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The Intrinsic Beauty, Harmony

and Interdisciplinarity in

Einstein Velocity Addition Law:

Gyrogroups and Gyrovector Spaces

Abraham A. Ungar⋆

Abstract

The only justification for the Einstein velocity addition law appeared
to be its empirical adequacy, so that the intrinsic beauty and harmony in
Einstein addition remained for a long time a mystery to be conquered. Ac-
cordingly, the aim of this expository article is to present (i) the Einstein
relativistic vector addition, (ii) the resulting Einstein scalar multiplication,
(iii) the Einstein relativistic mass, and (iv) the Einstein relativistic kinetic
energy, along with remarkable analogies with classical results in groups and
vector spaces that these Einstein concepts capture in gyrogroups and gy-
rovector spaces. Making the unfamiliar familiar, these analogies uncover the
intrinsic beauty and harmony in the underlying Einstein velocity addition
law of relativistically admissible velocities, as well as its interdisciplinarity.

Keywords: Einstein addition, gyrogroup, gyrovector space, hyperbolic geom-
etry, special relativity.
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1. Introduction

A major obstacle to the widespread adoption of hyperbolic geometry is its com-
plexity, which contrasts the simplicity of Euclidean geometry. Hence, the mere
mention of hyperbolic geometry is enough to strike fear in the heart of the under-
graduate mathematics and physics student. Some regard themselves as excluded
from the profound insights of hyperbolic geometry so that this enormous portion of
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human achievement is a closed door to them. However, Einstein velocity addition
law of relativistically admissible velocities opens that door, making the hyperbolic
geometry of Lobachevsky and Bolyai accessible to a wider audience in terms of
novel analogies that the modern and unknown share with the classical and familiar.

Einstein velocity addition law gives rise to a binary operation in the ball of
relativistically admissible velocities, called Einstein addition. The intrinsic beauty
and harmony in Einstein addition has several features, one of which is the gy-
rogroup isomorphism relation it shares with Möbius addition that results from the
Möbius transformation of the complex disk. Einstein introduced the relativistic
velocity addition law in his 1905 paper [17] that founded the special relativity the-
ory. The only justification for the Einstein velocity addition law appeared to be its
empirical adequacy, so that the intrinsic beauty and harmony in Einstein addition
remained for a long time a mystery to be conquered. The discovery of the intrinsic
beauty and harmony in Einstein addition is an ongoing process initiated in 1988 by
the discovery of the parametric realization of the Lorentz transformation group in
pseudo-Euclidean spaces of signature (1, n), n ∈ N in [54], resulting in many arti-
cles as well as seven related books [60,64,67,69,71,72,79], [39,40,83]. Recently, the
parametric realization of Lorentz groups has been extended to pseudo-Euclidean
spaces of any signature (m,n), m,n ∈ N in [80].

Most texts on special relativity, with a few outstanding exceptions including [3],
[24], and [41,42], present the Einstein velocity addition only for parallel velocities.
In this simplified special case Einstein velocity addition is both commutative and
associative. In general, however, Einstein addition of velocities that need not be
parallel is neither commutative nor associative.

Einstein velocity addition law gives rise to a binary operation ⊕, called Einstein
addition, in the ball of all relativistically admissible velocities. Einstein addition,
in turn, gives rise to the Einstein scalar multiplication ⊗. Einstein addition and
scalar multiplication give rise to hyperbolic vector spaces called gyrovector spaces.
Applications of gyrogroups and gyrovector spaces are presented in many publica-
tions as, for instance, in [60, 64, 67, 69, 71, 72, 79] and in [4–7, 38, 44], [15, 16], [19],
[20–23], [48–52], [27], [37], [46], [81], [29] and [1, 25]. Evidently, gyrovector spaces
form the algebraic setting for analytic hyperbolic geometry, just as vector spaces
form the algebraic setting for analytic Euclidean geometry.

One of the remarkable analogies that Einstein scalar multiplication captures in
Einstein’s special theory of relativity is the novel analogy that classical and rela-
tivistic kinetic energy share, presented in Sect. 11. This analogy, in turn, augments
the standard analogies that the classical, Newtonian mass shares with the Einstein
relativistic, velocity dependent mass [73]. Being noncommutative and nonassocia-
tive, initially Einstein addition was viewed as a structureless binary operation. The
subsequent discovery of the rich gyrostructure and the interdisciplinarity that Ein-
stein addition possesses results in the emergence of intrinsic beauty and harmony
that underlies Einstein addition, as evidenced from this article.
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2. Einstein Addition

Let c > 0 be an arbitrarily fixed positive constant and let Rn = (Rn,+, ·) be the
Euclidean n-space, n ∈ N, equipped with the common vector addition, +, and
inner product, ·. The home of all n-dimensional Einsteinian velocities is the c-ball

R
n
c = {v ∈ R

n : ‖v‖ < c} (1)

of its ambient space Rn. The c-ball Rn
c is the open ball of radius c, centered at the

origin of Rn, consisting of all vectors v in Rn with magnitude ‖v‖ smaller than c.
Einstein velocity addition is a binary operation, ⊕, in the c-ball Rn

c given by
the equation [60], [42, Eq. 2.9.2], [34, p. 55], [24],

u⊕v =
1

1 + u·v
c2

{

u+
1

γu
v +

1

c2
γu

1 + γu
(u·v)u

}

, (2)

for all u,v ∈ Rn
c . Here γ

v
is the Lorentz gamma factor given by the equation

γv =
1

√

1−
‖v‖2

c2

, (3)

where u·v and ‖v‖ are the inner product and the norm in the ball, which the ball
Rn

c inherits from its ambient space Rn, ‖v‖2 = v·v. A nonempty set with a binary
operation is called a groupoid so that, accordingly, the pair (Rn

c ,⊕) is an Einstein
groupoid.

In the Newtonian limit of large c, c → ∞, the ball Rn
c expands to the whole of

its ambient space Rn, as we see from (1), and Einstein addition ⊕ in Rn
c reduces

to the ordinary vector addition + in Rn, as we see from (2) and (3).
When the nonzero vectors u and v in the ball Rn

c of R
n are parallel in R

n,
u‖v, that is, u = λv for some λ ∈ R, λ 6= 0, Einstein addition (2) specializes to
the Einstein addition of parallel velocities,

u⊕v =
u+ v

1 + 1
c2
u·v

, u‖v , (4)

which was partially confirmed experimentally by the Fizeau’s 1851 experiment [33].
The restricted Einstein addition in (4) is both commutative and associative.

Accordingly, the restricted Einstein addition is a commutative group operation,
as Einstein noted in [17]; see [18, p. 142]. In contrast, Einstein made no remark
about group properties of his addition (2) of velocities that need not be parallel.
Indeed, the general Einstein addition is not a group operation but, rather, a gy-
rocommutative gyrogroup operation, a structure discovered more than 80 years
later, in 1988 [54, 55, 58], formally defined in Sect. 4.

In physical applications, Rn = R
3 is the Euclidean 3-space, which is the space

of all classical, Newtonian velocities, and Rn
c = R3

c ⊂ R3 is the c-ball of R3 of
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all relativistically admissible, Einsteinian velocities. The constant c represents in
physical applications the vacuum speed of light. Since we are interested in both
physics and geometry, we allow n to be any positive integer.

Einstein addition (2) of relativistically admissible velocities, with n = 3, was
introduced by Einstein in his 1905 paper [17] [18, p. 141] that founded the special
theory of relativity, where the magnitudes of the two sides of Einstein addition
(2) are presented. One has to remember here that the Euclidean 3-vector algebra
was not so widely known in 1905 and, consequently, was not used by Einstein.
Einstein calculated in [17] the behavior of the velocity components parallel and
orthogonal to the relative velocity between inertial systems, which is as close as one
can get without vectors to the vectorial version (2) of Einstein addition. Einstein
was aware of the nonassociativity of his velocity addition law of relativistically
admissible velocities that need not be collinear. He therefore emphasized in his
1905 paper that his velocity addition law of relativistically admissible collinear
velocities forms a group operation [17, p. 907].

We naturally use the abbreviation u⊖v = u⊕(−v) for Einstein subtraction, so
that, for instance, v⊖v = 0 and

⊖v = 0⊖v = −v . (5)

Einstein addition and subtraction satisfy the equations

⊖(u⊕v) = ⊖u⊖v (6)

and
⊖u⊕(u⊕v) = v (7)

for all u,v in the ball Rn
c , in full analogy with vector addition and subtraction

in Rn. Identity (6) is called the gyroautomorphic inverse property of Einstein
addition, and Identity (7) is called the left cancellation law of Einstein addition.
We may note that Einstein addition does not obey the naive right counterpart of
the left cancellation law (7) since, in general,

(u⊕v)⊖v 6= u . (8)

However, this seemingly lack of a right cancellation law of Einstein addition is
naturally remedied in (29) – (30), p. 14.

Einstein addition and the gamma factor are related by the gamma identity,

γ
u⊕v

= γ
u
γ
v

(

1 +
u·v

c2

)

(9)

for all u,v ∈ Rn
c .

A frequently used identity that follows immediately from (3) is

v
2

c2
=

‖v‖2

c2
=

γ2
v
− 1

γ2
v

. (10)
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Einstein addition is noncommutative. Indeed, while Einstein addition is com-
mutative under the norm,

‖u⊕v‖ = ‖v⊕u‖ , (11)

in general,
u⊕v 6= v⊕u , (12)

u,v ∈ Rn
c . Moreover, Einstein addition is also nonassociative since, in general,

(u⊕v)⊕w 6= u⊕(v⊕w) , (13)

u,v,w ∈ Rn
c .

As an application of the gamma identity (9), we prove the Einstein gyrotriangle
inequality (14).

Theorem 2.1. (The Gyrotriangle Inequality).

‖u⊕v‖ ≤ ‖u‖⊕‖v‖ (14)

for all u,v in an Einstein gyrogroup (Rn
c ,⊕).

Proof. By the gamma identity (9) with u and v replaced by ‖u‖ and ‖v‖, and by
the Cauchy-Schwarz inequality [32], we have

γ‖u‖⊕‖v‖ = γ
u
γ
v

(

1 +
‖u‖‖v‖

c2

)

≥ γuγv

(

1 +
u·v

c2

)

= γ
u⊕v

= γ‖u⊕v‖

(15)

for all u,v in an Einstein gyrogroup (Rn
c ,⊕). But γx = γ‖x‖ is a monotonically

increasing function of ‖x‖, 0 ≤ ‖x‖ < c. Hence (15) implies (14).

