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Abstract
In this article, first we review some basic definitions and results about

fuzzy sets and intuitionistic fuzzy sets; then we state the definitions of
intuitionistic fuzzy (m,n)-sub near rings and intuitionistic fuzzy ideals of
(m,n)-near rings, which are generalizations of intuitionistics subrings and
intuitionistic fuzzy ideals of rings and near-rings, respectively. We provide
several examples for the definitions and discuss and investigate some results
in this respect. Finally, we investigate the direct product of intuitionistic
fuzzy (m,n)-sub near rings of two (m,n)-near rings and state and prove
some results on these topics.
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1. Introduction
The theory of fuzzy sets proposed by Zadeh [1] has achieved great success in various
fields. Out of several higher-order fuzzy sets, intuitionistic fuzzy sets introduced
by Atanassov [2–4] have been found to be highly useful to deal with vagueness.

A function µ : R −→ [0, 1] in a set R is called a fuzzy set [1]. Let Im(µ) denote
the image set of µ. Set µα = {x ∈ R | µ(x) ≥ α} and µ≤α = {x ∈ R | µ(x) ≤ α}
where α ∈ [0, 1].
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Definition 1.1. Assume that X is a set and D is a subset of X. In this case

µD(x) =

{
1, if x ∈ D,
0, if x 6∈ D,

is said characteristic function of the set D in X.

Example 1.2. Assume that B = {z ∈ N | z3 ∈ N} and

µB(z) =

{
1, if z ∈ B,
0, if z 6∈ B.

In this case µB is the characteristic function of the set B in N.

Definition 1.3. ([3]). An intuitionistic fuzzy set Q in W is given by:

Q = {〈z, µ(z), η(z)〉 | z ∈W},

where µ : W −→ [0, 1] and η : W −→ [0, 1], with the condition 0 ≤ µ(z)+η(z) ≤ 1
for all z ∈ W . The numbers µ(z) and η(z) denote, respectively, the degrees of
membership and non-membership of the element z ∈W to the set Q.

Every fuzzy set corresponds to the following intuitionistic fuzzy set:

FS : {〈z, µ(z), 1− µ(z)〉 | z ∈W}.

Example 1.4. Assume that µ(z) = z
2z+2 , η(z) = 1

2z+2 andA = {〈N, µ(z), η(z)〉 | z ∈
X}. In this case, A is an intuitionistic fuzzy set.

Definition 1.5. ([3]). For each intuitionistic fuzzy set A, there is another param-
eter π(x), called the degree of non-determinacy of the membership of x of the set
A,

π(z) = 1− µ(z)− η(z).

Example 1.6. In Example 1.4, π(z) = 1 − µ(z) − η(z) = 1 − z
2z+2 −

1
2z+2 =

1− ( z+1
2z+2 ) = 1− 1

2 = 1
2 so π(z) = 1

2 .

Definition 1.7. ([3]). LetD = {〈w, µ(w), η(w)〉 | w ∈ X} and E = {〈w, µ′(w), η′(w)〉
| w ∈ X} be any two intuitionistic fuzzy sets of X, then

(1) D ⊆ E if and only if µ(w) ≤ µ′(w) and η(w) ≥ η′(w) for all w ∈ X,

(2) D = E if and only if µ(w) = µ′(w) and η(w) = η′(w) for all w ∈ X,

(3) D ∩ E = {〈w, (µ ∩ µ′)(w), (η ∩ η′)(w)〉 | w ∈ X}, where (µ ∩ µ′)(w) =
min{µ(w), µ′(w)} = µ(w) ∧ µ′(w) and (η ∩ η′)(w) = max{η(w), η′(w)} =
η(w) ∨ η′(w),
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(4) D ∪ E = {〈w, (µ ∪ µ′)(w), (η ∪ η′)(w)〉 | w ∈ X}, where (µ ∪ µ′)(w) =
max{µ(w), µ′(w)} = µ(w) ∨ µ′(w) and (η ∪ η′)(w) = min{η(w), η′(w)} =
η(w) ∧ η′(w).

Definition 1.8. Let (G, f) be an m-ary group. An intuitionistic fuzzy set A =
{〈w, µ(w), η(w)〉 | w ∈ G} of G is said to be an intuitionistic fuzzy subgroup of G
if

(1) for all w1, w2, ..., wm ∈ R, µ
(
f(w1, w2, ..., wm)

)
≥ min{µ(w1), µ(w2), ..., µ(wm)},

(2) for all am1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that f(ai−1
1 , xi, a

m
i+1) = b

and µ(xi) ≥ min{µ(a1), µ(a2), ..., µ(ai−1), µ(ai+1), ..., µ(an), µ(b)},

(3) for all w1, w2, ..., wm ∈ R, η
(
f(w1, w2, ..., wm)

)
≤ max{η(w1), η(w2), ..., η(wm)},

(4) for all wm1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that f(wi−1
1 , xi, w

m
i+1) = b

and η(xi) ≤ max{η(w1), η(w2), ..., η(wi−1), η(wi+1), ..., η(wn), η(b)}.

Definition 1.9. Let (G, f) be an m-ary group. An intuitionistic fuzzy subgroup

A = {〈w, µ(w), η(w)〉 | w ∈ G},

of G is said to be an intuitionistic fuzzy normal subgroup of G if for every permu-
tation γ of {1, 2, ...,m} and w1, w2, ..., wm ∈ G,

(1) µ
(
f(w1, w2, ..., wm)

)
= µ

(
f(wγ1 , wγ2 , ..., wγm)

)
,

(2) η
(
f(w1, w2, ..., wm)

)
= η

(
f(wγ1 , wγ2 , ..., wγm)

)
.

For more details about the intutionistic fuzzy sets, we refer to [5–8].
A near ring is a non-empty set with two binary operations, addition and mul-

tiplication, satisfying all the ring axioms except possibly one of the distributive
laws and commutativity of addition.

For details about near ring theory and applications, we refer to [9, 10]. For
fuzzy sets and fuzzy groups, we refer to [1, 11, 12]. For fuzzy ideals of near rings,
we refer to [13–17]. In [18], Mohammadi and Davvaz characterized a new class of
n-ary algebras that we call (m,n)-near rings. They investigated the notions of i-
R-groups, i-(m,n)-near field, prime ideals, primary ideals and subtractive ideals of
(m,n)-near rings. Then, in [19], they studied fuzzy ideals. We recall the definition.

Definition 1.10. Let U be a non-empty set and h, k be m-ary and n-ary opera-
tions on U , respectively. Then (U, h, k) is called an i-(m,n)-near ring, if

(1) (U, h) is an m-ary group (not necessarily abelian),

(2) (U, k) is an n-ary semigroup,

(3) the n-ary operation k is i-distributive with respect to the m-ary operation
h.
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We define i-distributive low, for every cn1 , dm1 ∈ U as follows:
If i = n, then

k
(
cn−1
1 , h(d1, d2, ..., dm)

)
= h

(
k(cn−1

1 , d1), k(cn−1
1 , d2), ..., k(cn−1

1 , dm)
)
.

If i = 1, then

k
(
h(d1, d2, ..., dm), cn2

)
= h

(
k(d1, c

n
2 ), k(d2, c

n
2 ), ..., k(dm, c

n
2 )
)
.

If 1 < i < n, then

k
(
ci−1
1 , h(d1, d2, ..., dm), cni+1

)
= h

(
k(ci−1

1 , d1, c
n
i+1), k(ci−1

1 , d2, c
n
i+1), ..., k(ci−1

1 , dm, c
n
i+1)

)
.

Example 1.11. We know (R,+, ·) is an (m,n)-near ring with two binary opera-
tions m-addition and n-multiplication. The element 1 ∈ R is an identity element
in (R,+, ·).

Example 1.12. Assume that Z is a set of integer numbers and h, k are m-ary and
n-ary operations on Z, respectively, which are defined below; in this case (Z, h, k)
is an (m,n)-near ring. For all o1, o2..., om, f1, f2, ..., fn ∈ Z

h(o1, o2, ..., om) = o1 + o2 + ...+ om,
k(f1, f2, ..., fn) = fn.

It is clear that (Z, h) is anm-ary group. We prove that (Z, k) is an n-ary semigroup.
If 1 ≤ i < n, then

k(f i−1
1 , k(fi, fi+1, ..., fn+i−1), fn+i, ..., f2n−1) = f2n−1.

If i = n, then

k(fn−1
1 , fn−1, k(fn, fn+1, ..., f2n−1)) = k(fn, fn+1, ..., f2n−1) = f2n−1.

We prove that the n-ary operation k is n-distributive with respect to the m-ary
operation h. We have

k(f1, f2, ..., fn−1, h(o1, o2, ..., om)) = h(o1, o2, ..., om)
h(k(f1, f2, ..., fn−1, o1), k(f1, f2, ..., fn−1, o2), ..., k(f1, f2, ..., fn−1, om)) =

h(o1, o2, ..., om)).

Therefore, we obtain

k(f1, f2, ..., fn−1, h(o1, o2, ..., om)) =
h(k(f1, f2, ..., fn−1, o1), k(f1, f2, ..., fn−1, o2), ..., k(f1, f2, ..., fn−1, om)).
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2 Intuitionistic fuzzy (m,n)-subnear ring
Definition 2.1. Let (R, f, g) be an (m,n)-near ring andA = {〈w, µ(w), η(w)〉 | w ∈
X} be an intuitionistic fuzzy set of R. In this case, A is called an intuitionistic
fuzzy (m,n)-subnear ring of R, if

(1) for all w1, w2, ..., wm ∈ R,

µ
(
f(w1, w2, ..., wm)

)
≥ min{µ(w1), µ(w2), ..., µ(wm)},

(2) for all dm1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that

f(di−1
1 , xi, d

m
i+1) = b,

µ(xi) ≥ min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm), µ(b)},

(3) for all w1, w2, ..., wn ∈ R,

µ
(
g(w1, w2, ..., wn)

)
≥ min{µ(w1), µ(w2), ..., µ(wn)},

(4) for all w1, w2, ..., wm ∈ R,

η
(
f(w1, w2, ..., wm)

)
≤ max{η(w1), η(w2), ..., η(wm)},

(5) for all am1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that

f(di−1
1 , xi, d

m
i+1) = b,

η(xi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)},

(6) for all w1, w2, ..., wn ∈ R,

η
(
g(w1, w2, ..., wn)

)
≤ max{η(w1), η(w2), ..., η(wn)}.

Example 2.2. In Example 1.12, let

µ(w) =

{
0.9, if w ∈ 2Z,
0.3, if w 6∈ 2Z,

η(w) =

{
0.4, if w ∈ 2Z,
0.6, if w 6∈ 2Z.

In this case, we have µ0.9 = 2Z and µ0.3 = Z are both subnear-rings and η≤0.4 = 2Z
and η≤0.6 = Z are both subnear-rings, hence µ and η are fuzzy subnear-rings of
(Z, h, k). So according to Theorem 2.6, A = {〈w, µ(w), η(w)〉 | w ∈ Z} is an
intuitionistic fuzzy subnear-rings of the (m,n)-near ring (Z, h, k).
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Theorem 2.3. Assume that A = {〈z, µ(z), η(z)〉 | z ∈ X} is an intuitionistic fuzzy
subnear-ring of an (m,n)-near ring (R, f, g), then A′ = {〈z, µ(z), µc(z)〉 | z ∈ X}
is an intuitionistic fuzzy subnear-ring of R.

