise the direct product R = XZGUJR of a family of (m, n)-near rings {R; | i €
w} has the structure of an (m, n)-near ring with the operations of F' and G defined
as

,wm) = F((wh,wlz,. ) (’Ujgl,’w22, ), veny (wml,wm2, ))

:( (w117w21, wm1)7f(w12,w22,"'7wm2)7“')
Gl1, 02y oo 1) = G((Ly Ly o)y T2y Ty oo )5 ooes (L s g --2))
:( (lll,lgl,... l )79(112,122,...,1712),...),

for all wi™, 1} € R.

Lemma 3.1. If A and B are two subnear-rings of (m,n)-near rings Ry and Ry
respectively, then AX B is also a subnear-ring of Ry X Ry under the same operations
defined as in Ry X Rs.

Proof. 1t is straightforward. O

Let A = {{z,p(2),n(z)) | @ € X} and B = {{z,1/(2),7/(x)) | = € X} be
two intuitionistic fuzzy subsets of (m,n)-near rings Ry and Rs, respectively. The
direct product of A and B, is denoted by A x B and is defined as follows:

Ax B={((w,0), " ((w,)),n"((w,1))) | forallwe Ry and | € Ry},

where 1" ((w,1)) = min{u(w), /(1)} and " ((w,1)) = max{n(w),n’'(1)}.
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Theorem 3.2. If A and B are two subnear-rings of (m,n)-near rings Ry and R
respectively, then A X B is a subnear-ring of Ry X Ry if and only if the intuitionistic
characteristic function X = (ty.,My.) of C = A x B is an intuitionistic fuzzy
subnear ring of Ry X Rs.

Proof. Assume that C' = A x B is a subnear-ring of Ry x Ry and a}*,b} € R; X Rs.
If ", b} € Ax B = C, then by the definition of characteristic function g, (a;) =
1 = piyo(bj) and nyo(a;) =0=mny(bj) for L<i<mand 1 <j<n.

(1) For all d* € A x B, f(d1,da,...,dy,) € C then py (f(d1,dz,...,dn)) =1,

and so fiye (f(d1, dz, ... dim)) = min{pe (d1), fixe (d2), s pye (din) }-
(2) For all d*,b € A x B and 1 <i <n there is w; € A x B so that

f(diilvwivdﬁ-l) = b and Hxc (dl) = Nxc(d2) == :uxc(difl) = Nxc(diJrl) =
) o = fyo (dm) = piye () = 1,50 1 = :uxc(wi) 2
mm{ﬂxc(dl)’MXc(d2)v ---aﬂxc(difl)a/‘xc<di+l>v~-~vﬂxc(dm)7ﬂxc<b)}’

(3) For all wy,ws,...,w, € A X B, g(wy, wa, ,wn) € A x B then
1= p(g(wy, w, ...;wpn)) = plwr) = plws) = ... = p(wy),
H(g(w17w27~-~7wn)) > mln{:u’(wl) :u( )7 7.u(w7?)}
(4) For all wy,ws,...,w,, € A x B we have f(wi,ws,...,w,) € A x B. Thus,
we have
0= n(f(wlvw% "'awm)) = 77(w1) = 77(w2) = ... = W(wm),
n(f(w17w27 ey wm)) < max{n(w1)7 77(7U2)> ,n(wm)}a
(5) For all d*,b € A x B and 1 <i < n there is w; € A x B so that
f(dli_lawia dﬁ-l) = b7

0=n(w;) =n(d1) =n(dz) = ... = n(d 1) = n(dit1) = ... = n(dm) = n(b) so
n(w;) < max{n(dy), (dz) ;0(di-1),n(dit1), - ,n(d ),n(b)},

(6) For all wy,ws, ...,w, € A x B we have g(wy, ws, ...,w,) € A x B, and so
0 =n(g(wi, w2, ..., wy)) = nwr) = n(ws) = ... = n(wy),
n(g(w17w27'“,wn)) < max{n(wl),ﬂ(wﬂ,---,U(U}n)}~

Conversely, assume that the intuitionistic characteristic function x. = (ty., My, )
of C' = A x B is an intuitionistic fuzzy subnear ring of Ry X Rs.
(1) For all dj* € A x B,

tixe (F(dsd, o)) 2 mindixe (da) e (d )i ()} = 1
tne (fdr,da, ..., dp)) =

for all di,da, ...,dm € A X B we have 0 =1, (d1) = Ny (d2) = ... = nyo(dm)

e (F(dr da, o i) < max (e (d1), My (da) oy (din)} = 0, and s0
e (f (1, oy ) = 0.
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Thus f(dl,dz, ...,dm)) € Ax B.
(2) For all d*,b € A x B and 1 <i < n there is w; € Ry x Ry so that

FTwi,dy) = band pye (di) = pie (do) = oo = piye (dic1) = piye (diga) =
) = MXc(dm) = ch(b) =1,s0 ch(wl) >
mln{:uXc(dl)thc(dQ)v"'MMXc(di—l)uUXc(di-i-l)v"'7“){0( ) IJ’XC( )} - 1

and so py (w;) > 1. This implies that p, . (w;) = 1.