3. Einstein Addition Vs. Vector Addition

Vector addition, +, in Rn is both commutative and associative, satisfying

u+ v = v + u Commutative Law

u+ (v +w) = (u+ v) +w Associative Law

(16)

for all u,v,w ∈ Rn. In contrast, Einstein addition, ⊕, in Rn
c is neither commu-

tative nor associative. Rather, Einstein addition is both gyrocommutative and
gyroassociative, as stated in (19) below.
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In order to measure the extent to which Einstein addition deviates from as-
sociativity we introduce gyrations, which are self maps of Rn that are trivial in
the special cases when the application of ⊕ is associative. For any u,v ∈ Rn

c the
gyration gyr[u,v] is a map of the Einstein groupoid (Rn

c ,⊕) onto itself. Gyrations
gyr[u,v] ∈ Aut(Rn

c ,⊕), u,v ∈ Rn
c , are defined in terms of Einstein addition by

the equation
gyr[u,v]w = ⊖(u⊕v)⊕{u⊕(v⊕w)} (17)

for all u,v,w ∈ Rn
c , and they turn out to be automorphisms of the Einstein

groupoid (Rn
c ,⊕), gyr[u,v] : Rn

c → R
n
c .

We recall that an automorphism of a groupoid (S,⊕) is a one-to-one map f of S
onto itself that respects the binary operation, that is, f(a⊕b) = f(a)⊕f(b) for all
a, b ∈ S. The set of all automorphisms of a groupoid (S,⊕) forms a group, under
automorphism composition, denoted Aut(S,⊕). To emphasize that the gyrations
of an Einstein gyrogroup (Rn

c ,⊕) are automorphisms of the gyrogroup, gyrations
are also called gyroautomorphisms.

A gyration gyr[u,v], u,v ∈ Rn
c , is trivial if gyr[u,v]w = w for all w ∈ Rn

c .
Thus, for instance, the gyrations gyr[0,v], gyr[v,v] and gyr[v,⊖v] are trivial, that
is,

gyr[0,v] = gyr[v,0] = I

gyr[v,⊖v] = gyr[⊖v,v] = I

gyr[v,v] = I

(18)

for all v ∈ Rn
c , I being the identity map, as we see from (17) and (7).

Einstein gyrations, which possess their own rich structure, measure the extent
to which Einstein addition deviates from commutativity and from associativity.
We see this from the gyrocommutative and the gyroassociative laws of Einstein
addition in the following list of elegant identities that involve Einstein addition,
⊕, and gyrations [60, 64, 67]. For all u,v,w ∈ Rn

c ,

u⊕v = gyr[u,v](v⊕u) Gyrocommutative Law

u⊕(v⊕w) = (u⊕v)⊕gyr[u,v]w Left Gyroassociative Law

(u⊕v)⊕w = u⊕(v⊕gyr[v,u]w) Right Gyroassociative Law

gyr[u⊕v,v] = gyr[u,v] Gyration Left Reduction Property

gyr[u,v⊕u] = gyr[u,v] Gyration Right Reduction Property

gyr[⊖u,⊖v] = gyr[u,v] Gyration Even Property

(gyr[u,v])−1 = gyr[v,u] Gyration Inversion Law

(19)

Einstein addition is thus regulated by the gyrations to which it gives rise ow-
ing to its nonassociativity. As such, Einstein addition and its gyrations are inex-
tricably linked. The resulting gyrocommutative gyrogroup structure of Einstein
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addition was discovered in 1988 [54]. Interestingly, gyrations are the mathemat-
ical abstraction of the relativistic phenomenon known as Thomas precession [67,
Sect. 10.3] [74] [79, Chap. 13]. Thomas precession, in turn, is related to the mixed
state geometric phase, as Lévay discovered in his work [30] which, according to [30],
was motivated by the author work in [61, 62].

The left and right reduction properties in (19) present important gyration iden-
tities since they trigger a remarkable reduction in complexity, as Chatelin noted
in [11]. These two gyration identities are, however, just the tip of a giant iceberg.
The identities in (19) and many other useful gyration identities are studied, for
instance, in [60, 64, 67, 69, 71, 72, 79].

4. From Einstein Addition to Gyrogroups

Taking the key features of Einstein groupoids (Rn
c ,⊕), n ∈ N, as axioms, and

guided by analogies with groups, we are led to the following formal gyrogroup
definition in which gyrogroups turn out to form a most natural generalization of
groups.

Definition 4.1. (Gyrogroups [67, p. 17]). A groupoid (G,⊕) is a gyrogroup
if its binary operation satisfies the following axioms. In G there is at least one
element, 0, called a left identity, satisfying
(G1) 0⊕a = a
for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for each
a ∈ G there is an element ⊖a ∈ G, called a left inverse of a, satisfying
(G2) ⊖a⊕a = 0 .
Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that
the binary operation obeys the left gyroassociative law
(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .
The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism of the
groupoid (G,⊕), that is,
(G4) gyr[a, b] ∈ Aut(G,⊕) ,
and the automorphism gyr[a, b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is
called the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generated by any
a, b ∈ G possesses the left reduction property
(G5) gyr[a, b] = gyr[a⊕b, b] .

The gyrogroup axioms (G1) – (G5) in Definition 4.1 are classified into three
classes:

1. The first pair of axioms, (G1) and (G2), is a reminiscent of the group axioms.
2. The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
3. The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms

in (1) and (2).
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As in group theory, we use the notation a⊖b = a⊕(⊖b) in gyrogroup theory as
well. In full analogy with groups, gyrogroups split up into gyrocommutative and
non-gyrocommutative gyrogroups.

Definition 4.2. (Gyrocommutative Gyrogroups). A gyrogroup (G,⊕) is
gyrocommutative if its binary operation obeys the gyrocommutative law
(G6) a⊕ b = gyr[a, b](b⊕ a)
for all a, b ∈ G.

First gyrogroup properties are studied in [72, Chap. 1], and more gyrogroup
theorems are studied in [60, 64, 67]. Thus, for instance, as in group theory, any
gyrogroup possesses a unique identity element, which is both left and right, and
any element of a gyrogroup possesses a unique inverse, which is both left and right.

In order to illustrate the power and elegance of the gyrogroup structure, we
solve below the two basic gyrogroup equations (20) and (27).

Let us consider the gyrogroup equation

a⊕x = b (20)

in a gyrogroup (G,⊕) for the unknown x. If x exists, then by the right gyroasso-
ciative law (19) we have

x = 0⊕x

= (⊖a⊕a)⊕x

= ⊖a⊕(a⊕gyr[a,⊖a]x)

= ⊖a⊕(a⊕x)

= ⊖a⊕b ,

(21)

noting that gyr[a,⊖a] is trivial by (18).
Thus, if a solution to (20) exists, it must be given uniquely by

x = ⊖a⊕b . (22)

Conversely, if x = ⊖a⊕b, then x is indeed a solution to (20) since by the left
gyroassociative law and (18) we have

a⊕x = a⊕(⊖a⊕b)

= (a⊕(⊖a))⊕gyr[a,⊖a]b

= 0⊕b

= b .

(23)

Substituting the solution (22) into its equation (20) and replacing a by ⊖a we
recover the left cancellation law (7) for Einstein addition,

⊖a⊕(a⊕b) = b . (24)
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The gyrogroup operation (or, addition) of any gyrogroup has an associated
dual operation, called the gyrogroup cooperation (or, coaddition), which is defined
below.

Definition 4.3. (The Gyrogroup Cooperation (Coaddition)). Let (G,⊕) be
a gyrogroup with gyrogroup operation (or, addition) ⊕. The gyrogroup cooperation
(or, coaddition) ⊞ is a second binary operation in G given by the equation

a⊞ b = a⊕gyr[a,⊖b]b (25)

for all a,b ∈ G.

Replacing b by ⊖b in (25) we have the cosubtraction identity

a⊟ b := a⊞ (⊖b) = a⊖gyr[a,b]b (26)

for all a,b ∈ G, noting that gyr[a,b] is an automorphism of (G,⊕) so that
gyr[a,b](⊖b) = ⊖gyr[a,b]b.

To motivate the introduction of the gyrogroup cooperation and to illustrate
the use of the left reduction property in (19), we solve the equation

x⊕a = b (27)

for the unknown x in a gyrogroup (G,⊕).
Equation (27) results from (20) by interchanging a and x. Surprisingly, how-

ever, the solution of (27) is quite different from the solution of (20), suggesting the
introduction of the second binary operation, the cooperation ⊞ in G. We will find
that Einstein coaddition, ⊞, proves crucially important (i) in the understanding
of Einstein addition, ⊕, in Rn

c in terms of analogies with vector addition in Rn,
and (ii) in our mission to capture analogies with classical results.

Assuming that a solution x to (27) exists, we have the following obvious chain
of equations

x = x⊕0

= x⊕(a⊖a)

= (x⊕a)⊕gyr[x, a](⊖a)

= (x⊕a)⊖gyr[x, a]a

= (x⊕a)⊖gyr[x⊕a, a]a

= b⊖gyr[b, a]a

= b⊟ a .

(28)

The gyrogroup cosubtraction, (26), comes into play in (28) in order to capture an
analogy with the classical result x + a = b ⇒ x = b − a. Thus, if a solution
x to the gyrogroup equation (27) exists, it must be given uniquely by (28). One
can show that the latter is indeed a solution to (27) [67, Sect. 2.4]. The use of
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the gyration left reduction property in (28) indicates the remarkable reduction of
complexity that this property offers.

The gyrogroup cooperation is introduced into gyrogroups in order to capture
useful analogies between gyrogroups and groups, and it results in the emergence of
duality symmetries that the two gyrogroup operations, ⊕ and ⊞, share. Thus, for
instance, the gyrogroup cooperation uncovers the seemingly missing right coun-
terpart of the left cancellation law (7), giving rise to the right cancellation law,

(b⊟ a)⊕a = b (29)

for all a,b ∈ G, which is obtained by substituting the result of (28) into (27).
Remarkably, the right cancellation law (29) can be dualized, giving rise to the

dual right cancellation law
(b⊖a) ⊞ a = b . (30)

As an example, and for later reference, we note that it follows from the right
cancellation law (29) that

d = (b⊞ c)⊖a ⇐⇒ b⊞ c = d⊞ a (31)

for a,b, c,d in any gyrocommutative gyrogroup (G,⊕).
An elegant gyrocommutative gyrogroup identity that involves the gyrogroup

cooperation, verified in [67, Theorem 3.12], is

a⊕(b⊕a) = a⊞ (a⊕b) . (32)

5. Émile Borel’s Dream Comes True

It is not well-known that the famous mathematician Émile Borel was interested in
Einstein’s special theory of relativity, particularly in the relativistic phenomenon
known as Thomas precession [79, Chap. 13] and in Einstein addition. Being non-
commutative, Émile Borel considered Einstein addition as “defective”. He, there-
fore, proposed an alternative, commutative addition of relativistically admissible
velocities.