Proof. All the conditions of the definition for µ are satisfied, it is enough to check
the conditions stated for µc in the definition

µc
(
f(z1, z2, ..., zm)

)
= 1− µ

(
f(z1, z2, ..., zm)

)
≤ 1−min{µ(z1), µ(z2), ..., µ(zm)}
= 1−min{1− µc(z1), 1− µc(z2), ..., 1− µc(zm)}
= max{µc(z1), µc(z2), ..., µc(zm)},

for all dm1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that

f(di−1
1 , xi, d

m
i+1) = b,

µ(xi) ≥ min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm), µ(b)},

so

µc(xi) = 1− µ(xi)
≤ 1−min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm), µ(b)}
= 1−min{1− µc(d1), ..., 1− µc(di−1), 1− µc(di+1), ..., 1− µc(dm), 1− µc(b)}
= max{µc(d1), µc(d2), ..., µc(di−1), µc(di+1), ..., µc(dm), µc(b)},

µc
(
g(v1, v2, ..., vn)

)
= 1− µ

(
g(v1, v2, ..., vn)

)
≤ 1−min{µ(v1), µ(v2), ..., µ(vn)}
= 1−min{1− µc(v1), 1− µc(v2), ..., 1− µc(vn)}
= max{µc(v1), µc(v2), ..., µc(vn)}.

Theorem 2.4. Let A = {〈z, µ(z), η(z)〉 | z ∈ X} be an intuitionistic fuzzy subnear-
ring of an (m,n)-near ring (R, f, g). Then A′′ = {〈z, ηc(z), η(z)〉 | z ∈ X} is an
intuitionistic fuzzy subnear-ring of R.

Proof. Assume that A = {〈z, µ(z), η(z)〉 | z ∈ X} is an intuitionistic fuzzy subnear-
ring of an (m,n)-near ring (R, f, g). All the conditions of the definition for η are
satisfied, it is enough to check the conditions stated for ηc in the definition.
For all zi−1

1 , zmi+1, z ∈ R and 1 ≤ j ≤ m, there is a ∈ R that f(zj−1
1 , z, zmj+1) =

f(zi−1
1 , a, zmi+1), η(a) ≤ η(z), so ηc(a) = 1− η(a) ≥ 1− η(z) = ηc(z).

For all zn1 , z ∈ R and 1 ≤ i ≤ n, η
(
g(zi−1

1 , z, zni+1)
)
≤ η(z), then

ηc
(
g(zi−1

1 , z, zni+1)
)

= 1− η
(
g(zi−1

1 , z, zni+1)
)
≥ 1− η(z) = ηc(z).

For all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, z

m
1 ∈ R and zk ∈ R there is hk ∈ R so that

g
(
di−1

1 , f(z1, z2, ..., zm), dni+1

)
= f

(
g(di−1

1 , z1, d
n
i+1), g(di−1

1 , z2, d
n
i+1), ..., g(di−1

1 ,

zk−1, d
n
i+1), hk, g(di−1

1 , zk+1, d
n
i+1), ..., g(di−1

1 , zm, d
n
i+1)

)
and η(hk) ≤ η(zk).

Thus ηc(hk) = 1− η(hk) ≥ 1− η(zk) = ηc(zk).
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Lemma 2.5. The set A = {〈w, µ(w), η(w)〉 | w ∈ X} is an intuitionistic fuzzy
subnear-ring of an (m,n)-near ring (R, f, g) if and only if µ and ηc are fuzzy
subnear-rings of R.

Proof. Assume that A = {〈w, µ(w), η(w)〉 | w ∈ X} is an intuitionistic fuzzy set
of an (m,n)-near ring (R, f, g). Clearly µ is a fuzzy subnear-ring. Moreover, we
have

ηc
(
f(w1, w2, ..., wm)

)
= 1− η

(
f(w1, w2, ..., wm)

)
≥ 1−max{η(w1), η(w2), ..., η(wm)}
= min{1− η(w1), 1− η(w2), ..., 1− η(wm)}
= min{ηc(w1), ηc(w2), ..., ηc(wm)}.

For all dm1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that

f(di−1
1 , xi, d

m
i+1) = b,

η(xi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)},

and so

ηc(xi) = 1− η(xi)
≥ 1−max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)}
= min{1− η(d1), 1− η(d2), ..., 1− η(di−1), 1− η(di+1), ..., 1− η(dm), 1− η(b)}
= min{ηc(d1), ηc(d2), ..., ηc(di−1), ηc(di+1), ..., ηc(dm), ηc(b)}.

Also, we have

ηc
(
g(q1, q2, ..., qn)

)
= 1− η

(
g(q1, q2, ..., qn)

)
≥ 1−max{η(q1), η(q2), ..., η(qn)}
= min{1− η(q1), 1− η(q2), ..., 1− η(qn)}
= min{ηc(q1), ηc(q2), ..., ηc(qn)}.

Therefore ηc is a fuzzy subnear-ring of R.
Conversely, assume that µ and ηc are fuzzy subnear-rings of R. Then, we have

η
(
f(w1, w2, ..., wm)

)
= 1− ηc

(
f(w1, w2, ..., wm)

)
≤ 1−min{ηc(w1), ηc(w2), ..., ηc(wm)}
= 1−min{1− η(w1), 1− η(w2), ..., 1− η(wm)}
= 1− (1−max{η(w1), η(w2), ..., η(wm)})
= max{η(w1), η(w2), ..., η(wm)}.

For all dm1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that

f(di−1
1 , xi, d

m
i+1) = b,

ηc(xi) ≥ min{ηc(d1), ηc(d2), ..., ηc(di−1), ηc(di+1), ..., ηc(dm), ηc(b)},
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and so

η(xi) = 1− ηc(xi)
≤ 1−min{ηc(d1), ηc(d2), ..., ηc(di−1), ηc(di+1), ..., ηc(dm), ηc(b)}
= 1−min{1− η(d1), ..., 1− η(di−1), 1− η(di+1), ..., 1− η(dm), 1− η(b)}
= max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)}.

Also, we have

η
(
g(q1, q2, ..., qn)

)
= 1− ηc

(
g(q1, q2, ..., qn)

)
≤ 1−min{ηc(q1), ηc(q2), ..., ηc(qn)}
= 1−min{1− η(q1), 1− η(q2), ..., 1− η(qn)}
= min{η(q1), η(q2), ..., η(qn)}.

This yields that A is an intuitionistic fuzzy subnear-ring of R.

Theorem 2.6. The set A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic fuzzy
subnear-ring of an (m,n)-near ring (R, f, g) if and only if for all s, t ∈ [0, 1], the
non-empty sets µt and η≤s are subnear-rings of R.

Proof. Suppose that µ is a fuzzy subnear ring and µt 6= 0, then for all q1, q2, ..., qm ∈
µt,

µ
(
f(q1, q2, ..., qm)

)
≥ min{µ(q1), µ(q2), ..., µ(qm)} ≥ t.

Then µ
(
f(q1, q2, ..., qm)

)
≥ t so f(q1, q2, ..., qm) ∈ µt. Hence (µt, f) is a semigroup.

For all di−1
1 , dmi+1, b ∈ µt there is xi ∈ R that f(di−1

1 , xi, d
m
i+1) = b and

µ(xi) ≥ min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm)} ≥ t.

Hence xi ∈ µt, and so (µt, f) is an m-group. For all w1, w2, ..., wn ∈ µt we have

µ
(
g(w1, w2, ..., wn)

)
≥ min{µ(w1), µ(w2), ..., µ(wn)} ≥ t.

Thus µ
(
g(w1, w2, ..., wn)

)
≥ t, this gives that g(w1, w2, ..., wn) ∈ µt. Therefore

(µt, g) is an n-semigroup. Then the level subset µt, t ∈ (0, 1], is a subnear-ring of
R.

Assume that η≤s 6= ∅. Then for all d1, d2, ..., dm ∈ η≤s , we have

η
(
f(d1, d2, ..., dm)

)
≤ max{η(d1), η(d2), ..., η(dm)} ≤ s.

Then η
(
f(d1, d2, ..., dm)

)
≤ s, and so f(d1, d2, ..., dm) ∈ η≤s , hence (ηs, f) is a

semigroup.
For all di−1

1 , dmi+1, b ∈ η≤s there is xi ∈ R such that f(di−1
1 , xi, d

m
i+1) = b and

η(xi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm)} ≤ s.

Thus, we have xi ∈ ηs, which implies that (ηs, f) is anm-group. For all w1, ..., wn ∈
ηs we have

η
(
g(w1, w2, ..., wn)

)
≤ max{η(w1), η(w2), ..., η(wn)} ≤ s.
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Thus η
(
g(w1, w2, ..., wn)

)
≤ s, and so g(w1, w2, ..., wn) ∈ ηs. Consequently, (ηs, g)

is an n-semigroup. This yields that the level subset ηs, for s ∈ (0, 1], is a subnear-
ring of R.

Now, suppose that the level subset µt, t ∈ (0, 1], is a subnear-ring of R.
For all w1, w2, ..., wm ∈ R let b = min{µ(w1), ..., µ(wm)} so for all 1 ≤ i ≤ m,
µ(wi) ≥ b. As a result w1, w2, ..., wm ∈ µb, f(w1, w2, ..., wm) ∈ µb, and so
µ
(
f(w1, w2, ..., wm)

)
≥ b, or

µ
(
f(w1, w2, ..., wm)

)
≥ min{µ(w1), µ(w2), ..., µ(wm)}.

For all q1, q2, ..., qn ∈ R let a = min{µ(q1), µ(q2), ..., µ(qn)}, then for all 1 ≤ i ≤ n,
µ(qi) ≥ a. As a result q1, q2, ..., qn ∈ µa, and so g(q1, q2, ..., qn) ∈ µa. Hence
µ
(
g(q1, q2, ..., qn)

)
≥ a, or equivalently

µ
(
g(q1, q2, ..., qn)

)
≥ min{µ(q1), µ(q2), ..., µ(qn)}.

For all di−1
1 , dmi+1, b ∈ R let d = min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm), µ(b)},

then di−1
1 , dmi+1, b ∈ µd. Hence, there is xi ∈ µd so that b = f(di−1

1 , xi, d
m
i+1),

µ(xi) ≥ d = min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm), µ(b)}.

Therefore, µ is a fuzzy subnear-ring.
Now, suppose that the level subset η≤s , s ∈ (0, 1], is a subnear-ring of R. For

all w1, w2, ..., wm ∈ R let b = max{η(w1), η(w2), ..., η(wm)} so for all 1 ≤ i ≤
m, η(wi) ≤ b. As a result w1, w2, ..., wm ∈ ηb, f(w1, w2, ..., wm) ∈ ηb, and so
η
(
f(w1, w2, ..., wm)

)
≤ b

η
(
f(w1, w2, ..., wm)

)
≤ max{η(w1), η(w2), ..., η(wm)}.