Fldy "t wi, diyy) = b,
0=1yxe (dl) = Nxe (d2) = = Nxe (di—l) = Nxc (di+1) = =Txe (dm) = Nxc (b)
80 7o (wi) <
max{an (d1)7 Nxc (d2)’ o xe (di*1)> Nxc (di+1)a <o xe (dm>7 Mixe (b)} =0,

and so 7y (w;) = 0. Consequently, w; € A x B.
(3) For all wy,ws,...,w, € A x B, we have 1 = p, . (w1) = py(w2) = ... =
fixe (wn),

Hxco (g(wlvw% s W ) mln{:uxc wl) Hxc (w2) > Hxe (wn)} =1
1,

So MXc(g('LUl,wz,... ) =
0 = Nye (W1) = Nye (w ) = Nyo (wp). Thus, we have

Nye (g(wl,wg, ...,wn)) < max{ny (w1), Nye(W2), ..., Nye (wWn)} = 0.

S0 Nye (g(wy, w2, ..., wy)) = 0. Consequently, we get g(wi, wa, ...,w,) € A X B.
Therefore, all conditions of the definition of an (m,n)-near ring are satisfied,
and so A X B is an (m,n)-near ring. O

Theorem 3.3. If A and B are two intuitionistic fuzzy subnear-rings of (m,n)-near
rings Ry and Ry respectively, then A X B is an intuitionistic fuzzy subnear-ring of
R1 X RQ.

Proof. Let A = {(z, u(x),n(x)) | € R1} and B = {{y, ' (y),n'(y)) | y € R2} be
intuitionistic fuzzy subnear-rings of (m, n)-near rings R; and R, respectively. Now
Ax B = {{(z.y), 1" ((z,9).1"((z,9))) | © € Ry, y € Ra}, where 1" ((x,y)) =
min{yu(z), 1/ (y)} and 5" ((2,y)) = max{n(z),n'(y)}. We have to show that A x B
is an intuitionistic fuzzy subnear-ring of Ry x Rs.

(1) Let (di,l;) € Ry X Ry for 1 <i <'m,

ﬂ//(F((d17ll)7(d2>l )s - 7(dmvlm))>

= /U'/I((f(dlad%-' X m)» (117127"" m)))

= min{u(f(di,da,....dm)), p (f(llyl27-~-alm))}

> min{u(c ), p(da), o e, (02 )o 0 () o (1)}

= min{min ). /(1)) i) ) w0, 001
= mln{:“’ ( dlall ) N”((d%lQ ) N((dm’lm))}v

so we get
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M//(F((dl, ll), (dg, lz), ceey (dm, lm))) Z
min{,u" ((dl’ ll)) ) [L”((dg, 12))7 ) :u//«dm? lm)) }

(2) For all di*,c € A and 1 < ¢ <n there is w; € A so that

f(diil Wi, dﬁ-l) =G
p(w;) > min{p(dr), p(dz), o pi(di1), pi(dis 1), oy (i), () }-

For all di*,d € B and 1 <4 < n there is y; € B so that

f(d§717yi7dﬁ1) = d7
' (yi) = min{y(dv), g/ (dz), .o p/ (dimr), 0/ (dig1) s ooy ' (dia ), ' (d) }-

Let (d;,1;), (¢,d) € A x B for 1 <i<m. Then

(Ca d) = (f(diilvxivdm-l)vfai 17yull+1))
= F((di,11), oo (dic1, i), (24, 9), (digrs Lig1) s (diny In)).-

Hence, there is (x;,y;) € A x B such that
(C, d) = F((dl,ll), ceny (difl,lifl), (.’ﬂi,yi)7 (diJrl, li+1), ceey (dm,lm )

)

w (i, y:)) = min{ﬂ(xi)vﬂl(yi)} > min{min{u(d1), u(dz), ..., p(di-1),

M(diJrl)v"'vM(dm)v )} min{:u’ ll /(12)7""/’[//<li71)?:u/(li+l)7"'7/’[’/(lm)?