The gyrocommutative law of Einstein velocity addition was already known
to Silberstein in 1914 [43] in the following sense: According to his 1914 book,
Silberstein knew that the Thomas precession generated by u,v ∈ R3

c is the unique
rotation that takes v⊕u into u⊕v about an axis perpendicular to the plane of
u and v through an angle < π in R3, thus giving rise to the gyrocommutative
law. However, obviously, Silberstein did not use the terms “Thomas precession”
and “gyrocommutative law”. These terms have been coined later, respectively, (i)
following Thomas’ 1926 paper [53], and (ii) in 1991 [58,59], following the discovery
of the accompanying gyroassociative law of Einstein addition in 1988 [54, 55].

A description of the 3-space rotation, which since 1926 is named after Thomas,
is found in Silberstein’s 1914 book [43]. In 1914 Thomas precession did not have
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a name, and Silberstein called it in his 1914 book a “certain space-rotation” [43,
p. 169]. An early study of Thomas precession, made by Émile Borel in 1913, is
described in his 1914 book [10] and, more recently, in [47].

The almost forgotten attempt of Émile Borel to “repair” the seemingly “defec-
tive” Einstein’s velocity addition law in the years following 1912 is described by
Walter in [82, p. 117]:

“Borel could construct a tetrahedron in kinematic space, and deter-
mined thereby both the direction and magnitude of relative [composite]
velocity in a symmetric [commutative] manner.”

Borel has, thus, “repaired” the breakdown of commutativity in Einstein addition
by proposing an alternative, commutative addition. But he did not pay attention
to the accompanying breakdown of associativity in Einstein addition. Accordingly,
it seemed appropriate to consider the Lorentz transformation group, rather than
the groupoid of Einstein addition, as a primitive notion of special relativity [63].

It turns out that Einstein coaddition is commutative. Hence. Émile Borel’s
dream to construct a viable commutative relativistic velocity addition comes true
with the discovery of Einstein coaddition, ⊞. Unlike Borel’s commutative addition,
the commutative Einstein coaddition does not replace Einstein addition. Rather,
it captures analogies with classical results jointly with Einstein addition, as the
study of the Einstein gyroparallelogram addition law in Sect. 6 reveals.

A gyrogroup cooperation is commutative if and only if its associated gyrogroup
operation is gyrocommutative [64, Theorem 3.4] [67, Theorem 3.4]. Hence, in
particular, Einstein coaddition is commutative. Indeed, Einstein coaddition, ⊞, in
an Einstein gyrogroup (Rn

c ,⊕), abstractly defined in (25), can be manipulated in
Einstein gyrogroups, obtaining the following chain of equations [67, Eq. (3.195)],

u⊞ v =
γu + γv

γ2
u + γ2

v + γuγv(1 +
u·v
s2

)− 1
(γuu+ γvv)

=
γ
u
+ γ

v

(γ
u
+ γ

v
)2 − (γ

u⊖v
+ 1)

(γ
u
u+ γ

v
v)

= 2⊗
γuu+ γvv

γu + γv

= 2⊗
γuu+ γvv

2 + (γu − 1) + (γv − 1)

(33)

u,v ∈ Rn
c , demonstrating that the cooperation ⊞ in Einstein gyrogroups (Rn

c ,⊕)
is commutative.

The symbol ⊗ in (33) represents the Einstein scalar multiplication so that, for
instance, 2⊗v = v⊕v, for all v in a gyrogroup (G,⊕), as explained in Sect. 9.
It turns out that Einstein coaddition ⊞ is more than just a commutative binary
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operation in the ball. Remarkably, jointly with Einstein addition, ⊕, Einstein
coaddition, ⊞, gives rise to the hyperbolic parallelogram addition law in the ball.
The latter is explained in Sect. 6 and illustrated in Fig. 2.

6. From Parallelograms to Gyroparallelograms

Elements of a real inner product space V = (V,+, ·), called points and denoted
by capital italic letters, A,B, P,Q, etc, give rise to vectors in V, denoted by bold
roman lowercase letters u,v, etc. Any two ordered points P,Q ∈ V give rise to a
unique rooted vector v ∈ V, rooted at the point P . It has a tail at the point P
and a head at the point Q, and it has the value −P +Q,

v = −P +Q . (34)

The length of the rooted vector v = −P +Q is the distance between the points P
and Q, given by the equation

‖v‖ = ‖ − P +Q‖ . (35)

Two rooted vectors −P +Q and −R+ S are equivalent if they have the same
value, that is,

−P +Q ∼ −R+ S if and only if − P +Q = −R+ S (36)

The relation ∼ in (36) between rooted vectors is reflexive, symmetric and transi-
tive, so that it is an equivalence relation that gives rise to equivalence classes of
rooted vectors. To liberate rooted vectors from their roots we define a vector to be
an equivalence class of rooted vectors. The vector −P +Q is thus a representative
of all rooted vectors with value −P +Q.

A point P ∈ V is identified with the vector −O + P , O being the arbitrarily
selected origin of the space V. Hence, the algebra of vectors can be applied to
points as well. Naturally, geometric and physical properties regulated by a vector
space are origin independent, that is, independent of the choice of the origin.

Let A,B,C ∈ V be three non-collinear points, and let

u = −A+B

v = −A+ C
(37)

be two vectors in V that possess the same tail, A. Furthermore, let D be a point
of V given by the parallelogram condition

D = B + C −A . (38)

The quadrangle (also known as a quadrilateral; see [13, p. 52]) ABDC turns
out to be a parallelogram in Euclidean geometry, shown in Fig. 1, since its two
diagonals, AD and BC, intersect at their midpoints, that is,

1
2 (A+D) = 1

2 (B + C) . (39)
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◮

◮

◮

MABDC

A

B

C

D
The Parallelogram

Condition : D = B + C −A

MAD = 1
2 (A+D)

MBC = 1
2 (A+ C)

MABDC = A+B+C+D
4

MABDC = MAD = MBC

−C +D = −A+B

−B +D = −A+ C

(−A+B) + (−A+ C) = −A+D

u+ v = w

u = −A+B

v
=
−
A
+
C

w
=
−A

+
D

Figure 1: The Euclidean parallelogram and its addition law in a Euclidean vector
plane (R2,+, ·). The diagonals AD and BC of parallelogram ABDC intersect
each other at their midpoints. The midpoints of the diagonals AD and BC are,
respectively, MAD and MBC , each of which coincides with the parallelogram center
MABDC . This figure sets the stage for its hyperbolic counterpart in Fig. 2.

Clearly, the midpoint equality (39) is equivalent to the parallelogram condition
(38).

The vector addition of the vectors u and v that generate the parallelogram
ABDC according to (37), gives the vector w by the parallelogram addition law,
shown in Fig. 1,

w := −A+D = (−A+B) + (−A+ C) = u+ v . (40)

Here, by definition, w is the vector formed by the diagonal AD of the parallelogram
ABDC, as shown in Fig. 1.

Vectors in the space V are, thus, equivalence classes of ordered pairs of points,
which add according to the parallelogram law, shown in Fig. 1.

Gyrovectors emerge in an Einstein gyrovector space (Vc,⊕,⊗) in a way fully
analogous to the way vectors emerge in the space V, where Vc is the c-ball of the
space V, Vc = {v ∈ V : ‖v‖ < c}.
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Elements of Vc, called points and denoted by capital italic letters, A,B, P,Q,
etc, give rise to gyrovectors in Vc, denoted by bold roman lowercase letters u,v,
etc. Any two ordered points P,Q ∈ Vc give rise to a unique rooted gyrovector
v ∈ Vc, rooted at the point P . It has a tail at the point P and a head at the point
Q, and it has the value ⊖P⊕Q,

v = ⊖P⊕Q . (41)

The gyrolength of the rooted gyrovector v = ⊖P⊕Q is the gyrodistance between
the points P and Q, given by the equation

‖v‖ = ‖⊖P⊕Q‖ . (42)

Two rooted gyrovectors⊖P⊕Q and ⊖R⊕S are equivalent if they have the same
value, that is,

⊖P⊕Q ∼ ⊖R⊕S if and only if ⊖P⊕Q = ⊖R⊕S (43)

The relation ∼ in (43) between rooted gyrovectors is reflexive, symmetric and
transitive, so that it is an equivalence relation that gives rise to equivalence classes
of rooted gyrovectors. To liberate rooted gyrovectors from their roots we define a
gyrovector to be an equivalence class of rooted gyrovectors. The gyrovector ⊖P⊕Q
is thus a representative of all rooted gyrovectors with value ⊖P⊕Q.

A point P of a gyrovector space (Vc,⊕,⊗) is identified with the gyrovector
⊖O⊕P , O being the arbitrarily selected origin of the space Vc. Hence, the algebra
of gyrovectors can be applied to points as well. Naturally, geometric and physical
properties regulated by a gyrovector space are expected to be independent of the
choice of the origin of the gyrovector space.

Let A,B,C ∈ Vc be three non-gyrocollinear points of an Einstein gyrovector
space (Vc,⊕,⊗), and let

u = ⊖A⊕B

v = ⊖A⊕C
(44)

be two gyrovectors in V that possess the same tail, A. Furthermore, let D be a
point of Vc given by the gyroparallelogram condition

D = (B ⊞ C)⊖A . (45)

Then, the gyroquadrangle ABDC is a gyroparallelogram in the Beltrami-Klein
ball model of hyperbolic geometry in the sense that its two gyrodiagonals, AD
and BC, intersect at their gyromidpoints, that is,

1
2⊗(A⊞D) = 1

2⊗(B ⊞ C) (46)

as illustrated in Fig. 2. Clearly by (31), the gyromidpoint equality (46) is equiva-
lent to the gyroparallelogram condition (45).
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The gyrovector addition of the gyrovectors u and v that generate the gyropar-
allelogram ABDC gives the gyrovector w by the gyroparallelogram addition law,
shown in Fig. 2,

w := ⊖A⊕D = (⊖A⊕B)⊞ (⊖A⊕C) =: u⊞ v . (47)

Here, by definition, w is the gyrovector formed by the gyrodiagonal AD of the
gyroparallelogram ABDC. The gyrovector identity in (47), where D is given by
(45), is explained in (50) below.

Gyrovectors in the ball Vc are, thus, equivalence classes of ordered pairs of
points, which add according to the gyroparallelogram law shown in Fig. 2.

The equivalence relation in vectors is origin independent. Hence, expressions
appropriately derived from vectors are origin independent as well. Thus, in par-
ticular, (i) the length of a vector, (ii) the angle between to vectors with a common
tail, and (iii) the parallelogram addition of to vectors with a common tail, are
origin independent.