For all q1, q2, ..., qn ∈ R let a = max{η(q1), η(q2), ..., η(qn)}, so for all 1 ≤ i ≤
n, η(qi) ≤ a. As a result q1, q2, ..., qn ∈ ηa so g(q1, q2, ..., qn) ∈ ηa. Hence
η
(
g(q1, q2, ..., qn)

)
≤ a, which implies that

η
(
g(q1, q2, ..., qn)

)
≤ max{η(q1), η(q2), ..., η(qn)}.

For all di−1
1 , dmi+1, b ∈ R let d = max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)},

so di−1
1 , dmi+1, b ∈ ηd. Hence there is xi ∈ ηd so that b = f(di−1

1 , xi, d
m
i+1),

η(xi) ≤ d = max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)}.

Therefore η is a fuzzy subnear-ring.

Example 2.7. In Example 1.11, let

µ(w) =

{
0.7, if w ∈ Z,
0.2, if w 6∈ Z.

η(w) =

{
0.2, if w ∈ Z,
0.9, if w 6∈ Z.
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In this case, we have µ0.7 = Z and µ0.2 = R are both subnear-rings, and η≤0.2 = Z
and η≤0.9 = R are both subnear-rings. Hence µ and η are fuzzy subnear-rings, of
(R,+, ·). So, according to Theorem 2.6, A = {〈w, µ(w), η(w)〉 | w ∈ X} is an
intuitionistic fuzzy subnear-ring of (R, f, g)

Definition 2.8. Assume that (R, h, k) is an (m,n)-near ring and W is a non
empty subset of R. The intuitionistic characteristic function of W is denoted by
χW = 〈µχW

, ηχW
)〉 and is defined by

µχW
: R −→ [0, 1] | w −→ µχW

:=

{
1, if w ∈W,
0, if w 6∈W,

ηχW
: R −→ [0, 1] | w −→ ηχW

:=

{
0, if w ∈W,
1, if w 6∈W.

Example 2.9. In Example 1.11, let A = {2w | w ∈ N} and

µχA
=

{
1, if w ∈ A,
0, if w 6∈ A,

ηχA
=

{
0, if w ∈ A,
1, if w 6∈ A.

Then χA = 〈µχA
, ηχA

〉 is intuitionistic characteristic function of A.

Lemma 2.10. Let I be a subset of an (m,n)-near ring (R, f, g). Then I is a
subnear-ring of R if and only if the intuitionistic characteristic function χI =
〈µχI

, ηχI
〉 of I is an intuitionistic fuzzy subnear-ring of R.

Proof. Assume that the intuitionistic characteristic function χI = 〈µχI
, ηχI
〉 of I

is an intuitionistic fuzzy subnear-ring of R.
(1) Let w1, w2, ..., wm ∈ I, then µχI

(w1) = µχI
(w2) = ... = µχI

(wm) = 1, and
so

µχI

(
f(w1, w2, ..., wm)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wm)} = 1.

Let w1, w2, ..., wm ∈ I, then ηχI
(w1) = ηχI

(w2) = ... = ηχI
(wm) = 0, which

implies that

ηχI

(
f(w1, w2, ..., wm)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wm)} = 0.

Therefore f(w1, w2, ..., wm) ∈ I.
(2) Let dn1 , b ∈ I, then there is xi ∈ R, 1 ≤ i ≤ n, so that f(di−1

1 , xi, d
m
i+1) = b

and µχI
(xi) ≥ min{µχI

(d1), µχI
(d2), ..., µχI

(di−1), µχI
(di+1), ..., µχI

(dn), µχI
(b)} =

1. Let dn1 , b ∈ I, then there is xi ∈ R, 1 ≤ i ≤ n, so that f(di−1
1 , xi, d

m
i+1) = b and
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ηχI
(xi) ≤ max{ηχI

(d1), ηχI
(d2), ..., ηχI

(di−1), ηχI
(di+1), ..., ηχI

(dn), ηχI
(b)} = 0,

and so xi ∈ I.
(3) Let w1, w2, ..., wn ∈ I, then µχI

(w1) = µχI(w2) = ... = µχI
(wm) = 1,

which implies that
µχI

(
g(w1, w2, ..., wn)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wn)} = 1.
Let w1, w2, ..., wn ∈ I, then ηχI

(w1) = ηχI
(w2) = ... = ηχI

(wm) = 0, and hence
ηχI

(
g(w1, w2, ..., wn)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wn)} = 0. This implies
that g(w1, w2, ..., wn) ∈ I.

Conversely, assume that I is a subnear-ring of R.
(1) Let w1, w2, ..., wm ∈ R. If there is 1 ≤ i ≤ m that wi 6∈ I, then

min{µχI
(w1), µχI

(w2), ..., µχI
(wm)} = 0,

µχI

(
f(w1, w2, ..., wm)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wm)}.

Otherwise, w1, w2, ..., wm ∈ I and I is an ideal of R so f(w1, w2, ..., wm) ∈ I.
Hence, we get

µχI

(
f(w1, w2, ..., wm)

)
= 1,

µχI

(
f(w1, w2, ..., wm)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wm)}.

(2) Let dn1 , b ∈ R. Since R is an (m,n)-near ring, it follows that for all 1 ≤ i ≤ n
there is xi ∈ R, f(di−1

1 , xi, d
m
i+1) = b. If there is 1 ≤ i ≤ m such that di 6∈ I or

b 6∈ I, then

min{µχI
(d1), µχI

(d2), ..., µχI
(di−1), µχI

(di+1), ..., µχI
(dn), µχI

(b)} = 0,
µχI

(xi) ≥ min{µχI
(d1), µχI

(d2), ..., µχI
(di−1), µχI

(di+1), ..., µχI
(dn), µχI

(b)}.

Otherwise, dm1 , b ∈ I and I is an ideal of R. Hence, xi ∈ I which implies that
µχI

(xi) = 1 and

µχI
(xi) ≥ min{µχI

(d1), µχI
(d2), ..., µχI

(di−1), µχI
(di+1), ..., µχI

(dn), µχI
(b)},

(3) Let w1, w2, ..., wn ∈ R. If there is 1 ≤ i ≤ n such that wi 6∈ I, then

min{µ(w1), µ(w2), ..., µ(wn)} = 0 and
µχI

(
g(w1, w2, ..., wn)) ≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wn)}.

Otherwise, w1, w2, ..., wn ∈ I and I is an ideal of R, and so g(w1, w2, ..., wn) ∈ I.
This gives that

µχI

(
g(w1, w2, ..., wn)

)
= 1,

µχI

(
g(w1, w2, ..., wn)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wn)}.

(1) Let w1, w2, ..., wm ∈ R. If there is 1 ≤ i ≤ m such that wi 6∈ I, then

max{ηχI
(w1), ηχI

(w2), ..., ηχI
(wm)} = 1,

ηχI

(
f(w1, w2, ..., wm)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wm)}.

Otherwise, w1, w2, ..., wm ∈ I, and I is an ideal of R so f(w1, w2, ..., wm) ∈ I.
Hence, we have



210 F. Mohammadi et al. / Intuitionistic Fuzzy Ideals in...

ηχI

(
f(w1, w2, ..., wm)

)
= 0,

ηχI

(
f(w1, w2, ..., wm)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wm)}.

(2) Let dn1 , b ∈ R. Since R is an (m,n)-near ring, it follows that for all 1 ≤ i ≤ n
there is xi ∈ R, f(di−1

1 , xi, d
m
i+1) = b. If there is 1 ≤ i ≤ m so that di 6∈ I or b 6∈ I,

then

max{ηχI
(d1), ηχI

(d2), ..., ηχI
(di−1), ηχI

(di+1), ..., ηχI
(dn), ηχI

(b)} = 1,
ηχI

(xi) ≤ max{ηχI
(d1), ηχI

(d2), ..., ηχI
(di−1), ηχI

(di+1), ..., ηχI
(dn), ηχI

(b)}.

Otherwise, dm1 , b ∈ I and I is an ideal of R so xi ∈ I. Consequently, we get
ηχI

(xi) = 0 and

ηχI
(xi) ≤ max{ηχI

(d1), ηχI
(d2), ..., ηχI

(di−1), ηχI
(di+1), ..., ηχI

(dn), ηχI
(b)}.

(3) Let w1, w2, ..., wn ∈ R. If there is 1 ≤ i ≤ n such that wi 6∈ I, then

max{ηχI
(w1), ηχI

(w2), ..., ηχI
(wn)} = 1 and

ηχI

(
g(w1, w2, ..., wn)) ≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wn)}.

Otherwise, w1, w2, ..., wn ∈ I and I is an ideal of R so g(w1, w2, ..., wn) ∈ I. This
yields that hence

ηχI

(
g(w1, w2, ..., wn)

)
= 0,

ηχI

(
g(w1, w2, ..., wn)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wn)}.

Definition 2.11. Let I be a non-empty subset of an (m,n)-near ring (R, f, g).
Then I is called an ideal of R if

(1) I is a subgroup of m-ary group (R, f), (I, f) is an m-ary group,

(2) for every q1, q2, ..., qn ∈ R, g(qi−1
1 , I, qni+1) ⊆ I.

(3) for all rj−1
1 , rmj+1, s

j−1
1 , snj+1 ∈ R and 1 ≤ k ≤ n, d ∈ I, there exists l ∈ I so

that

g(sj−1
1 , f(rk−1

1 , d, rmk+1), snj+1)

= f(g(sj−1
1 , r1, s

n
j+1), g(sj−1

1 , r2, s
n
j+1), ..., g(sj−1

1 , rk−1, s
n
j+1), l, g(sj−1

1 , rk+1,

snj+1), ..., g(sj−1
1 , rn, s

n
j+1)).

Note that I is called an i-ideal of R if it satisfies (1) and (2) and I is called
a j-ideal of R for j 6= i if it satisfies (1) and (3).

Also, if for every 1 ≤ i ≤ n, I is an i-ideal, then I is called an ideal of R.
In general, every ideal in an (m,n)-near ring is an (m,n)-subnear ring, but the
converse is not true.
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Example 2.12. In Example 1.12, the subset 2Z is an n-ideal of (Z, h, k). Also,
(2Z, h) is a normal subgroup of m-ary group (Z, h). For all s1, s2, ..., sn ∈ Z,
k(sn−1

1 , 2Z) = 2Z ⊆ 2Z.