M'(d)}}zmin{u(dl) p(dz), ooy pildi—1), pldig1), oy poldin ), (), 1/ (1)
w(l2), ooy ' (lim1), 1 (Ligr)s - 7u(l ), ' (d)} = min{min{p(dy), p' (1)}

mln{u( i 1) "(li—1)}, min{u(c), 1/ (d )} min{zi(di1), @' (li+1)}, -,

min{s(dp, ), ' (1 ) b= mln{u )(dlull) 1 ((die1, i), p (e, d)),

,u”((di+1vlz+1)) 1" ((dm
Therefore, we get

min{p” ((d1,11)), .o 1" ((diz1,Li—1)), 1 (s ), 1" ((di 1, Lige1)) s ooy 1" ((dims b)) 3,
(3) Let (dz,l,) € Ry X Ry for 1 <i <n. Then

1 (G((dr, 1), (d2,12), vy (dns 1n)))

:u"(( (dl,dg,..., ) (ll lg,..., )))

:mln{,u( (dl,dg,.., )) ll,lg,...,l ))}

= min{pu(dy), p(dz), .., p(d ) "), 1/ (L2), ooy ' (In) }

— min{min{p(d,), (! )},mln{u<d2> (I2)}, ooy min{ (), 1 (1)}
= min{p" ((dy, 1)), 1" ((d2,12)), - ((dnvln))}v

and so

1’ (G((dy, 1), (dz,lz) - ) >
min{y” ((d1,11)), p ((d27l2)) ((d n)) by
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(4) Let (dz,l,) € Ry x Ry for 1 <4 <m. Then

0" (F((d1, 1h), (da,12), ...,
=0"((f(d1,d2; s dpn), f
:max{n(f(dl,dg,...,dm ), (f(ll,lz7. ,lm))}
n(dm), 7' (11),7'(l2), -, 1" (Im)) }
)},max{n(dz) (2 )},. - max{n(dm), ' (lm)}}
d27l2))7 777 ((dmalm))}a

(
(1,12 ooy L))
)
(

< max{n(dy),n(dz), "
= max{max{n(dy),n'(l

—IH&X{T] ((dl,ll))7 "

—~

0" (F((dy,11), (da, 12), os (dmy b)) <
max{n" ((di,11)),n" ((d2,12)), o1 ((dim 1)) }
(5) For all di*,c € A and 1 <4 < n there is x; € A so that
f(d?L lax’md@-}-l) C,
n(xi) < max{n(di),n(d2), ..., n(di—1),n(dit1), -, n(dm), n(c)}.
For all IT*,d € B and 1 <% < n there is y; € B so that
f(li_la Yis lﬁl) = d7
' (yi) < max{n'(l1),n'(l2), ;0 (liz1), 7' (lis1)s -y 0" (L), ' (d) }.
Let (d;,l;),(c,d) e Ax Bfor1<i<m

(e:d) = (F(dy Y i diy), F( w0 1%0))
F((dlvl1)7' 7(dl 17li71) (xl7yz)7(di+17l’i+1)7"'7(dmvlm))‘

Then there is (z;,y;) € A x B that
(C? d) = F((d17 ll)a teey (di—lv li—l)a (Iia y’L)v (di+1a li+1)7 ) (dm7 lm))a

0 ((w5,y:)) = max{n(z;),n (y;)} < max{max{n(di),n(dz),...,n(di-1),
ﬁ(di+1)7---aU(dm)7U(C)}amax{n/(ll)an/(h)a---,77/(11‘—1)777/@1'-&-1)
n/(lm)an/(d)}} :max{n(dl)?n(dQ)v"'vn(d ) 77(d1+1)7~ 777(d ) U(C),
(Zl)an/(ZQ)y"'7n/(li—1)7n/(li+1)7"'7nl(l ) ( )} maX{maX{n(d1)7
n'(l)}, ..., max{n(di—1),n (li-1)}, max{n(c ) "(d)}, maX{ﬁ( i+1),
0 (Lit1)}s - max{n(dm),n (m)}}*max{ﬂ ((dlall))7' o1 ((dic1,licn)),
n'((e,d)),n" ((dix1,li+1))s s 7" ((dm, lm)) }. Therefore, we get
0" ((zi,y:)) <
max{nll((dhll))w 77] ((d’b 17 )7 (C d)) ((di+luli+1))a-~-a77”((d'm;lm))}
(6) Let (d;,1;) € Ry X Ry for 1 § < n. Then, we have
ﬂ//(G((dl,ll) (dg,lg g oeey dn,l ): ( dl,dg,..., ) g(ll,lg,. , )
:max{n( (dlaan“'a n)) ( (lvl PR ))} <max{77( 1) (d2)7 777(d )777/( )
n'(12), - n'(ln)} = maX{maX{ﬂ( 1),n' ()} maX{ﬁ(dz) ' (l2)}, ..., max{n(dn),
0 (In)}} = max{n" (dlall ) (dz l2) ), (dn,l ))} SO
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TIN(G((dhll)a (d27 12)7 eeey (dna ln))) S
/!
n’l”

InaX{’I]N((dl,ll)),ﬁ//((dg,lg)),,7’] ((d ))}

O
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