In contrast, the equivalence relation in gyrovectors is origin dependent. For-
tunately, however, some important expressions derived from gyrovectors are ori-
gin independent. Thus, for instance, (i) the gyrolength of a gyrovector, (ii) the
gyroangle between to gyrovectors with a common tail, and (iii) the gyroparallel-
ogram addition of two gyrovectors with a common tail, are origin independent.
A deep study of origin independence involves the study of gyroisometries, found
in [79, Sects. 3.11-3.12].

7. The Gyroparallelogram Addition Law

In Euclidean geometry a parallelogram is a quadrangle the two diagonals of which
intersect at their midpoints. In full analogy, in hyperbolic geometry a gyropar-
allelogram is a gyroquadrangle the two gyrodiagonals of which intersect at their
gyromidpoints, as shown in Fig. 2. Accordingly, if A, B and C are any three
non-gyrocollinear points (that is, they do not lie on a gyroline) in an Einstein gy-
rovector space, and if a fourth point D is given by the gyroparallelogram condition

D = (B ⊞ C)⊖A , (48)

then the gyroquadrangle ABDC is a gyroparallelogram, shown in Fig. 2.
Indeed, the two gyrodiagonals of gyroquadrangle ABDC are the gyrosegments

AD and BC, shown in Fig. 2, the gyromidpoints of which coincide, that is,

1
2⊗(A⊞D) = 1

2⊗(B ⊞ C) (49)

where, by (31), the result in (49) is equivalent to the gyroparallelogram condition
(48).

The analogies that equations (48) – (49) in gyrovector spaces share with their
counterpart equations (38) – (39) in vector spaces indicate that both the gyrogroup
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2⊗(A⊞D)
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B
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C
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γ
B
+γ
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= 1
2⊗(A⊞ C)
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γ
A
A+γ

B
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D

γ
A
+γ

B
+γ

C
+γ

D

MABDC = MAD = MBC

⊖C⊕D = gyr[C,⊖B]gyr[B,⊖A](⊖A⊕B)

⊖B⊕D = gyr[B,⊖C]gyr[C,⊖A](⊖A⊕C)

(⊖A⊕B)⊞ (⊖A⊕C) = ⊖A⊕D

u⊞ v = w

u = ⊖A⊕B

v
=
⊖
A
⊕
C

w
=
⊖
A
⊕
D

Figure 2: The Einstein gyroparallelogram and its addition law in an Einstein gy-
rovector plane (R2

c ,⊕,⊗). The gyrodiagonals AD and BC of gyroparallelogram
ABDC intersect each other at their gyromidpoints. The gyromidpoints of the
gyrodiagonals AD and BC are, respectively, MAD and MBC , each of which co-
incides with the gyroparallelogram gyrocenter MABDC . The analogies that this
figure shares with Fig. 1 are obvious.

operation and cooperation, ⊕ and ⊞, are necessary for our mission to capture
analogies between vector and gyrovector spaces.

Let ABC be a gyrotriangle in an Einstein gyrovector space (Rn
c ,⊕,⊗) and let D

be the point that augments gyrotriangle ABC into the gyroparallelogram ABDC,
as shown in Fig. 2. Then, D is determined uniquely by the gyroparallelogram
condition (48), obeying the gyroparallelogram addition law [72, Theorem 5.5]

(⊖A⊕B)⊞ (⊖A⊕C) = (⊖A⊕D) (50)

shown in Fig. 2. In full analogy with the parallelogram addition law of vectors in
Euclidean geometry, (40), the gyroparallelogram addition law (50) of gyrovectors
in hyperbolic geometry can be written as

u⊞ v = w (51)
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where u,v and w are the gyrovectors

u = ⊖A⊕B

v = ⊖A⊕C

w = ⊖A⊕D

(52)

which emanate from the point A [67, Chap. 5].
In his 1905 paper that founded the special theory of relativity [17], Einstein

noted that his velocity addition does not satisfy the Euclidean parallelogram law:

“Das Gesetz vom Parallelogramm der Geschwindigkeiten gilt also
nach unserer Theorie nur in erster Annäherung.”

A. Einstein [17]

[English translation: Thus the law of velocity parallelogram is valid according to
our theory only to a first approximation.]

Indeed, Einstein velocity addition, ⊕, is noncommutative and does not give rise
to an exact “velocity parallelogram” in Euclidean geometry. However, as illustrated
in Fig. 2, Einstein velocity coaddition, ⊞, which is commutative, does give rise to
an exact “velocity gyroparallelogram” in hyperbolic geometry.

The breakdown of commutativity in Einstein velocity addition law seemed un-
desirable to the famous mathematician Émile Borel. Borel’s resulting attempt to
“repair” the seemingly “defective” Einstein velocity addition in the years following
1912 is described by Walter in [82, p. 117]. Here, however, we see that there is
no need to repair Einstein velocity addition law for being noncommutative since,
despite of being noncommutative, it gives rise to the gyroparallelogram law of gy-
rovector addition, which turns out to be commutative. The compatibility of the
gyroparallelogram addition law of Einsteinian velocities with cosmological obser-
vations of stellar aberration is studied in [67, Chap. 13] and [72, Sect. 10.2]. The
extension of the gyroparallelogram addition law of k = 2 summands into a higher
dimensional gyroparallelotope addition law of k > 2 summands is presented in
(54) – (55) below and studied in [67, Sect. 10.12] and [79, Sect. 6.4].

8. Gyroparallelotopes

The extreme sides of (33) give the equation

u⊞2 v = 2⊗
γuu+ γvv

2 + (γu − 1) + (γv − 1)
(53)

where we replace ⊞ by ⊞2 to emphasize that the binary operation ⊞ = ⊞2 is valid
only for two summands.
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Equation (53) is written in a form that suggests that the extension of the
gyroparallelogram addition law (53), which involves two summands, to the gy-
roparallelepiped addition law, which involves three summands, is given by the
following gyroparallelepiped law

u⊞3 v ⊞3 w := 2⊗
γ
u
u+ γ

v
v + γ

w
w

2 + (γu − 1) + (γv − 1) + (γw − 1)
(54)

u,v,w ∈ Rn
c .

Einstein coaddition (54) of three summands is commutative and associative
in the generalized sense that it is a symmetric function of the summands. The
gyroparallelepiped that results from the gyroparallelepiped law (54) is studied in
detail in [67, Secs. 10.9–10.12].

We may note that by (53) – (54) we have u ⊞3 v ⊞3 0 = u ⊞2 v, as expected.
However, unexpectedly we have u⊞3 v ⊞3 (⊖v) 6= u.

The extension of (54) to the Einstein coaddition of k summands, k > 3 , is
now straightforward, giving rise to the higher dimensional gyroparallelotope law in
Rn

c ,

v1 ⊞k v2 ⊞k . . . ⊞k vk := 2⊗

∑k
i=1 γvi

vi

2 +
∑k

i=1(γvi
− 1)

(55)

vk ∈ G, k ∈ N. As expected, the gyroparallelotope law (55) is origin independent.
An interesting study of parallelotopes in Euclidean geometry is found in [12].

In the Euclidean limit c → ∞, (i) gamma factors tend to 1, and (ii) the
hyperbolic scalar multiplication, ⊗, of a gyrovector (see Sect. 9) by 2 tends to the
common scalar multiplication of a vector by 2. Hence, in the Euclidean limit, the
right-hand side of (55) tends to the vector sum

∑k
i=1 vi in Rn, as expected.

9. Einstein Scalar Multiplication

The rich structure of Einstein addition is not limited to its gyrocommutative gy-
rogroup structure. Indeed, Einstein addition admits scalar multiplication (gy-
romultiplication), giving rise to the Einstein gyrovector space. Remarkably, the
resulting Einstein gyrovector spaces form the setting for the Cartesian-Beltrami-
Klein ball model of hyperbolic geometry just as vector spaces form the setting for
the standard Cartesian model of Euclidean geometry, as shown in [60, 64, 67, 69,
71, 72, 79].

Let k⊗v be the Einstein addition of k copies of v ∈ Rn
c , that is k⊗v =

v⊕v . . .⊕v (k terms). Then,

k⊗v =

(

1 +
‖v‖

c

)k

−

(

1−
‖v‖

c

)k

(

1 +
‖v‖

c

)k

+

(

1−
‖v‖

c

)k

cv

‖v‖
(56)
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for v 6= 0, and k⊗0 = 0.
The definition of scalar gyromultiplication in an Einstein gyrovector space re-

quires analytically continuing k off the positive integers, thus obtaining the fol-
lowing definition.

Definition 9.1. (Einstein Scalar Multiplication). An Einstein gyrovector
space (Rn

c ,⊕,⊗) is an Einstein gyrogroup (Rn
c ,⊕) with scalar gyromultiplication ⊗

given by

r⊗v =

(

1 +
‖v‖

c

)r

−

(

1−
‖v‖

c

)r

(

1 +
‖v‖

c

)r

+

(

1−
‖v‖

c

)r

cv

‖v‖
= tanh(r tanh−1 ‖v‖

c
)
cv

‖v‖
(57)

where r is any real number, r ∈ R, v ∈ Rn
c , v 6= 0, and r⊗0 = 0, and with which

we use the notation v⊗r = r⊗v.

As an example, it follows from Def. 9.1 that Einstein half is given by the
equation

1
2⊗v =

γ
v
v

1 + γ
v

, (58)

so that, as expected, γ
v

1+γ
v

v⊕
γ
v

1+γ
v

v = v.

Einstein gyrovector spaces are studied in [60, 64, 67, 69, 71, 72, 79]. Einstein
scalar multiplication does not distribute over Einstein addition, but it possesses
other properties of vector spaces. For any positive integer k, and for all real
numbers r

1
, r

2
∈ R and v ∈ Rn

c , we have

k⊗v = v⊕ . . .⊕v k terms

(r
1
+ r

2
)⊗v = r

1
⊗v⊕r

2
⊗v Scalar Distributive Law

(r
1
r
2
)⊗v = r

1
⊗(r

2
⊗v) Scalar Associative Law

(59)

in any Einstein gyrovector space (Rn
c ,⊕,⊗).

Additionally, Einstein gyrovector spaces possess the scaling property

|r|⊗a

‖r⊗a‖
=

a

‖a‖
(60)

a ∈ Rn
c , a 6= 0, r ∈ R, r 6= 0, the gyroautomorphism property

gyr[u,v](r⊗a) = r⊗gyr[u,v]a (61)

a,u,v ∈ Rn
c , r ∈ R, and the identity gyroautomorphism

gyr[r
1
⊗v, r

2
⊗v] = I (62)



24 A. A. Ungar

r
1
, r

2
∈ R, v ∈ Rn

c .
Any Einstein gyrovector space (Rn

c ,⊕,⊗) inherits an inner product and a norm
from its ambient vector space Rn. These turn out to be invariant under gyrations,

gyr[a,b]u·gyr[a,b]v = u·v

‖gyr[a,b]v‖ = ‖v‖
(63)

for all a,b,u,v ∈ Rn
c .