Definition 2.13. Let (R, f, g) be an i-(m,n)-near ring and A = {〈x, µ(x), η(x)〉 |
x ∈ X} be an intuitionistic fuzzy set of R. We say that A is an intuitionistic fuzzy
ideal of R, if

(1) for all w1, w2, ..., wm ∈ R,

µ
(
f(w1, w2, ..., wm)

)
≥ min{µ(w1), µ(w2), ..., µ(wm)},

(2) for all am1 , b ∈ R and 1 ≤ i ≤ n there is xi ∈ R so that

f(ai−1
1 , xi, a

m
i+1) = b,

µ(xi) ≥ min{µ(a1), µ(a2), ..., µ(ai−1), µ(ai+1), ..., µ(am), µ(b)},

(3) for all wi−1
1 , wmi+1, w ∈ R and 1 ≤ j ≤ m, there is a ∈ R that

f(wj−1
1 , w, wmj+1) = f(wi−1

1 , a, wmi+1), µ(a) ≥ µ(w),

(4) for all w1, w2, ..., wn ∈ R,

µ
(
g(w1, w2, ..., wn)

)
≥ min{µ(w1), µ(w2), ..., µ(wn)},

(5) for all wn1 , w ∈ R and 1 ≤ i ≤ n,

µ
(
g(wi−1

1 , w, wni+1)
)
≥ µ(w),

(6) for all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ R there is hk ∈ R so

that

g
(
di−1

1 , f(w1, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), g(di−1

1 , w2, d
n
i+1), ..., g(di−1

1 ,

wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ..., g(di−1

1 , wm, d
n
i+1)

)
and µ(hk) ≥ µ(wk),

(7) for all w1, w2, ..., wm ∈ R,

η
(
f(w1, w2, ..., wm)

)
≤ max{η(w1), η(w2), ..., η(wm)},

(8) for all dm1 , b ∈ R and 1 ≤ i ≤ n there is wi ∈ R so that

f(di−1
1 , wi, d

m
i+1) = b,

η(wi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)},

(9) for all wi−1
1 , wmi+1, w ∈ R and 1 ≤ j ≤ m, there is a ∈ R so that
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f(wj−1
1 , w, wmj+1) = f(wi−1

1 , a, wmi+1), η(a) ≤ η(w),

(10) for all w1, w2, ..., wn ∈ R,

η
(
g(w1, w2, ..., wn)

)
≤ max{η(w1), η(w2), ..., η(wn)},

(11) for all wn1 , x ∈ R and 1 ≤ i ≤ n,

η
(
g(wi−1

1 , w, wni+1)
)
≤ η(w),

(12) for all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ R there is hk ∈ R so

that

g
(
di−1

1 , f(w1, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), g(di−1

1 , w2, d
n
i+1), ..., g(di−1

1 ,

wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ..., g(di−1

1 , wm, d
n
i+1)

)
and η(hk) ≤ η(wk).

Note that A is an intuitionistic fuzzy i-ideal of R if it satisfies 1, 2, ..., 5, 7, ...., 11
and A is an intuitionistic fuzzy j-ideal, j 6= i, of R if it satisfies 1, 2, 3, 4, 6, ..., 10, 12,
1 ≤ i, j ≤ n.

Example 2.14. In Example 1.12, let

µ(w) =

{
0.8, if w ∈ 2Z,
0.2, if w 6∈ 2Z.

η(w) =

{
0.1, if w ∈ 2Z,
0.7, if w 6∈ 2Z.

In this case, we have µ0.8 = 2Z and µ0.2 = Z are both n-ideals of (Z, h, k) and
η≤0.1 = 2Z and η≤0.7 = Z are both n-ideals of (Z, h, k), hence µ and η≤ are fuzzy
n-ideals of (Z, h, k). So, according to Theorem 2.19, A = {〈w, µ(w), η(w)〉 | w ∈ Z}
is an intuitionistic fuzzy n-ideal of the (m,n)-near ring (Z, h, k). Using the above
definition, we can prove that A = {〈w, µ(w), η(w)〉 | w ∈ Z} is an intuitionistic
fuzzy n-ideal of the (m,n)-near ring (Z, h, k).

Theorem 2.15. Assume that A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic
fuzzy ideal of an (m,n)-near ring (R, f, g), then A′ = {〈x, µ(x), µc(x)〉 | x ∈ X}
is an intuitionistic fuzzy ideal of R.

Proof. Assume that µ is a fuzzy ideal of (R, f, g). Then, by Theorem 2.3, A′ =
{〈x, µ(x), µc(x)〉 | x ∈ X} is an intuitionistic fuzzy subnear-ring of an (m,n)-near
ring R and for all wi−1

1 , wmi+1, w ∈ R and 1 ≤ j ≤ m, there is a ∈ R such that

f(wj−1
1 , w, wmj+1) = f(wi−1

1 , a, wmi+1), µ(a) ≥ µ(w),

and so µc(a) = 1− µ(a) ≤ 1− µ(w) = µc(w).
For all wn1 , w ∈ R and 1 ≤ i ≤ n,
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µ
(
g(wi−1

1 , w, wni+1)
)
≥ µ(w),

hence µc
(
g(wi−1

1 , w, wni+1)
)

= 1− µ
(
g(wi−1

1 , w, wni+1)
)
≤ 1− µ(w) = µc(w).

For all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ R there is hk ∈ R so

that
g
(
di−1

1 , f(w1, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), g(di−1

1 , w2, d
n
i+1), ..., g(di−1

1 ,

wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ..., g(di−1

1 , wm, d
n
i+1)

)
and µ(hk) ≥ µ(xk).

Therefore, we have µc(hk) = 1− µ(hk) ≤ 1− µ(xk) = µc(wk).

Theorem 2.16. Assume that A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic
fuzzy ideal of an (m,n)-near ring (R, f, g). Then A′′ = {〈x, ηc(x), η(x)〉 | x ∈ X}
is an intuitionistic fuzzy ideal of R.

Proof. Assume that A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic fuzzy ideal
of an (m,n)-near ring (R, f, g). Then A′′ = {〈x, ηc(x), η(x)〉 | x ∈ X} is an
intuitionistic fuzzy subnear-ring of R.
For all wi−1

1 , wmi+1, w ∈ R and 1 ≤ j ≤ m, there is a ∈ R such that

f(wj−1
1 , w, wmj+1) = f(wi−1

1 , a, wmi+1), η(a) ≤ η(w),

and so ηc(a) = 1− η(a) ≥ 1− η(w) = ηc(w).
For all wn1 , w ∈ R and 1 ≤ i ≤ n,

η
(
g(wi−1

1 , w, wni+1)
)
≤ η(w).

This implies that, ηc
(
g(wi−1

1 , w, wni+1)
)

= 1 − η
(
g(wi−1

1 , w, wni+1)
)
≥ 1 − η(w) =

ηc(w).
For all k 6= i, 1 ≤ k ≤ m, di−1

1 , dni+1, w
m
1 ∈ R and wk ∈ R there is hk ∈ R so

that
g
(
di−1

1 , f(w1, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), g(di−1

1 , w2, d
n
i+1), ..., g(di−1

1 ,

wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ..., g(di−1

1 , wm, d
n
i+1)

)
and η(hk) ≤ η(wk).

Thus, we get ηc(hk) = 1− η(hk) ≥ 1− η(wk) = ηc(wk).

Lemma 2.17. A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic fuzzy ideal of an
(m,n)-near ring (R, f, g) if and only if µ and ηc are fuzzy ideals of R.

Proof. Let A be an intuitionistic fuzzy ideal of R. Clearly µ is a fuzzy ideal. Thus
by Lemma 2.5, ηc is a fuzzy subnear-ring of R. For all wi−1

1 , wmi+1, w ∈ R and
1 ≤ j ≤ m, there is a ∈ R such that

f(wj−1
1 , w, wmj+1) = f(wi−1

1 , a, wmi+1), η(a) ≤ η(w),

and thus ηc(a) = 1− η(a) ≥ 1− η(w) = ηc(w).
For all wn1 , w ∈ R and 1 ≤ i ≤ n,

η
(
g(wi−1

1 , w, wni+1)
)
≤ η(w).

This gives that ηc
(
g(wi−1

1 , w, wni+1)
)

= 1−η
(
g(wi−1

1 , w, wni+1)
)
≥ 1−η(w) = ηc(w).

For all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ R there is hk ∈ R so that
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g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), g(di−1

1 , w2, d
n
i+1), ..., g(di−1

1 ,

wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ..., g(di−1

1 , wm, d
n
i+1)

)
and η(hk) ≤ η(wk).

Thus ηc(hk) = 1− η(hk) ≥ 1− η(wk) = ηc(wk).
Therefore, we conclude that ηc is a fuzzy ideal of (R, f, g), t ∈ [µ(0), 1].

Conversely, if µ and ηc are fuzzy ideals of R, then by Lemma 2.5, A is an
intuitionistic fuzzy subnear-ring of R. For all wi−1

1 , wmi+1, w ∈ R and 1 ≤ j ≤ m,
there is a ∈ R such that

f(wj−1
1 , w, wmj+1) = f(wi−1

1 , a, wmi+1), η(a) = 1− ηc(a) ≤ 1− ηc(w) = η(w), so
η(a) ≤ η(w).

For all wn1 , w ∈ R and 1 ≤ i ≤ n,

η
(
g(wi−1

1 , w, wni+1)
)

= 1− ηc
(
g(wi−1

1 , w, wni+1)
)
≤ 1− ηc(w) = η(w),

hence η
(
g(wi−1

1 , w, wni+1)
)
≤ η(w).

For all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ R there is hk ∈ R so that

g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), g(di−1

1 , w2, d
n
i+1), ...,

g(di−1
1 , wk−1, d

n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ..., g(di−1

1 , wm, d
n
i+1)

)
and
η(hk) = 1− ηc(hk) ≤ ηc(wk) = η(wk). Thus, η(hk) ≤ η(wk).

Therefore, all the conditions of the definition are satisfied. Consequently, A =
{〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic fuzzy ideal of (R, f, g).

Theorem 2.18. ([20]). Assume that A = {〈x, µ(x), η(x)〉 | x ∈ X} is an in-
tuitionistic fuzzy set of an (m,n)-near ring (R, f, g). Then A is an intuition-
istic fuzzy ideal of R if and only if B = {〈x, µ(x), µc(x)〉 | x ∈ X} and C =
{〈x, ηc(x), η(x)〉 | x ∈ X} are intuitionistic fuzzy ideals of R.

Proof. If A is an intuitionistic fuzzy ideal of R, then µ = (µc)c and ηc are fuzzy
ideals of R by Lemma 2.17. Hence, B and C are intuitionistic fuzzy ideals of R.
Conversely, if B and C are intuitionistic fuzzy ideals of R, then the fuzzy sets µ
and ηc are fuzzy ideals of R. Therefore, A is an intuitionistic fuzzy ideal of R.

Theorem 2.19. The set A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic fuzzy
ideal of an (m,n)-near ring (R, f, g) if and only if for all s, t ∈ [0, 1], the non-empty
sets µt and η≤s are ideals of R.

Proof. Suppose that the level subset µt, t ∈ (0, 1], is an ideal of R. Then µt is a
subnear ring of R. By using Theorem 2.6, µ is a fuzzy subnear ring of R.

(1) Let wi−1
1 , wmi+1 ∈ R, wi ∈ R and t = µ(wi). Then wi ∈ µt and µt is an

ideal of R, and so for all 1 ≤ j ≤ m there is aj ∈ µt so that f(wi−1
1 , wi, w

m
i+1) =

f(wj−1
1 , aj , w

m
j+1) and µ(aj) ≥ t = µ(wi). Therefore µ(aj) ≥ µ(wi).

(2) Let wn1 , w ∈ R. Then there is b ∈ (0, 1] such that µ(w) = b. µb is an ideal
of R, and so g(wi−1

1 , µb, w
n
i+1) ⊆ µb. This implies that g(wi−1

1 , w, wni+1) ∈ µb, and
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so µ
(
g(wi−1

1 , w, wni+1)
)
≥ b = µ(w). Therefore, for all w1, w2, ..., wn, w ∈ R and

1 ≤ i ≤ n, we have

µ
(
g(wi−1

1 , w, wni+1)
)
≥ µ(w).