10. Gyrovector Spaces

Taking the key features of Einstein scalar multiplication as axioms, and guided by
analogies with vector spaces, we are led to the following formal gyrovector space
definition in which gyrovector spaces turn out to form a most natural generalization
of vector spaces.

Definition 10.1. (Real Inner Product Gyrovector Spaces [67, p. 154]). A
real inner product gyrovector space (G,⊕,⊗) (gyrovector space, in short) is a
gyrocommutative gyrogroup (G,⊕) that obeys the following axioms:

(1) G is a subset of a real inner product vector space V called the ambient space
of G, G ⊂ V, from which it inherits its inner product, ·, and norm, ‖·‖, which
are invariant under gyroautomorphisms, that is,

(V1) gyr[u,v]a·gyr[u,v]b = a·b Inner Product Gyroinvariance

for all points a,b,u,v ∈ G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties. For
all real numbers r, r1, r2 ∈ R and all points a ∈ G:

(V2) 1⊗a = a Identity Scalar Multiplication

(V3) (r
1
+ r

2
)⊗a = r

1
⊗a⊕r

2
⊗a Scalar Distributive Law

(V4) (r
1
r
2
)⊗a = r

1
⊗(r

2
⊗a) Scalar Associative Law

(V5)
|r|⊗a

‖r⊗a‖
=

a

‖a‖
, a 6= 0, r 6= 0 Scaling Property

(V6) gyr[u,v](r⊗a) = r⊗gyr[u,v]a Gyroautomorphism Property

(V7) gyr[r
1
⊗v, r

2
⊗v] = I Identity Gyroautomorphism.

(3) Real, one-dimensional vector space structure (‖G‖,⊕,⊗) for the set ‖G‖ of
one-dimensional “vectors”.

(V8) ‖G‖ = {±‖a‖ : a ∈ G} ⊂ R Vector Space
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with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R

and a,b ∈ G,

(V9) ‖r⊗a‖ = |r|⊗‖a‖ Homogeneity Property

(V10) ‖a⊕b‖ ≤ ‖a‖⊕‖b‖ Gyrotriangle Inequality.

Einstein (gyro)addition and scalar (gyro)multiplication in Rn
c thus give rise to

the Einstein gyrovector spaces (Rn
c ,⊕,⊗), n ≥ 2.

11. Relativistic and Classical Kinetic Energy

Kinetic energy depends on mass and relative velocity. The relativistic mass of an
object with Newtonian mass m (also called relativistically invariant mass) moving
with velocity v ∈ R3

c relative to an inertial frame Σ0 is mγ
v
. Having Einstein half

(58) in hand, we can recast the relativistic kinetic energy of moving objects into a
form that shares analogies with its classical counterpart. The relativistic kinetic
energy Krel of an object with rest (Newtonian) mass m that moves uniformly with
velocity v relative to an inertial frame Σ0 is given by the equation [66]

Krel = c2m(γv − 1) , (64)

where c is the vacuum speed of light. We manipulate (64) in the following chain
of equations, some of which are numbered for subsequent explanation.

Krel

(1)
︷︸︸︷
=== c2m(γv − 1) =

γ2
v

γv + 1
c2m(γv − 1)

γv + 1

γ2
v

===
γ2
v

γv + 1
c2m

γ2
v − 1

γ2
v

(2)
︷︸︸︷
===

γ2
v

γv + 1
mv

2 =
γvv

γv + 1
·mγvv

(3)
︷︸︸︷
=== (12⊗v)·(mγvv) ,

(65)

mγv being the velocity dependent relativistic mass [73] of the moving object rel-
ative to Σ0.

Derivation of the numbered equalities in (65) follows:

1. Follows from (64).

2. Follows from (10), p. 8.
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3. Follows from Einstein half (58).

The relativistic kinetic energy Krel in (65),

Krel = (12⊗v)·(mγ
v
v) , (66)

is given by the inner product of a “relativistic half-velocity” and a corresponding
relativistic momentum, in full analogy with the classical kinetic energy Kcls,

Kcls =
1
2mv

2 = (12v)·(mv) , (67)

which is given by the inner product of a “classical half-velocity” and a correspond-
ing classical momentum. The ability of Einstein scalar multiplication to capture
analogies between modern and classical results thus emerges.

The analogies that (66) and (67) share demonstrate that the relativistic coun-
terpart of the Newtonian mass m is the relativistic, velocity dependent mass mγ

v
.

The controversy around the relativistic mass is described in [73]. It is owing to
analogies that Newtonian mass and Einsteinian relativistic mass share that the no-
tion of barycentric coordinates in Euclidean geometry can be translated into the
notion of gyrobarycentric coordinates in hyperbolic geometry, as shown in [71,72]
and [70, 75, 76], and in Sects. 16-18.

12. Einstein Gyrolines – The Hyperbolic Lines

In applications to geometry, where the letters a, b, c are frequently used, it is
convenient to replace the notation R

n
c for the c-ball of an Einstein gyrovector

space by the s-ball, Rn
s . We thus switch from c to s to avoid notational confusion.

Moreover, it is understood that n ≥ 2, unless specified otherwise.
Let A,B ∈ Rn

s be two distinct points of the Einstein gyrovector space (Rn
s ,⊕,⊗),

and let t ∈ R be a real parameter. Then, the graph LAB of the set of all points

LAB = A⊕(⊖A⊕B)⊗t , (68)

t ∈ R, in the Einstein gyrovector space (Rn
s ,⊕,⊗) is a chord of the ball Rn

s . As
such, it is a geodesic line of the Beltrami-Klein ball model of hyperbolic geometry,
shown in Fig. 3 for n = 2. The geodesic line (68) is the unique gyroline that
passes through the points A and B. It passes through the point A when t = 0
and, owing to the left cancellation law, (7), it passes through the point B when
t = 1. Furthermore, it passes through the midpoint mA,B of A and B when
t = 1/2. Accordingly, the gyrosegment AB that joins the points A and B in Fig. 3
is obtained from gyroline (68) with 0 ≤ t ≤ 1.

Gyrolines (68) are the geodesics of the Beltrami-Klein ball model of hyperbolic
geometry. Similarly, gyrolines (68) with Einstein addition ⊕ replaced by Möbius
addition ⊕

M
are the geodesics of the Poincaré ball model of hyperbolic geometry.



Gyrogroups and Gyrovector Spaces 27

A

B

m
A,B

P

d(A,P )⊕d(P,B) = d(A,B)

LAB = A⊕(⊖A⊕B)⊗t

−∞ ≤ t ≤ ∞

m
A,B

= A⊕(⊖A⊕B)⊗ 1
2

d(A,B) = ‖A⊖B‖

d(A,m
A,B

) = d(B,m
A,B

)

Figure 3: Gyrolines, the hyperbolic lines LAB in Einstein gyrovector spaces, are
fully analogous to the straight line A+ (−A+B)t, t ∈ R, in the Cartesian model
of the Euclidean geometry of Rn. Here ⊕ = ⊕

E
is Einstein addition, as opposed to

Fig. 4 where ⊕ = ⊕
M

is Möbius addition. The figure shows that Einstein gyrolines
in the hyperbolic plane (R2

s,⊕,⊗) are Euclidean segments in the disc R2
s.

These interesting results are established by methods of differential geometry in [65],
and are illustrated in Figs. 3 and 4.

Each point of (68) with 0 < t < 1 is said to lie between A and B. Thus, for
instance, the point P in Fig. 3 lies between the points A and B. As such, the
points A, P and B obey the gyrotriangle equality according to which

d(A,P )⊕d(P,B) = d(A,B) , (69)

in full analogy with Euclidean geometry. Here

d(A,B) = ‖⊖A⊕B‖ , (70)

A,B ∈ Rn
s , is the Einstein gyrodistance function, also called the Einstein gy-

rometric. This gyrodistance function in Einstein gyrovector spaces corresponds
bijectively to a standard hyperbolic distance function, as demonstrated in [67,
Sect. 6.19].
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A contact between Einstein gyrodistance function and differential geometry
is provided by the Riemannian gyroline element of Einstein gyrovector spaces,
studied in [64, Sect. 7.5] and [65]. It turns out that the Riemannian gyroline
element of Einstein gyrovector spaces, given by

ds2 = ‖(v + dv)⊖v‖2 (71)

is identical with the well-known Riemannian line element of the Beltrami-Klein
disc model of hyperbolic geometry.

13. Möbius Addition

The most general Möbius transformation of the complex open unit disc

D = {z ∈ C : |z| < 1} (72)

in the complex plane C is given by the polar decomposition [2, 28],

z 7→ eiθ
a+ z

1 + az
= eiθ(a⊕

M
z) . (73)

It induces the Möbius addition ⊕
M

in the disc, allowing the Möbius transformation
of the disc to be viewed as a Möbius left gyrotranslation

z 7→ a⊕
M
z =

a+ z

1 + az
(74)

followed by a rotation. Here θ ∈ R is a real number, a, z ∈ D, and a is the complex
conjugate of a.

In order to extend Möbius addition from the disk to the ball, let us identify
complex numbers of the complex plane C with vectors of the Euclidean plane R2

in the usual way,

C ∋ u = u1 + iu2 = (u1, u2) = u ∈ R
2 . (75)

Then
ūv + uv̄ = 2u·v

|u| = ‖u‖
(76)

give the inner product and the norm in R2, so that Möbius addition in the disc D

of C becomes Möbius addition in the disc

R
2
s=1 = {v ∈ R

2 : ‖v‖ < s = 1} (77)
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of R2. Indeed,

D ∋ u⊕v =
u+ v

1 + ūv

=
(1 + uv̄)(u + v)

(1 + ūv)(1 + uv̄)

=
(1 + ūv + uv̄ + |v|2)u+ (1− |u|2)v

1 + ūv + uv̄ + |u|2|v|2

=
(1 + 2u·v + ‖v‖2)u+ (1− ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2

= u⊕v ∈ R
2
s=1

(78)

for all u, v ∈ D and all u,v ∈ R2
s=1. The last equation in (78) is a vector equation,

so that its restriction to the ball of the Euclidean two-dimensional space is a mere
artifact. Suggestively, we thus arrive at the following definition of Möbius addition
in the ball Rn

s ,

u⊕
M
v =

(1 + 2
s2
u·v + 1

s2
‖v‖2)u+ (1− 1

s2
‖u‖2)v

1 + 2
s2
u·v + 1

s4
‖u‖2‖v‖2

. (79)

Like Einstein groupoids (Rn
s ,⊕E

), Möbius groupoids (Rn
s ,⊕M

) are gyrocommuta-
tive gyrogroups. The gyrogroup isomorphism between Einstein addition ⊕ = ⊕

E

and Möbius addition ⊕
M

is given by the equations [67, p. 227]

1
2⊗E

(u⊕
E
v) = 1

2⊗M
u⊕

M

1
2⊗M

v

2⊗
M
(u⊕

M
v) = 2⊗

E
u⊕

E
2⊗

E
v

(80)

for all u,v ∈ Vs.
The operations ⊗

E
and ⊗

M
are identical to each other, ⊗

E
= ⊗

M
=: ⊗. Hence,

Identities (80) can be written equivalently as

u⊕
E
v = 2⊗(12⊗u⊕

M

1
2⊗v)

u⊕
M
v = 1

2⊗(2⊗u⊕
E
2⊗v)

(81)

for all u,v ∈ Vs.
The related connection between Möbius transformation and Lorentz transfor-

mation of Einstein’s special theory of relativity was recognized by H. Liebmann in
1905 [36, pp. 122–123].

When u and v are parallel in Rn
s ⊂ Rn, scalar gyromultiplication is distributive

over gyroaddition [27]. Hence, in the special case when u‖v in Rn the two equations
in (81) degenerate to the single equation

u⊕
M
v = u⊕

E
v , u‖v (82)
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A

B

m
A,B

P

d(A,P )⊕d(P,B) = d(A,B)

LAB = A⊕(⊖A⊕B)⊗t

−∞ ≤ t ≤ ∞

m
A,B

= A⊕(⊖A⊕B)⊗ 1
2

d(A,B) = ‖A⊖B‖

d(A,m
A,B

) = d(B,m
A,B

)

Figure 4: Gyrolines, the hyperbolic lines LAB in Möbius gyrovector spaces, are
fully analogous to lines in Euclidean spaces. The gyroline LAB = A⊕(⊖A⊕B)⊗t,
t ∈ R, in a Möbius gyrovector space (Rn

s ,⊕,⊗) is a geodesic line in the Cartesian-
Poincaré ball model of hyperbolic geometry. Here ⊕ = ⊕

M
is Möbius addition, as

opposed to Fig. 3 where ⊕ = ⊕
E

is Einstein addition. The figure indicates that
Möbius gyrolines in the hyperbolic plane (R2

s,⊕,⊗) are Euclidean circular arcs in
the disc R

2
s that approach the boundary of the disc orthogonally.

Accordingly, Einstein scalar multiplication, ⊗
E
, and Möbius scalar multiplication,

⊗
M

, share the same formula, ⊗
E
= ⊗

M
=: ⊗, where ⊗ is given by (57),

Einstein and Möbius addition are originated from totally two different disci-
plines. Accordingly, the elegant relationship (81) between Einstein and Möbius
addition indicates, once again, the intrinsic beauty, harmony and interdisciplinar-
ity in Einstein addition.

14. Möbius Gyrolines

Replacing Einstein addition ⊕ = ⊕
E

in Sect. 12 by Möbius addition ⊕ = ⊕
M

in
this section, we obtain the Möbius gyrolines

LAB = A⊕(⊖A⊕B)⊗t , (83)
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t ∈ R, in a Möbius gyrovector space (Rn
s ,⊕,⊗), shown in Fig. 4 for n = 2. As we

see from Fig. 4, Möbius gyrolines in the Möbius gyrovector plane (R2
s,⊕,⊗) are

circular arcs that approach the boundary of the disc R2
s orthogonally. These are

the well-known geodesics of the Poincaré disc model of hyperbolic geometry.
Along with Möbius gyrolines we have the Möbius gyrodistance function

d(A,B) = ‖⊖A⊕B‖ (84)

and the gyrotriangle equality

d(A,P )⊕d(P,B) = d(A,B) (85)

for any A,B, P ∈ (Rn
s ,⊕), where P lies between A and B, as shown in Fig. 4.

A contact between Möbius gyrodistance function and differential geometry is
provided by the Riemannian gyroline element of Möbius gyrovector spaces, studied
in [64, Sect. 7.3] and [65]. It turns out that the Riemannian gyroline element of
Möbius gyrovector spaces, given by

ds2 = ‖(v + dv)⊖v‖2 , (86)

is identical with the well-known Riemannian line element of the Poincaré disc
model of hyperbolic geometry.

It should be emphasized that Equations (83) – (86) of this section are identical
in form with Equations (68) – (71) of Sect. 12. However, ⊕ = ⊕

E
in Sect. 12, while

⊕ = ⊕
M

in this section, where Einstein addition ⊕ = ⊕
E

is given by (2), p. 7, and
Möbius addition ⊕

M
is given by (79), p. 29.

15. Gyrotrigonometry

Hyperbolic trigonometry is called gyrotrigonometry and, similarly, hyperbolic an-
gles are called gyroangles. Graphically, gyrotrigonometry is best illustrated in
the Poincaré disc model of hyperbolic geometry since the Poincaré ball model is
conformal in the following sense. A gyroangle between two intersecting Möbius
gyrolines equals the angle between corresponding intersecting tangent lines, as
shown in Fig. 5. The equations in this section are valid in any gyrovector space.
In particular, they are valid in Einstein gyrovector spaces, when ⊕ = ⊕

E
, and in

Möbius gyrovector spaces, when ⊕ = ⊕
M

. Graphical illustrations are presented
for Möbius gyrovector planes in Figs. 5 and 6.

The gyroangle included by the gyrosegments AB and AC that emanate from
the point A, denoted ∠BAC, has the measure α given by the equation [64,67,69,
71, 72, 79]

cosα =
⊖A⊕B

‖⊖A⊕B‖
·
⊖A⊕C

‖⊖A⊕C‖
, (87)
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A

B

C

B′

C′

α

cosα =
⊖A⊕B

‖⊖A⊕B‖
·
⊖A⊕C

‖⊖A⊕C‖

cosα =
⊖A⊕B′

‖⊖A⊕B′‖
·
⊖A⊕C′

‖⊖A⊕C′‖

Figure 5: A Möbius gyroangle α generated by two intersecting Möbius geodesic
rays (gyrorays). Its measure equals the measure of the Euclidean angle generated
by corresponding intersecting tangent lines.

A,B,C ∈ Rn
s , where “cos” is the common cosine function of trigonometry. Ac-

cordingly,

α = cos−1 ⊖A⊕B

‖⊖A⊕B‖
·
⊖A⊕C

‖⊖A⊕C‖
, (88)

0 ≤ α < π. The point A is the vertex of the gyroangle ∠BAC. A gyroangle with
vertex at the origin, O = 0, of the ball coincides with its Euclidean counterpart,

cosα =
⊖O⊕B

‖⊖O⊕B‖
·
⊖O⊕C

‖⊖O⊕C‖
=

B

‖B‖
·
C

‖C‖
. (89)

The measure of a gyroangle is invariant under the motions of hyperbolic geom-
etry, which are left gyrotranslations and rotations. In particular, any gyroangle
with vertex A can be moved by a hyperbolic motion (gyromotion) to a gyroangle
with vertex O while keeping the gyroangle measure invariant. Having vertex O,
the resulting gyroangle behaves like an angle. Hence, trigonometric identities for
angles as, for instance, cos2 α + sin2 α = 1, remain valid for gyroangles as well.
Gyrotrigonometry and its application in analytic hyperbolic geometry are studied
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in [64, 67, 69, 71, 72, 79]. An elegant application of gyrotriangle gyrotrigonometry,
which has no Euclidean counterpart, is presented in Fig. 6.

A Möbius gyrotriangle along with its standard notation and some basic iden-
tities is presented in Fig. 6. Let ABC be a gyrotriangle in a Möbius gyrovector
space (Rn

s ,⊕,⊗) with verticesA,B,C ∈ Rn
s , sides a,b, c ∈ Rn

s and side gyrolengths
a, b, c ∈ (−s, s),

a = ⊖B⊕C, a = ‖a‖,

b = ⊖C⊕A, b = ‖b‖,

c = ⊖A⊕B, c = ‖c‖.

(90)

The gyroangle measures α, β and γ of the gyroangles at the vertices A,B and
C are given by the gyrotrigonometric identities

cosα =
⊖A⊕B

‖⊖A⊕B‖
·
⊖A⊕C

‖⊖A⊕C‖

cosβ =
⊖B⊕A

‖⊖B⊕C‖
·
⊖B⊕A

‖⊖B⊕C‖

cos γ =
⊖C⊕A

‖⊖C⊕A‖
·
⊖C⊕B

‖⊖C⊕B‖

(91)

in full analogy with corresponding trigonometric identities.
In Euclidean geometry the triangle angles do not determine its side lengths. In

contrast, in hyperbolic geometry the gyrotriangle gyroangles determine uniquely
its side gyrolengths according to the gyrotriangle gyrotrigonometric identities (92)
of the following theorem 15.1 [64, Theorem 8.48].

Theorem 15.1. (AAA to SSS Conversion Law). Let ABC be a gyrotriangle
in a Möbius gyrovector space (Rn

s ,⊕,⊗) with vertices A,B,C, corresponding gy-
roangles α, β, γ, 0 < α+β+γ < π, and side gyrolengths a, b, c, as shown in Fig. 6.
The side gyrolengths of the gyrotriangle ABC are determined by its gyroangles
according to the AAA to SSS conversion equations

a2

s2
=

cosα+ cos(β + γ)

cosα+ cos(β − γ)

b2

s2
=

cosβ + cos(α+ γ)

cosβ + cos(α− γ)

c2

s2
=

cos γ + cos(α+ β)

cos γ + cos(α− β)
.

(92)

In the Euclidean limit s → ∞, the equations in (92) reduce, respectively, to
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α

β

γ

A
a2s = cosα+cos(β+γ)

cosα+cos(β−γ)

α+ β + γ < π B

b2s =
cosβ+cos(α+γ)
cosβ+cos(α−γ)

C

c2s = cos γ+cos(α+β)
cos γ+cos(α−β)

a

a = ‖a‖, b = ‖b‖, c = ‖c‖

b

a⊕b > c c

a = ⊖C⊕B

b = ⊖C⊕A

c = ⊖B⊕A

cosα = b

‖b‖ ·
c

‖c‖ , tan δ
2 = asbs sin γ

1−asbs cos γ

cos γ = cos(π − α− β) + 2(γ2
c − 1) sinα cosβ

δ = π − (α+ β + γ) > 0

Figure 6: A Möbius gyrotriangle ABC in the Möbius gyrovector plane D =
(R2

s,⊕,⊗) is shown. Its sides are formed by gyrovectors that link its vertices,
in full analogy with Euclidean triangles. Its hyperbolic side lengths, a, b, c, are
uniquely determined in (93) by its gyroangles. The gyrotriangle gyroangle sum is
less than π. Here, as = a/s, etc. Note that in the limit of large s, s → ∞, the cos γ
equation reduces to cos γ = cos(π − α − β) so that α+ β + γ = π, implying that
both sides of each of the squared side gyrolength equations, shown in the figure
and listed in (93), vanish.

the equations

0 = cosα+ cos(β + γ)

0 = cosβ + cos(α+ γ)

0 = cos γ + cos(α + β)

(93)

each of which is equivalent to the Euclidean identity

α+ β + γ = π . (94)

Hence, the AAA (gyroAngle gyroAngle gyroAngle) to SSS (gyroSide gyroSide
gyroSide) Conversion Law (92) in Theorem 15.1 is valid in hyperbolic geometry,
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where α + β + γ < π, and it is invalid in Euclidean geometry, where the triangle
angle identity (94) holds.