(3) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ,∈ R and d ∈ R. Then there is

b ∈ (0, 1] so that µ(d) = b. Since µb is an ideal of R, it follows that there exists
l ∈ µb such that

g
(
si−1

1 , f(rk−1
1 , d, rmk+1), sni+1

)
= f

(
g(si−1

1 , r1, s
n
i+1), ...,

g(si−1
1 , rk−1, s

n
i+1), l, g(si−1

1 , rk+1, s
n
i+1), ..., g(si−1

1 , rn, s
n
i+1)

)
.

l ∈ µb so µ(l) ≥ b = µ(d).
Now, suppose that the lower level cut subset η≤t , t ∈ (0, 1], is an ideal of R. Then
η≤t is a subnear ring of R.

(1) Let wi−1
1 , wmi+1 ∈ R, wi ∈ R and t = η(wi). Hence, wi ∈ η≤t and η≤t is an

ideal of R. Thus for all 1 ≤ j ≤ m there is aj ∈ ηt so that f(wi−1
1 , wi, w

m
i+1) =

f(wj−1
1 , aj , w

m
j+1) and η(aj) ≤ t = η(wi). Consequently, η(aj) ≤ η(wi).

(2) Let wn1 , w ∈ R. Then, there is b ∈ (0, 1] so that µ(w) = b. Since µb is an
ideal of R, it follows that g(wi−1

1 , ηb, w
n
i+1) ⊆ ηb. Hence, g(wi−1

1 , w, wni+1) ∈ ηb,
and so η

(
g(wi−1

1 , w, wni+1)
)
≤ b = η(w). Therefore, for all w1, w2, ..., wn, x ∈ R

and 1 ≤ i ≤ n, we have

η
(
g(wi−1

1 , w, wni+1)
)
≤ η(w).

(3) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ,∈ R and d ∈ R. Then, there is

b ∈ (0, 1] such that η(d) = b. Since ηb is an ideal of R, it follows that there exists
l ∈ ηb such that

g
(
si−1

1 , f(rk−1
1 , d, rmk+1), sni+1

)
= f

(
g(si−1

1 , r1, s
n
i+1), ...,

g(si−1
1 , rk−1, s

n
i+1), l, g(si−1

1 , rk+1, s
n
i+1), ..., g(si−1

1 , rn, s
n
i+1)

)
.

l ∈ ηb so η(l) ≤ b = η(d).
So A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic fuzzy ideal of (R, f, g).

Conversely, suppose that A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intuitionistic
fuzzy ideal of an (m,n)-near ring (R, f, g). Then µ is a fuzzy subnear-ring of R.
By using Theorem 2.6, µt is a subnear-ring of R.

(1) Let wi−1
1 , wmi+1 ∈ R, wi ∈ µt and µ be an ideal of R. Then, for all 1 ≤ j ≤ m,

there is aj ∈ R so that f(wi−1
1 , wi, w

m
i+1) = f(wj−1

1 , aj , w
m
j+1) and µ(aj) ≥ µ(wi) =

t. Hence aj ∈ µt.
(2) Let w1, w2, ..., wn ∈ R and w ∈ µt. Then µ

(
g(wi−1

1 , w, wni+1)
)
≥ µ(w),

and so µ
(
g(wi−1

1 , w, wni+1)
)
≥ t. Hence, g(wi−1

1 , w, wni+1) ∈ µt which implies that
g(wi−1

1 , µt, w
n
i+1) ⊆ µt.

(3) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ∈ R,wk ∈ µt. Then, there is hk ∈ R

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), ..., g(di−1

1 , wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ...,

g(di−1
1 , wm, d

n
i+1)

)
,
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and
µ(hk) ≥ µ(wk) ≥ t, so hk ∈ µt.

Therefore, all conditions in the definition of ideal are met, and consequently µt is
an ideal.
By using Theorem 2.6, η≤t is a subnear-ring of R.

(1) Let wi−1
1 , wmi+1 ∈ R, wi ∈ η

≤
t and µ is an ideal of R. Then, for all 1 ≤ j ≤ m,

there is aj ∈ R so that f(wi−1
1 , wi, w

m
i+1) = f(wj−1

1 , aj , w
m
j+1) and η(aj) ≤ η(wi) =

t. Hence aj ∈ ηt.
(2) Let w1, w2, ..., wn ∈ R and w ∈ η≤t . Then η

(
g(wi−1

1 , w, wni+1)
)
≤ η(w), and

thus η
(
g(wi−1

1 , w, wni+1)
)
≤ t, which implies that g(wi−1

1 , w, wni+1) ∈ µ≤t and so
g(wi−1

1 , η≤t , w
n
i+1) ⊆ η≤t .

(3) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ∈ R,wk ∈ η

≤
t . Then there is hk ∈ R

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), ..., g(di−1

1 , wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ...,

g(di−1
1 , wm, d

n
i+1)

)
,

and
η(hk) ≤ η(wk) ≤ t, and so hk ∈ η≤t .

Therefore, all conditions in the definition of ideal are met, and consequently η≤t is
an ideal.

Formally, if {µi| i ∈ ∆} is a family of fuzzy sets in an (m,n)-near ring R, then the
union

∨
i∈∆

µi of {µi | i ∈ ∆} is defined by

(
∨
i∈∆

µi)(w) = sup{µi(w) | i ∈ ∆},

for all w ∈ R.

Definition 2.20. ([2]). Assume that A = {〈w, µ(w), η(w)〉 | w ∈ X} is an intu-
itionistic fuzzy set. In this case, we define characteristic function of A by

ΩA(〈w, a, b〉) =

{
1, if µ(w) = a and η(w) = b,

0, otherwise.

Definition 2.21. ([3]). Assume that A = {〈x, µ(x), η(x)〉 | x ∈ X} is an intu-
itionistic fuzzy set. In this case, we define complement of A by

Ac = {〈x, ηc(x), µc(x)〉 | x ∈ X}

Definition 2.22. ([21]). Assume that α, β ∈ [0, 1] with α+ β ≤ 1. An intuition-
istic fuzzy point, written as w(α,β) is defined to be an intuitionistic fuzzy subset
of R, given by

w(α,β)(y) =

{
(α, β), if w = y,

(0, 1), if w 6= y.
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An intuitionistic fuzzy point x(α,β) is said to belong to an intuitionistic fuzzy
set 〈µ, η〉 denoted by w(α,β) if µ(w) ≥ α and η(w) ≤ β and for w, y ∈ R we have

f(w1(t1,s1)
, ..., wm(tm,sm)

) = f(w1, w2, ..., wm)(t1∧...∧tm,s1∨...∨sm)),

g(w1(t1,s1)
, ..., wn(tn,sn)

) = g(w1, w2, ..., wn)(t1∧...∧tn,s1∨...∨sn)).

Definition 2.23. An intuitionistic fuzzy ideal of an (m,n)-near ring (R, f, g),
not necessarily non-constant, is called intuitionistic fuzzy prime ideal, if for any
intuitionistic fuzzy ideals W1,W2, ...,Wn of R (Wi = {〈x, µi(x), ηi(x)〉 | x ∈ R},
i ∈ {1, 2, ..., n}) the condition g(W1,W2, ...,Wn) ⊆ P implies that either W1 ⊆ P
or W2 ⊆ P or ... or Wn ⊆ P .

Definition 2.24. ([6]). Assume that W is intuitionistic fuzzy set of a universe
set X. Then (α, β)-cut of A is a crisp subset Cα,β(W ) of the intuitionistic fuzzy
set W is given by

Cα,β(W ) = {w | w ∈W,µ(w) ≥ α and η(w) ≤ β} for α, β ∈ [0, 1] with α+ β ≤ 1.

Theorem 2.25. If I is an i-ideal of an (m,n)-near ring (R, f, g), then for any
t, s ∈ (0, 1) there exists an intuitionistic fuzzy i-ideal x(t,s) of R such that C(t,s) =
I.

Proof. Let µ : R −→ [0, 1] and ηc : R −→ [0, 1] be fuzzy sets defined by:

x(t,s)(y) =

{
(t, s), if y ∈ I,
(0, 1), if y 6∈ I,

where t, s are fixed numbers in (0, 1). Then clearly C(t,s) = I.
(1) Let w1, w2, ..., wm ∈ R. If there is 1 ≤ i ≤ m such that wi 6∈ I, then

min{µ(w1), µ(w2), ..., µ(wm)} = 0,
µ
(
f(w1, w2, ..., wm)

)
≥ min{µ(w1), µ(w2), ..., µ(wm)}.

Otherwise, w1, w2, ..., wm ∈ I and I is an ideal of R. Then f(w1, w2, ..., wm) ∈ I,
and hence

µ
(
f(w1, w2, ..., wm)

)
= t,

µ
(
f(w1, w2, ..., wm)

)
≥ min{µ(w1), µ(w2), ..., µ(wm)}.

(2) Let dn1 , b ∈ R. Since R is an (m,n)-near ring, it follows that for all 1 ≤ i ≤ n
there is wi ∈ R so that f(di−1

1 , wi, d
m
i+1) = b. If there is 1 ≤ j ≤ m so that dj 6∈ I

or b 6∈ I, then

min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dn), µ(b)} = 0,
µ(wi) ≥ min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dn), µ(b)}.

Otherwise, dm1 , b ∈ I and I is an ideal of R, then wi ∈ I and hence µ(wi) = t,
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µ(wi) ≥ min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dn), µ(b)}.

(3) Let wi−1
1 , wmi+1 ∈ R, w ∈ R. If w ∈ I, because I is an ideal of R, then for

all 1 ≤ j ≤ m there is a ∈ I so that

f(wi−1
1 , w, wmi+1) = f(wi−1

1 , a, wmi+1),

and so t = µ(a) ≥ µ(w). If w 6∈ I, b = f(wi−1
1 , w, wmi+1) and w1 = y1, w2 = y2, ...,

wi−1 = yi−1, wi+1 = yi, ..., wm = ym−1, then by the definition of (m,n)-near ring
for ym−1

1 , b ∈ R there is a ∈ R so that b = f(yj−1
1 , a, ym−1

j ). Hence, we obtain

f(wi−1
1 , w, wmi+1) = f(yj−1

1 , a, ym−1
j ), µ(a) ≥ 0 = µ(w).

(4) Let w1, w2, ..., wn ∈ R. If there is 1 ≤ i ≤ n so that wi 6∈ I, then

min{µ(w1), µ(w2), ..., µ(wn)} = 0,
µ
(
g(w1, w2, ..., wn)

)
≥ min{µ(w1), µ(w2), ..., µ(wn)}.

Otherwise, w1, w2, ..., wn ∈ I and I is an ideal of R so g(w1, w2, ..., wn) ∈ I. Hence,
we have

µ
(
g(w1, w2, ..., wn)

)
= t,

µ
(
g(w1, w2, ..., wn)

)
≥ min{µ(w1), µ(w2), ..., µ(wn)}.

(5) Let wn1 , w ∈ R and 1 ≤ i ≤ n. If w ∈ I, then g(wi−1
1 , w, wni+1) ∈ I and so

µ(w) = µ
(
g(wi−1

1 , w, wni+1)
)

= t. If w 6∈ I, then 0 = µ(w) ≤ µ
(
g(wi−1

1 , w, wni+1)
)
.