16. Resultant Relativistically Invariant Mass

The relativistic mass mγ
v
, already encountered in Sect. 11, plays an important role

in Einstein’s special relativity and in analytic hyperbolic geometry [73]. Einstein
velocity addition admits the following theorem about relativistic mass.

Theorem 16.1. (Resultant Relativistically Invariant Mass Theorem). Let
(Rn

s ,⊕) be an Einstein gyrogroup, and let mk ∈ R and vk ∈ Rn
s , k = 1, 2, . . . , N ,

be N real numbers and N elements of Rn
s satisfying

N∑

k=1

mkγvk
6= 0 . (95)

Furthermore, let
N∑

k=1

mk

(
γvk

γvk
vk

)

= m0

(
γv0

γv0
v0

)

(96)

be an (n+ 1)-vector equation for the two unknowns m0 ∈ R and v0 ∈ Rn.
Then (96) possesses a unique solution (m0,v0), m0 6= 0, v0 ∈ Rn

s , satisfying
the following three identities for all w ∈ Rn

s (including, in particular, the interest-
ing special case of w = 0):

w⊕v0 =

∑N
k=1 mkγw⊕vk

(w⊕vk)
∑N

k=1 mkγw⊕vk

(97)

γ
w⊕v0

=

∑N
k=1 mkγw⊕vk

m0
(98)

γw⊕v0
(w⊕v0) =

∑N
k=1 mkγw⊕vk

(w⊕vk)

m0
(99)

where

m0 =

√
√
√
√
√
√

(
N∑

k=1

mk

)2

+ 2

N∑

j,k=1
j<k

mjmk(γ⊖(w⊕vj)⊕(w⊕vk)
− 1) . (100)

The proof of Theorem 16.1 is found in [71, Theorem 3.7] and in [72, Theorem
3.2].

It follows from (96) that (i) m0γv0
is the resultant relativistic mass of a system

of N particles with relativistic masses mkγvk
, and (ii) m0γv0

v0 is the resultant rel-
ativistic momentum of a system of N particles with relativistic momenta mkγvk

vk,
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k = 1, . . . , N . In physical applications n = 3, and mk > 0, k = 0, 1, . . . , N , are
positive real numbers that represent relativistically invariant (Newtonian) masses.
In geometry, however, n ≥ 1 and mk are any real numbers that need not be
positive.

Identities (97) – (99) of Theorem 16.1 are covariant in the sense the v0 and
vk vary together under left gyrotranslations by any w ∈ Rn

s . The constant m0 in
(100) in invariant in the sense that it remains invariant under left gyrotranslations
of vk by any w ∈ R

n
s .

It follows from (100) that the relativistically invariant mass m0 of a particle
system of N particles is greater than the sum

∑N
k=1 mk of the Newtonian Masses of

its constituents. The excessive mass, m0−
∑N

k=1 mk, is dark in the sense that (i) it
is generated by internal relative velocities between the constituents of the particle
system, and that (ii) it reveals its presence only gravitationally, since it emits no
radiation and it involves no collisions [68, 73]. Interestingly, the relativistically
invariant mass m0 of a particle system in (100) is precisely what we need in order
to adapt the Euclidean notion of barycentric coordinates for use in hyperbolic
geometry without losing covariance.

To appreciate the power and elegance of Theorem 16.1 in relativistic mechanics
in terms of novel analogies that it shares with familiar results in classical mechanics,
we present below the classical counterpart, Theorem 16.2, of Theorem 16.1. The-
orem 16.2 is derived from Theorem 16.1 by approaching the Newtonian/Euclidean
limit when s = c tends to infinity. The resulting Theorem 16.2 is immediate, and
its importance in classical mechanics is well-known. Like Theorem 16.1, Theorem
16.2 involves an expression, (103) below, which is covariant under translations and,
as such, fully analogous to (97), which is covariant under left gyrotranslations.

Theorem 16.2. (Resultant Newtonian Invariant Mass Theorem). Let
(Rn,+) be a Euclidean n-space, and let mk ∈ R and vk ∈ Rn, k = 1, 2, . . . , N , be
N real numbers and N elements of Rn satisfying

N∑

k=1

mk 6= 0 (101)

Furthermore, let
N∑

k=1

mk

(
1

vk

)

= m0

(
1

v0

)

(102)

be an (n+ 1)-vector equation for the two unknowns m0 ∈ R and v0 ∈ Rn.
Then (102) possesses a unique solution (m0,v0), m0 6= 0, satisfying the fol-

lowing equations for all w ∈ Rn (including, in particular, the interesting special
case of w = 0):

w + v0 =

∑N
k=1 mk(w + vk)
∑N

k=1 mk

(103)
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and

m0 =

N∑

k=1

mk . (104)

The proof of Theorem 16.2 is immediate.
Unlike Identity (103) of Theorem 16.2, which is immediate, its counterpart in

Theorem 16.1, Identity (97), is not immediate and, hence, unexpected. Yet, in full
analogy with Theorem 16.2, the validity of Identity (97) in Theorem 16.1 for all
w ∈ Rn

c is geometrically important. This geometric importance of Identity (97)
stems from its following implication: The velocity v0 of the center of momentum
frame of a particle system relative to a given inertial rest frame in relativistic
mechanics is independent of the choice of the origin of the relativistic velocity
space Rn

s with its underlying Cartesian-Beltrami-Klein ball model of hyperbolic
geometry.

Not unexpectedly, the Newtonian mass m0 in (104) of a particle system plays an
important role in Theorem 17.3, p. 39, on the covariance of barycentric coordinates
under the motions of Euclidean geometry, which are translations and rotations.
Remarkably, the relativistic invariant mass m0 in (100) of a particle system plays
an analogous important role in Theorem 18.3, p. 42, on the gyrocovariance of
gyrobarycentric coordinates under the gyromotions of hyperbolic geometry, which
are left gyrotranslations and rotations. Left gyrotranslations, in turn, play an
important role in the application of gyrobarycentric coordinates for determining
analytically various gyrotriangle gyrocenters in [71, 72,79].

17. Barycentric Coordinates

The notion of barycentric coordinates dates back to Möbius. The use of barycen-
tric coordinates in Euclidean geometry is described in [84], and the historical
contribution of Möbius’ barycentric coordinates to vector analysis is described
in [14, pp. 48–50].

In this section we set the stage for the introduction in Sect. 18 of barycentric
coordinates into hyperbolic geometry by illustrating the way Theorem 16.2, p. 36,
suggests the introduction of barycentric coordinates into Euclidean geometry.

For any positive integer N , let mk ∈ R be N given real numbers such that

N∑

k=1

mk 6= 0 (105)

and let Ak ∈ Rn be N given points in the Euclidean n-space Rn, k = 1, . . . , N .
Theorem 16.2, p. 36, states the trivial, but geometrically significant, result that
the equation

N∑

k=1

mk

(
1

Ak

)

= m0

(
1

P

)

(106)
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for the unknowns m0 ∈ R and P ∈ Rn possesses the unique solution given by

m0 =

N∑

k=1

mk (107)

and

P =

∑N
k=1 mkAk
∑N

k=1 mk

(108)

satisfying for all X ∈ Rn,

X + P =

∑N
k=1 mk(X +Ak)
∑N

k=1 mk

. (109)

We view (108) as the representation of a point P ∈ Rn in terms of its barycentric
coordinates mk, k = 1, . . . , N , with respect to the set of points S = {A1, . . . , AN}.
Identity (109), then, insures that the barycentric coordinate representation (108)
of P with respect to the set S is covariant (or, invariant in form) in the following
sense. The point P and the points of the set S of its barycentric coordinate
representation vary together under translations. Indeed, a translation X + Ak of
Ak by X , k = 1, . . . , N , in (109) results in the translation X + P of P by X .

In order to insure that barycentric coordinate representations with respect to
a set S are unique, we require S to be pointwise independent.

Definition 17.1. (Pointwise Independence). A set S of N points S =
{A1, . . . , AN} in Rn, n ≥ 2, is pointwise independent if the N−1 vectors −A1+Ak,
k = 2, . . . , N , are linearly independent.

Definition 17.2. (Barycentric Coordinates). Let

S = {A1, . . . , AN} (110)

be a pointwise independent set of N points in Rn. The real numbers m1, . . . ,mN ,
satisfying

N∑

k=1

mk 6= 0 (111)

are barycentric coordinates of a point P ∈ Rn with respect to the set S if

P =

∑N
k=1 mkAk
∑N

k=1 mk

. (112)

Barycentric coordinates are homogeneous in the sense that the barycentric
coordinates (m1, . . . ,mN ) of the point P in (112) are equivalent to the barycentric
coordinates (λm1, . . . , λmN ) for any real nonzero number λ ∈ R, λ 6= 0. Since
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in barycentric coordinates only ratios of coordinates are relevant, the barycentric
coordinates (m1, . . . ,mN ) are also written as (m1 : . . . :mN ).

Barycentric coordinates that are normalized by the condition

N∑

k=1

mk = 1 (113)

are called special barycentric coordinates.
Equation (112) is said to be the (unique) barycentric coordinate representation

of P with respect to the set S.

Theorem 17.3. (Covariance of Barycentric Coordinate Representa-
tions). Let

P =

∑N
k=1 mkAk
∑N

k=1 mk

(114)

be the barycentric coordinate representation of a point P ∈ Rn in a Euclidean
n-space Rn with respect to a pointwise independent set S = {A1, . . . , AN} ⊂ Rn.
The barycentric coordinate representation (114) is covariant, that is,

X + P =

∑N
k=1 mk(X +Ak)
∑N

k=1 mk

(115)

for all X ∈ Rn, and

RP =

∑N
k=1 mkRAk
∑N

k=1 mk

(116)

for all R ∈ SO(n).

Proof. The proof is immediate, noting that rotations R ∈ SO(n) of Rn about its
origin are linear maps of Rn.