(6) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ I. Then, there is hk ∈ I

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), ...,

g(di−1
1 , wk−1, d

n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ..., g(di−1

1 , wm, d
n
i+1)

)
.

So µ(hk) ≥ µ(wk).
(1) Let w1, w2, ..., wm ∈ R. If there is 1 ≤ i ≤ m that wi 6∈ I, then

max{η(w1), η(w2), ..., η(wm)} = 1,
η
(
f(w1, w2, ..., wm)

)
≤ max{η(w1), η(w2), ..., η(wm)}.

Otherwise, w1, w2, ..., wm ∈ I and I is an ideal of R, then f(w1, w2, ..., wm) ∈ I
and hence

η
(
f(w1, w2, ..., wm)

)
= t,

η
(
f(w1, w2, ..., wm)

)
≤ max{η(w1), η(w2), ..., η(wm)}.

(2) Let dn1 , b ∈ R. Since R is an (m,n)-near ring, it follows that for all 1 ≤ i ≤ n
there is wi ∈ R so that f(di−1

1 , wi, d
m
i+1) = b. If there is 1 ≤ j ≤ m so that dj 6∈ I

or b 6∈ I, then

max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dn), η(b)} = 1,
η(wi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dn), η(b)}.

Otherwise, dm1 , b ∈ I and I is an ideal of R and so wi ∈ I. Thus η(wi) = t,
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η(wi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dn), η(b)}.

(3) Let wi−1
1 , wmi+1 ∈ R, w ∈ R. If w ∈ I, since I is an ideal of R, it follows

that for all 1 ≤ j ≤ m there is a ∈ I so that

f(wi−1
1 , w, wmi+1) = f(wi−1

1 , a, wmi+1),

and so t = η(a) ≤ η(w). If w 6∈ I, b = f(wi−1
1 , w, wmi+1) and w1 = y1, w2 = y2, ...,

wi−1 = yi−1, wi+1 = yi, ..., wm = ym−1, then by the definition of (m,n)-near ring,
for ym−1

1 , b ∈ R there is a ∈ R so that b = f(yj−1
1 , a, ym−1

j ). Hence, we obtain

f(wi−1
1 , w, wmi+1) = f(yj−1

1 , a, ym−1
j ), η(a) ≤ 1 = η(w).

(4) Let w1, w2, ..., wn ∈ R. If there is 1 ≤ i ≤ n such that wi 6∈ I, then

max{η(w1), η(w2), ..., η(wn)} = 1,
η
(
g(w1, w2, ..., wn)

)
≤ max{η(w1), η(w2), ..., η(wn)}.

Otherwise, w1, w2, ..., wn ∈ I and I is an ideal of R and so g(w1, w2, ..., wn) ∈ I.
This implies that

η
(
g(w1, w2, ..., wn)

)
= t,

η
(
g(w1, w2, ..., wn)

)
≥ max{η(w1), η(w2), ..., η(wn)}.

(5) Let wn1 , w ∈ R and 1 ≤ i ≤ n. If x ∈ I, then g(wi−1
1 , w, wni+1) ∈ I and so

η(w) = η
(
g(wi−1

1 , w, wni+1)
)

= t. If w 6∈ I, then 1 = η(w) ≥ η
(
g(wi−1

1 , w, wni+1)
)
.

(6) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ I. Then, there is hk ∈ I

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), ..., g(di−1

1 , wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ...,

g(di−1
1 , wm, d

n
i+1)

)
.

Therefore, we get η(hk) ≤ η(wk).

Lemma 2.26. If I is a subset of an (m,n)-near ring (R, f, g), then I is an ideal
of R if and only if the intuitionistic characteristic function χI = 〈µχI

, ηχI
〉 of I is

an intuitionistic fuzzy ideal of R.

Proof. Assume that the intuitionistic characteristic function χI = 〈µχI
, ηχI
〉 of I

is an intuitionistic fuzzy ideal of R.
(1) Let w1, w2, ..., wm ∈ I. Then µχI

(w1) = µχI
(w2) = ... = µχI

(wm) = 1,
and thus µχI

(
f(w1, w2, ..., wm)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wm)} = 1, and
so f(w1, w2, ..., wm) ∈ I.

(2) Let dm1 , b ∈ I. Then there is wi ∈ R, 1 ≤ i ≤ m, so that f(di−1
1 , wi, d

m
i+1) =

b and µχI
(wi) ≥ min{µχI

(d1), ..., µχI
(di−1), µχI

(di+1), ..., µχI
(dm), µχI

(b)} = 1,
and so wi ∈ I.

(3) Since µχI
is a fuzzy ideal of R so for all wi−1

1 , wmi+1 ∈ R, w ∈ I and
1 ≤ j ≤ m, there is a ∈ R so that f(wj−1

1 , a, wmj+1) = f(wi−1
1 , w, wmi+1) and
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µχI
(a) ≥ µχI

(w), and hence a ∈ I. Thus, for all wi−1
1 , wmi+1 ∈ R and w ∈ I there

is a ∈ I so that

f(wj−1
1 , a, wmj+1) = f(wi−1

1 , w, wmi+1) and µχI
(a) ≥ µχI

(w).

(4) Let w1, w2, ..., wn ∈ I. Then µχI
(w1) = µχI

(w2) = ... = µχI
(wm) = 1, and

thus

µχI

(
g(w1, w2, ..., wn)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wn)} = 1.

Hence, g(w1, w2, ..., wn) ∈ I.
(5) For every dn1 , w ∈ I and 1 ≤ i ≤ n, 1 = µχI

(w) ≤ µχI

(
g(di−1

1 , w, dni+1)
)
,

and so

g(di−1
1 , w, dni+1) ∈ I.

(6) For all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ I there is hk ∈ R

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), ..., g(di−1

1 , wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ...,

g(di−1
1 , wm, d

n
i+1)

)
and µχI

(hk) ≥ µχI
(wk), thus hk ∈ I.

(1) Let w1, w2, ..., wm ∈ I. Then ηχI
(w1) = ηχI

(w2) = ... = ηχI
(wm) =

0, and so ηχI

(
f(w1, w2, ..., wm)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wm)} = 0 so
f(w1, w2, ..., wm) ∈ I.

(2) Let dm1 , b ∈ I. Then there is xi ∈ R, 1 ≤ i ≤ m, so that f(di−1
1 , xi, d

m
i+1) = b

and ηχI
(xi) ≤ max{ηχI

(d1), ηχI
(d2), ..., ηχI

(di−1), ηχI
(di+1), ..., ηχI

(dm), ηχI
(b)} =

0, and so xi ∈ I.
(3) For all wi−1

1 , wmi+1 ∈ R, w ∈ I and 1 ≤ j ≤ m, there is a ∈ R so that
f(wj−1

1 , a, wmj+1) = f(wi−1
1 , w, wmi+1) and ηχI

(a) ≤ ηχI
(w), hence a ∈ I.

Thus, for all wi−1
1 , wmi+1 ∈ R and x ∈ I there is a ∈ I so that

f(wj−1
1 , a, wmj+1) = f(wi−1

1 , w, wmi+1) and ηχI
(a) ≤ ηχI

(w).

(4) Let w1, w2, ..., wn ∈ I. Then ηχI
(w1) = ηχI

(w2) = ... = ηχI
(wm) = 0, thus

ηχI

(
g(w1, w2, ..., wn)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wn)} = 0,

and so g(w1, w2, ..., wn) ∈ I.
(5) For every dn1 , x ∈ I and 1 ≤ i ≤ n, 0 = ηχI

(x) ≥ ηχI

(
g(di−1

1 , x, dni+1)
)
, we

have

g(di−1
1 , x, dni+1) ∈ I.

(6) For all k 6= i, 1 ≤ k ≤ m, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ I there is hk ∈ R

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
= f

(
g(di−1

1 , w1, d
n
i+1), ..., g(di−1

1 , wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ...,
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g(di−1
1 , wm, d

n
i+1)

)
and ηχI

(hk) ≤ ηχI
(wk). Thus hk ∈ I.

Conversely, assume that I is an ideal of R.
(1) Let w1, w2, ..., wm ∈ R. If there is 1 ≤ i ≤ m that wi 6∈ I, then

min{µχI
(w1), µχI

(w2), ..., µχI
(wm)} = 0,

µχI

(
f(w1, w2, ..., wm)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wm)}.

Otherwise, w1, w2, ..., wm ∈ I and I is an ideal of R and so f(w1, w2, ..., wm) ∈ I.
Hence

µχI

(
f(w1, w2, ..., wm)

)
= 1,

µχI

(
f(w1, w2, ..., wm)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wm)}.

(2) Let dm1 , b ∈ R. Since R is an (m,n)-near ring, it follows that for all
1 ≤ i ≤ m there is wi ∈ R, f(di−1

1 , wi, d
m
i+1) = b. If there is 1 ≤ i ≤ m such that

di 6∈ I or b 6∈ I, then

min{µχI
(d1), µχI

(d2), ..., µχI
(di−1), µχI

(di+1), ..., µχI
(dm), µχI

(b)} = 0,
µχI

(wi) ≥ min{µχI
(d1), µχI

(d2), ..., µχI
(di−1), µχI

(di+1), ..., µχI
(dm), µχI

(b)}.

Otherwise, dm1 , b ∈ I and I is an ideal of R so wi ∈ I hence µχI
(wi) = 1 and

µχI
(wi) ≥ min{µχI

(d1), µχI
(d2), ..., µχI

(di−1), µχI
(di+1), ..., µχI

(dn), µχI
(b)}.

(3) Let wi−1
1 , wmi+1, w ∈ R. If w ∈ I, because I is an ideal of R, then for all

1 ≤ j ≤ m there is a ∈ I so that f(wi−1
1 , w, wmi+1) = f(wi−1

1 , a, wmi+1), a ∈ I and
so 1 = µχI

(a) ≥ µχI
(w).

If x 6∈ I, b = f(wi−1
1 , w, wmi+1) and w1 = y1, w2 = y2, ..., wi−1 = yi−1, wi+1 =

yi, ..., wm = ym−1, then by the definition of (m,n)-near ring, for ym−1
1 , b ∈ R

there is a ∈ R so that b = f(yj−1
1 , a, ym−1

j ). Hence, we have

f(wi−1
1 , w, wmi+1) = f(yj−1

1 , a, ym−1
j ), µχI

(a) ≥ 0 = µχI
(w).

(4) Let w1, w2, ..., wn ∈ R. If there is 1 ≤ i ≤ n such that wi 6∈ I, then

min{µχI
(w1), µχI

(w2), ..., µχI
(wn)} = 0 and

µχI

(
g(w1, w2, ..., wn)) ≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wn)}.

Otherwise, w1, w2, ..., wn ∈ I and I is an ideal of R so g(w1, w2, ..., wn) ∈ I. Hence,
we obtain

µχI

(
g(w1, w2, ..., wn)

)
= 1,

µχI

(
g(w1, w2, ..., wn)

)
≥ min{µχI

(w1), µχI
(w2), ..., µχI

(wn)}.
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(5) Let wn1 , w ∈ R and 1 ≤ i ≤ n. If w ∈ I, then g(wi−1
1 , w, wni+1) ∈ I

and so µχI
(w) = µχI

(
g(wi−1

1 , w, wni+1)
)

= 1. If w 6∈ I, then 0 = µχI
(w) ≤

µχI

(
g(wi−1

1 , w, wni+1)
)
.

(6) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ I. Then there is hk ∈ I

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
=

f
(
g(di−1

1 , w1, d
n
i+1), ..., g(di−1

1 , wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ...,

g(di−1
1 , wm, d

n
i+1)

)
,

and µχI
(hk) ≥ µχI

(wk).
(1) Let w1, w2, ..., wm ∈ R. If there is 1 ≤ i ≤ m that wi 6∈ I, then

max{ηχI
(w1), ηχI

(w2), ..., ηχI
(wm)} = 1,

ηχI

(
f(w1, w2, ..., wm)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wm)}.

Otherwise, w1, w2, ..., wm ∈ I and I is an ideal of R so f(w1, w2, ..., wm) ∈ I. This
implies that

ηχI

(
f(w1, w2, ..., wm)

)
= 0,

ηχI

(
f(w1, w2, ..., wm)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wm)}.

(2) Let dm1 , b ∈ R. Since R is an (m,n)-near ring, it follows that for all
1 ≤ i ≤ m there is xi ∈ R, f(di−1

1 , xi, d
m
i+1) = b. If there is 1 ≤ i ≤ m so that

di 6∈ I or b 6∈ I, then

max{ηχI
(d1), ηχI

(d2), ..., ηχI
(di−1), ηχI

(di+1), ..., ηχI
(dm), ηχI

(b)} = 1,
ηχI

(xi) ≤ max{ηχI
(d1), ηχI

(d2), ..., ηχI
(di−1), ηχI

(di+1), ..., ηχI
(dm), ηχI

(b)}.

Otherwise, dm1 , b ∈ I and I is an ideal of R so wi ∈ I. Hence η(wi) = 1 and

η(wi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)}.

(3) Let wi−1
1 , wmi+1, w ∈ R. If w ∈ I, because I is an ideal of R, then for all

1 ≤ j ≤ m there is a ∈ I so that f(wi−1
1 , w, wmi+1) = f(wi−1

1 , a, wmi+1), a ∈ I so
0 = ηχI

(a) ≤ ηχI
(w).

If w 6∈ I, b = f(wi−1
1 , w, wmi+1) and w1 = y1, w2 = y2, ..., wi−1 = yi−1, wi+1 =

yi, ..., wm = ym−1, then by the definition of (m,n)-near ring, for ym−1
1 , b ∈ R

there is a ∈ R so that b = f(yj−1
1 , a, ym−1

j ). Hence, we get

f(wi−1
1 , w, wmi+1) = f(yj−1

1 , a, ym−1
j ), ηχI

(a) ≤ 1 = ηχI
(w).

(4) Let w1, w2, ..., wn ∈ R. If there is 1 ≤ i ≤ n such that wi 6∈ I, then

max{ηχI
(w1), ηχI

(w2), ..., ηχI
(wn)} = 1 and

ηχI

(
g(w1, w2, ..., wn)) ≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wn)}.

Otherwise, w1, w2, ..., wn ∈ I and I is an ideal of R and so g(w1, w2, ..., wn) ∈ I.
This yields that
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ηχI

(
g(w1, w2, ..., wn)

)
= 0,

ηχI

(
g(w1, w2, ..., wn)

)
≤ max{ηχI

(w1), ηχI
(w2), ..., ηχI

(wn)}.

(5) Let wn1 , w ∈ R and 1 ≤ i ≤ n. If x ∈ I, then g(wi−1
1 , w, wni+1) ∈

I and so η(w) = η
(
g(wi−1

1 , w, wni+1)
)

= 0. If w 6∈ I, then 1 = ηχI
(w) ≥

ηχI

(
g(wi−1

1 , w, wni+1)
)
.

(6) Let k 6= i, 1 ≤ k ≤ n, di−1
1 , dni+1, w

m
1 ∈ R and wk ∈ I. Then there is hk ∈ I

so that
g
(
di−1

1 , f(w1, w2, ..., wm), dni+1

)
=

f
(
g(di−1

1 , w1, d
n
i+1), ..., g(di−1

1 , wk−1, d
n
i+1), hk, g(di−1

1 , wk+1, d
n
i+1), ...,

g(di−1
1 , wm, d

n
i+1)

)
,

and ηχI
(hk) ≤ ηχI

(wk).

3 Direct product of (m,n)-near rings
If (R1, f, g) and (R2, f, g) are (m,n)-near rings, then direct product R1 × R2 of
R1 and R2 is an (m,n)-near ring with F and G defined as

F
(
(s1, k1), (s2, k2), ..., (sm, km)

)
=
(
f(s1, s2, ..., sm), f(k1, k2, ..., km)

)
,

G
(
(c1, d1), (c2, d2), ..., (cn, dn)

)
=
(
g(c1, c2, ..., cn), g(d1, d2, ..., dn)

)
,

respectively, for every (si, ki), (cj , dj) ∈ R1×R2 so that 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Likewise the direct product R = ×i∈ωRi of a family of (m,n)-near rings {Ri | i ∈
ω} has the structure of an (m,n)-near ring with the operations of F and G defined
as

F (w1, w2, ..., wm) = F
(
(w11

, w12
, ...), (w21

, w22
, ...), ..., (wm1

, wm2
, ...)

)
=
(
f(w11

, w21
, ..., wm1

), f(w12
, w22

, ..., wm2
), ...)

G(l1, l2, ..., ln) = G
(
(l11 , l12 , ...), (l21 , l22 , ...), ..., (ln1 , ln2 , ...)

)
=
(
g(l11

, l21
, ..., ln1

), g(l12
, l22

, ..., ln2
), ...),

for all wm1 , ln1 ∈ R.

Lemma 3.1. If A and B are two subnear-rings of (m,n)-near rings R1 and R2

respectively, then A×B is also a subnear-ring of R1×R2 under the same operations
defined as in R1 ×R2.

Proof. It is straightforward.

Let A = {〈x, µ(x), η(x)〉 | x ∈ X} and B = {〈x, µ′(x), η′(x)〉 | x ∈ X} be
two intuitionistic fuzzy subsets of (m,n)-near rings R1 and R2, respectively. The
direct product of A and B, is denoted by A×B and is defined as follows:

A×B = {
(
(w, l), µ′′

(
(w, l)

)
, η′′
(
(w, l)

))
| for all w ∈ R1 and l ∈ R2},

where µ′′
(
(w, l)

)
= min{µ(w), µ′(l)} and η′′

(
(w, l)

)
= max{η(w), η′(l)}.
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Theorem 3.2. If A and B are two subnear-rings of (m,n)-near rings R1 and R2

respectively, then A×B is a subnear-ring of R1×R2 if and only if the intuitionistic
characteristic function χc = 〈µχc , ηχc〉 of C = A × B is an intuitionistic fuzzy
subnear ring of R1 ×R2.

Proof. Assume that C = A×B is a subnear-ring of R1×R2 and am1 , bn1 ∈ R1×R2.
If am1 , bn1 ∈ A×B = C, then by the definition of characteristic function µχC

(ai) =
1 = µχC

(bj) and ηχC
(ai) = 0 = ηχC

(bj) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
(1) For all dm1 ∈ A × B, f(d1, d2, ..., dm) ∈ C then µχC

(
f(d1, d2, ..., dm)

)
= 1,

and so µχC

(
f(d1, d2, ..., dm)

)
≥ min{µχC

(d1), µχC
(d2), ..., µχC

(dm)}.
(2) For all dm1 , b ∈ A×B and 1 ≤ i ≤ n there is wi ∈ A×B so that

f(di−1
1 , wi, d

m
i+1) = b and µχC

(d1) = µχC
(d2) = ... = µχC

(di−1) = µχC
(di+1) =

... = µχC
(dm) = µχC

(b) = 1, so 1 = µχC
(wi) ≥

min{µχC
(d1), µχC

(d2), ..., µχC
(di−1), µχC

(di+1), ..., µχC
(dm), µχC

(b)},

(3) For all w1, w2, ..., wn ∈ A×B, g(w1, w2, ..., wn) ∈ A×B then

1 = µ
(
g(w1, w2, ..., wn)

)
= µ(w1) = µ(w2) = ... = µ(wn),

µ
(
g(w1, w2, ..., wn)

)
≥ min{µ(w1), µ(w2), ..., µ(wn)}.

(4) For all w1, w2, ..., wm ∈ A × B we have f(w1, w2, ..., wn) ∈ A × B. Thus,
we have

0 = η
(
f(w1, w2, ..., wm)

)
= η(w1) = η(w2) = ... = η(wm),

η
(
f(w1, w2, ..., wm)

)
≤ max{η(w1), η(w2), ..., η(wm)},

(5) For all dm1 , b ∈ A×B and 1 ≤ i ≤ n there is wi ∈ A×B so that

f(di−1
1 , wi, d

m
i+1) = b,

0 = η(wi) = η(d1) = η(d2) = ... = η(di−1) = η(di+1) = ... = η(dm) = η(b) so
η(wi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(b)},

(6) For all w1, w2, ..., wn ∈ A×B we have g(w1, w2, ..., wn) ∈ A×B, and so

0 = η
(
g(w1, w2, ..., wn)

)
= η(w1) = η(w2) = ... = η(wn),

η
(
g(w1, w2, ..., wn)

)
≤ max{η(w1), η(w2), ..., η(wn)}.

Conversely, assume that the intuitionistic characteristic function χc = 〈µχc , ηχc〉
of C = A×B is an intuitionistic fuzzy subnear ring of R1 ×R2.

(1) For all dm1 ∈ A×B,

µχC

(
f(d1, d2, ..., dm)

)
≥ min{µχC

(d1), µχC
(d2), ..., µχC

(dm)} = 1,
µχC

(
f(d1, d2, ..., dm)

)
= 1,

for all d1, d2, ..., dm ∈ A×B we have 0 = ηχC
(d1) = ηχC

(d2) = ... = ηχC
(dm)

ηχC

(
f(d1, d2, ..., dm)

)
≤ max{ηχC

(d1), ηχC
(d2), ..., ηχC

(dm)} = 0, and so
ηχC

(
f(d1, d2, ..., dm)

)
= 0.
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Thus f(d1, d2, ..., dm)
)
∈ A×B.

(2) For all dm1 , b ∈ A×B and 1 ≤ i ≤ n there is wi ∈ R1 ×R2 so that

f(di−1
1 , wi, d

m
i+1) = b and µχC

(d1) = µχC
(d2) = ... = µχC

(di−1) = µχC
(di+1) =

... = µχC
(dm) = µχC

(b) = 1, so µχC
(wi) ≥

min{µχC
(d1), µχC

(d2), ..., µχC
(di−1), µχC

(di+1), ..., µχC
(dm), µχC

(b)} = 1,

and so µχC
(wi) ≥ 1. This implies that µχC

(wi) = 1.

f(di−1
1 , wi, d

m
i+1) = b,

0 = ηχC
(d1) = ηχC

(d2) = ... = ηχC
(di−1) = ηχC

(di+1) = ... = ηχC
(dm) = ηχC

(b)
so ηχC

(wi) ≤
max{ηχC

(d1), ηχC
(d2), ..., ηχC

(di−1), ηχC
(di+1), ..., ηχC

(dm), ηχC
(b)} = 0,

and so ηχC
(wi) = 0. Consequently, wi ∈ A×B.

(3) For all w1, w2, ..., wn ∈ A × B, we have 1 = µχC
(w1) = µχC

(w2) = ... =
µχC

(wn),

µχC

(
g(w1, w2, ..., wn)

)
≥ min{µχC

(w1), µχC
(w2), ..., µχC

(wn)} = 1.

So µχC

(
g(w1, w2, ..., wn)

)
= 1,

0 = ηχC
(w1) = ηχC

(w2) = ... = ηχC
(wn). Thus, we have

ηχC

(
g(w1, w2, ..., wn)

)
≤ max{ηχC

(w1), ηχC
(w2), ..., ηχC

(wn)} = 0.

So ηχC

(
g(w1, w2, ..., wn)

)
= 0. Consequently, we get g(w1, w2, ..., wn) ∈ A×B.

Therefore, all conditions of the definition of an (m,n)-near ring are satisfied,
and so A×B is an (m,n)-near ring.

Theorem 3.3. If A and B are two intuitionistic fuzzy subnear-rings of (m,n)-near
rings R1 and R2 respectively, then A×B is an intuitionistic fuzzy subnear-ring of
R1 ×R2.

Proof. Let A = {〈x, µ(x), η(x)〉 | x ∈ R1} and B = {〈y, µ′(y), η′(y)〉 | y ∈ R2} be
intuitionistic fuzzy subnear-rings of (m,n)-near rings R1 and R2, respectively. Now
A × B = {〈(x, y), µ′′

(
(x, y)

)
, η′′
(
(x, y)

)
〉 | x ∈ R1, y ∈ R2}, where µ′′

(
(x, y)

)
=

min{µ(x), µ′(y)} and η′′
(
(x, y)

)
= max{η(x), η′(y)}. We have to show that A×B

is an intuitionistic fuzzy subnear-ring of R1 ×R2.
(1) Let (di, li) ∈ R1 ×R2 for 1 ≤ i ≤ m,

µ′′
(
F ((d1, l1), (d2, l2), ..., (dm, lm))

)
= µ′′

(
(f(d1, d2, ..., dm), f(l1, l2, ..., lm))

)
= min{µ

(
f(d1, d2, ..., dm)

)
, µ′(f(l1, l2, ..., lm)

)
}

≥ min{µ(d1), µ(d2), ..., µ(dm), µ′(l1), µ′(l2), ..., µ′(lm)}
= min{min{µ(d1), µ′(l1)},min{µ(d2), µ′(l2)}, ...,min{µ(dm), µ′(lm)}}
= min{µ′′

(
(d1, l1)

)
, µ′′
(
(d2, l2)

)
, ..., µ′′

(
(dm, lm)

)
},

so we get
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µ′′
(
F ((d1, l1), (d2, l2), ..., (dm, lm))

)
≥

min{µ′′
(
(d1, l1)

)
, µ′′
(
(d2, l2)

)
, ..., µ′′

(
(dm, lm)

)
}.

(2) For all dm1 , c ∈ A and 1 ≤ i ≤ n there is wi ∈ A so that

f(di−1
1 , wi, d

m
i+1) = c,

µ(wi) ≥ min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm), µ(c)}.

For all dm1 , d ∈ B and 1 ≤ i ≤ n there is yi ∈ B so that

f(di−1
1 , yi, d

m
i+1) = d,

µ′(yi) ≥ min{µ′(d1), µ′(d2), ..., µ′(di−1), µ′(di+1), ..., µ′(dm), µ′(d)}.

Let (di, li), (c, d) ∈ A×B for 1 ≤ i ≤ m. Then

(c, d) =
(
f(di−1

1 , xi, d
m
i+1), f(li−1

1 , yi, l
m
i+1)

)
= F

(
(d1, l1), ..., (di−1, li−1), (xi, yi), (di+1, li+1), ..., (dm, lm)

)
.

Hence, there is (xi, yi) ∈ A×B such that

(c, d) = F
(
(d1, l1), ..., (di−1, li−1), (xi, yi), (di+1, li+1), ..., (dm, lm)

)
µ′′
(
(xi, yi)

)
= min{µ(xi), µ

′(yi)} ≥ min{min{µ(d1), µ(d2), ..., µ(di−1),
µ(di+1), ..., µ(dm), µ(c)},min{µ′(l1), µ′(l2), ..., µ′(li−1), µ′(li+1), ..., µ′(lm),
µ′(d)}} = min{µ(d1), µ(d2), ..., µ(di−1), µ(di+1), ..., µ(dm), µ(c), µ′(l1),
µ′(l2), ..., µ′(li−1), µ′(li+1), ..., µ′(lm), µ′(d)} = min{min{µ(d1), µ′(l1)}, ...,
min{µ(di−1), µ′(li−1)},min{µ(c), µ′(d)},min{µ(di+1), µ′(li+1)}, ...,
min{µ(dm), µ′(lm)}} = min{µ′′

(
(d1, l1)

)
, ..., µ′′

(
(di−1, li−1)

)
, µ′′
(
(c, d)

)
,

µ′′
(
(di+1, li+1)

)
, ..., µ′′

(
(dm, lm)

)
}.

Therefore, we get

µ′′
(
(xi, yi)

)
≥

min{µ′′
(
(d1, l1)

)
, ..., µ′′

(
(di−1, li−1)

)
, µ′′
(
(c, d)

)
, µ′′
(
(di+1, li+1)

)
, ..., µ′′

(
(dm, lm)

)
},

(3) Let (di, li) ∈ R1 ×R2 for 1 ≤ i ≤ n. Then

µ′′
(
G((d1, l1), (d2, l2), ..., (dn, ln))

)
= µ′′

(
(g(d1, d2, ..., dn), g(l1, l2, ..., ln))

)
= min{µ

(
g(d1, d2, ..., dn)

)
, µ′(g(l1, l2, ..., ln)

)
}

≥ min{µ(d1), µ(d2), ..., µ(dn), µ′(l1), µ′(l2), ..., µ′(ln)}
= min{min{µ(d1), µ′(l1)},min{µ(d2), µ′(l2)}, ...,min{µ(dn), µ′(ln)}}
= min{µ′′

(
(d1, l1)

)
, µ′′
(
(d2, l2)

)
, ..., µ′′

(
(dn, ln)

)
},

and so

µ′′
(
G((d1, l1), (d2, l2), ..., (dn, ln))

)
≥

min{µ′′
(
(d1, l1)

)
, µ′′
(
(d2, l2)

)
, ..., µ′′

(
(dn, ln)

)
},
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(4) Let (di, li) ∈ R1 ×R2 for 1 ≤ i ≤ m. Then

η′′
(
F ((d1, l1), (d2, l2), ..., (dm, lm))

)
= η′′

(
(f(d1, d2, ..., dm), f(l1, l2, ..., lm))

)
= max{η

(
f(d1, d2, ..., dm)

)
, η′(f(l1, l2, ..., lm)

)
}

≤ max{η(d1), η(d2), ..., η(dm), η′(l1), η′(l2), ..., η′(lm)}
= max{max{η(d1), η′(l1)},max{η(d2), η′(l2)}, ...,max{η(dm), η′(lm)}}
= max{η′′

(
(d1, l1)

)
, η′′
(
(d2, l2)

)
, ..., η′′

(
(dm, lm)

)
},

and so

η′′
(
F ((d1, l1), (d2, l2), ..., (dm, lm))

)
≤

max{η′′
(
(d1, l1)

)
, η′′
(
(d2, l2)

)
, ..., η′′

(
(dm, lm)

)
},

(5) For all dm1 , c ∈ A and 1 ≤ i ≤ n there is xi ∈ A so that

f(di−1
1 , xi, d

m
i+1) = c,

η(xi) ≤ max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(c)}.

For all lm1 , d ∈ B and 1 ≤ i ≤ n there is yi ∈ B so that

f(li−1
1 , yi, l

m
i+1) = d,

η′(yi) ≤ max{η′(l1), η′(l2), ..., η′(li−1), η′(li+1), ..., η′(lm), η′(d)}.

Let (di, li), (c, d) ∈ A×B for 1 ≤ i ≤ m

(c, d) =
(
f(di−1

1 , xi, d
m
i+1), f(li−1

1 , yi, l
m
i+1)

)
= F

(
(d1, l1), ..., (di−1, li−1), (xi, yi), (di+1, li+1), ..., (dm, lm)

)
.

Then there is (xi, yi) ∈ A×B that

(c, d) = F
(
(d1, l1), ..., (di−1, li−1), (xi, yi), (di+1, li+1), ..., (dm, lm)

)
,

η′′
(
(xi, yi)

)
= max{η(xi), η

′(yi)} ≤ max{max{η(d1), η(d2), ..., η(di−1),
η(di+1), ..., η(dm), η(c)},max{η′(l1), η′(l2), ..., η′(li−1), η′(li+1), ...,
η′(lm), η′(d)}} = max{η(d1), η(d2), ..., η(di−1), η(di+1), ..., η(dm), η(c),
η′(l1), η′(l2), ..., η′(li−1), η′(li+1), ..., η′(lm), η′(d)} = max{max{η(d1),
η′(l1)}, ...,max{η(di−1), η′(li−1)},max{η(c), η′(d)},max{η(di+1),
η′(li+1)}, ...,max{η(dm), η′(lm)}} = max{η′′

(
(d1, l1)

)
, ..., η′′

(
(di−1, li−1)

)
,

η′′
(
(c, d)

)
, η′′
(
(di+1, li+1)

)
, ..., η′′

(
(dm, lm)

)
}. Therefore, we get

η′′
(
(xi, yi)

)
≤

max{η′′
(
(d1, l1)

)
, ..., η′′

(
(di−1, li−1)

)
, η′′
(
(c, d)

)
, η′′
(
(di+1, li+1)

)
, ..., η′′

(
(dm, lm)

)
}

(6) Let (di, li) ∈ R1 ×R2 for 1 ≤ i ≤ n. Then, we have
η′′
(
G((d1, l1), (d2, l2), ..., (dn, ln))

)
= η′′

(
(g(d1, d2, ..., dn), g(l1, l2, ..., ln))

)
= max{η

(
g(d1, d2, ..., dn)

)
, η′(g(l1, l2, ..., ln)

)
} ≤ max{η(d1), η(d2), ..., η(dn), η′(l1),

η′(l2), ..., η′(ln)} = max{max{η(d1), η′(l1)},max{η(d2), η′(l2)}, ...,max{η(dn),
η′(ln)}} = max{η′′

(
(d1, l1)

)
, η′′
(
(d2, l2)

)
, ..., η′′

(
(dn, ln)

)
}, so
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η′′
(
G((d1, l1), (d2, l2), ..., (dn, ln))

)
≤

max{η′′
(
(d1, l1)

)
, η′′
(
(d2, l2)

)
, ..., η′′

(
(dn, ln)

)
}.
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