Following the vision of Felix Klein in his Erlangen Program [8, 35], it is owing
to the covariance with respect to translations and rotations that barycentric co-
ordinate representations possess geometric significance. Indeed, translations and
rotations in Euclidean geometry form the group of motions of the geometry, studied
in [79], and according to Felix Klein’s Erlangen Program [8], a geometric property
is a property that remains invariant in form under the group of motions of the
geometry.

18. Gyrobarycentric Coordinates

Guided by analogies with Sect. 17, in this section we introduce barycentric coor-
dinates into hyperbolic geometry where, naturally, they are called gyrobarycentric
coordinates [70–72, 75, 77, 78]. Gyrobarycentric coordinates prove useful in the
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analytic determination of various gyrotriangle gyrocenters, just as barycentric co-
ordinates prove useful in the analytic determination of various triangle centers.

For any positive integer N , let mk ∈ R be N given real numbers, and let
Ak ∈ R

n
s be N given gyropoints in an Einstein gyrovector space (Rn

s ,⊕,⊗), k =
1, . . . , N , satisfying,

N∑

k=1

mkγvk
> 0 (117)

Theorem 16.1, p. 35 presents the result that the equation

N∑

k=1

mk

(
γAk

γAk
Ak

)

= m0

(
γP

γP P

)

(118)

for the unknowns m0 ∈ R and P ∈ Rn
s possesses the unique solution given by

m0 =

√
√
√
√
√
√

(
N∑

k=1

mk

)2

+ 2

N∑

j,k=1
j<k

mjmk(γ⊖Aj⊕Ak
− 1) (119)

m0 > 0, satisfying

m0 =

√
√
√
√
√
√

(
N∑

k=1

mk

)2

+ 2

N∑

j,k=1
j<k

mjmk(γ⊖(X⊕Aj)⊕(X⊕Ak)
− 1) (120)

for all X ∈ R
n
s , and

P =

∑N
k=1 mkγAk

Ak
∑N

k=1 mkγAk

(121)

satisfying

X⊕P =

∑N
k=1 mkγX⊕Ak

(X⊕Ak)
∑N

k=1 mkγX⊕Ak

(122)

for all X ∈ Rn
s .

Furthermore, Theorem 16.1, p. 35, also asserts that P and m0 satisfy the two
identities

γP =

∑N
k=1 mkγAk

m0
(123)

and

γP P =

∑N
k=1 mkγAk

Ak

m0
(124)
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and, more generally,

γX⊕P =

∑N
k=1 mkγX⊕Ak

m0
(125)

and

γX⊕P (X⊕P ) =

∑N
k=1 mkγX⊕Ak

(X⊕Ak)

m0
(126)

for all X ∈ R
n
s .

We view (121) as the representation of a gyropoint P ∈ Rn
s in terms of its

hyperbolic barycentric coordinates mk, k = 1, . . . , N , with respect to the set of
gyropoints S = {A1, . . . , AN}. Naturally in gyrolanguage, hyperbolic barycentric
coordinates are called gyrobarycentric coordinates. Identity (122) insures that the
gyrobarycentric coordinate representation (121) of P with respect to the set S is
gyrocovariant as stated in Theorem 18.3 below. The gyropoint P and the gyro-
points of the set S of its gyrobarycentric coordinate representation vary together
under left gyrotranslations. Indeed, a left gyrotranslation X⊕Ak of Ak by X ,
k = 1, . . . , N in (122) results in the left gyrotranslation X⊕P of P by X .

In order to insure that gyrobarycentric coordinate representations with respect
to a set S are unique, we require S to be hyperbolically pointwise independent or,
in gyrolanguage, gyropointwise Independent.

Definition 18.1. (Gyropointwise Independence). A set S of N gyropoints
S = {A1, . . . , AN} in R

n
s , n ≥ 2, is gyropointwise independent if the N − 1 gy-

rovectors in Rn
s , ⊖A1⊕Ak, k = 2, . . . , N , considered as vectors in Rn, are linearly

independent.

We are now in the position to present the formal definition of gyrobarycentric
coordinates, as motivated by mass and center of momentum velocity of Einsteinian
particle systems and by analogies with barycentric coordinates.

Definition 18.2. (Gyrobarycentric Coordinates). Let

S = {A1, . . . , AN} (127)

be a gyropointwise independent set of N gyropoints in Rn
s . The real numbers

m1, . . . ,mN , satisfying
N∑

k=1

mkγAk
> 0 (128)

are gyrobarycentric coordinates of a gyropoint P ∈ Rn
s with respect to the set S if

P =

∑N
k=1 mkγAk

Ak
∑N

k=1 mkγAk

. (129)

Gyrobarycentric coordinates are homogeneous in the sense that the gyrobarycen-
tric coordinates (m1, . . . ,mN ) of the gyropoint P in (129) are equivalent to the
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gyrobarycentric coordinates (λm1, . . . , λmN ) for any real nonzero number λ ∈ R,
λ 6= 0. Since in gyrobarycentric coordinates only ratios of coordinates are relevant,
the gyrobarycentric coordinates (m1, . . . ,mN ) are also written as (m1 : . . . :mN ).

Gyrobarycentric coordinates that are normalized by the condition

N∑

k=1

mk = 1 (130)

are called special gyrobarycentric coordinates.
Equation (129) is said to be the gyrobarycentric coordinate representation of

P with respect to the set S.
Finally, the constant of the gyrobarycentric coordinate representation of P in

(129) is m0 > 0, given by

m0 =

√
√
√
√
√
√

(
N∑

k=1

mk

)2

+ 2

N∑

j,k=1
j<k

mjmk(γ⊖Aj⊕Ak
− 1) . (131)

Theorem 18.3. (Gyrocovariance of Gyrobarycentric Coordinate Rep-
resentations). Let

P =

∑N
k=1 mkγAk

Ak
∑N

k=1 mkγAk

(132a)

be a gyrobarycentric coordinate representation of a gyropoint P ∈ R
n
s in an Einstein

gyrovector space (Rn
s ,⊕,⊗) with respect to a gyropointwise independent set S =

{A1, . . . , AN} ⊂ Rn
s .

Then

γP =

∑N
k=1 mkγAk

m0
(132b)

and

γP P =

∑N
k=1 mkγAk

Ak

m0
(132c)

where m0, given by

m0 =

√
√
√
√
√
√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ⊖Aj⊕Ak
− 1) , (132d)

m0 > 0, is the constant of the gyrobarycentric coordinate representation (132a).
Furthermore, the gyrobarycentric coordinate representation (132a) and its as-

sociated identities in (132b) – (132d) are gyrocovariant, that is,
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X⊕P =

∑N
k=1 mkγX⊕Ak

(X⊕Ak)
∑N

k=1 mkγX⊕Ak

(133a)

γX⊕P =

∑N
k=1 mkγX⊕Ak

m0
(133b)

γX⊕P (X⊕P ) =

∑N
k=1 mkγX⊕Ak

(X⊕Ak)

m0
(133c)

where

m0 =

√
√
√
√
√
√

(
N∑

k=1

mk

)2

+ 2

N∑

j,k=1
j<k

mjmk(γ⊖(X⊕Aj)⊕(X⊕Ak)
− 1) (133d)

for all X ∈ Rn
s , and

RP =

∑N
k=1 mkγRAk

RAk
∑N

k=1 mkγRAk

(134a)

γRP =

∑N
k=1 mkγRAk

m0
(134b)

γRP (RP ) =

∑N
k=1 mkγRAk

(RAk)

m0
(134c)

where

m0 =

√
√
√
√
√
√

(
N∑

k=1

mk

)2

+ 2

N∑

j,k=1
j<k

mjmk(γ⊖(RAj)⊕(RAk)
− 1) (134d)

for all R ∈ SO(n).

The proof of Theorem 18.3 is found in [72, Theorem 4.6].
Following the vision of Felix Klein in his Erlangen Program [8, 35], it is owing

to the gyrocovariance, that is, covariance with respect to left gyrotranslations
and rotations, that gyrobarycentric coordinate representations are geometrically
significant. Indeed, left gyrotranslations and rotations in hyperbolic geometry form
the group of motions of the geometry, studied in [79, Sect. 3.12] and, according to
Felix Klein’s Erlangen Program, a geometric property is a property that remains
invariant in form under the motions of the geometry.

The following two corollaries of Theorem 18.3 prove useful.
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Corollary 18.4. Let S = {A1, . . . , AN} ⊂ Rn
s be a gyropointwise independent set

of N gyropoints in Rn
s , and let

P =

∑N
k=1 mkγAk

Ak
∑N

k=1 mkγAk

(135)

be a gyrobarycentric coordinate representation of a gyropoint P ∈ Rn with respect
to the set S. Furthermore, let m0 be the representation constant, given by

m2
0 =

(
N∑

k=1

mk

)2

+ 2

N∑

j,k=1
j<k

mjmk(γ⊖Aj⊕Ak
− 1) . (136)

Then, the point P lies in the ball Rn
s , P ∈ Rn

s , if and only if m2
0 > 0 (In other

words, the point P is a gyropoint if and only if m2
0 > 0).

The proof of Corollary 18.4 is found in [72, Corollary 4.9].

Corollary 18.5. Let S = {A1, . . . , AN} ⊂ Rn
s be a gyropointwise independent set

of N gyropoints in Rn
s , and let

P =

∑N
k=1 mkγAk

Ak
∑N

k=1 mkγAk

(137)

be a gyrobarycentric coordinate representation of a point P ∈ Rn with respect to
the set S, with positive gyrobarycentric coordinates mk > 0, k = 1, . . . , N . Then,
P ∈ Rn

s . Moreover, P lies on the the convex span of S if and only if mk > 0,
k = 1, . . . , N .

The proof of Corollary 18.5 is found in [72, Corollary 4.10]

19. Gyrolanguage

The checkered history of gyrolanguage begins in 1988 [54] with the discovery of
the parametric realization of the Lorentz transformation group of special rela-
tivity theory in terms of relativistically admissible velocities. It turned out that
the group structure of Lorentz transformations induces the gyrocommutative gy-
rogroup structure of the space R3

c of all relativistically admissible velocities with
the binary operation ⊕ given by Einstein’s velocity addition law.

The gyrocommutative gyrogroup structure (R3
c ,⊕) that regulates Einstein ad-

dition was initially called a nonassociative group [55]. In the initial study of
the concrete example (R3

c ,⊕), the gyrocommutative and gyroassociative laws of
Einstein addition were called weakly commutative and weakly associative laws
and, accordingly, gyrocommutative gyrogroups were called weakly associative-
commutative groups (WACGs, in short) [57]. Furthermore, in this initial study of



Gyrogroups and Gyrovector Spaces 45

gyrocommutative gyrogroups the rich algebra of the gyrations that are associated
with Einstein addition was discovered. Gyrations were called Thomas rotations
for being related to the special relativistic phenomenon known as Thomas preces-
sion [55]. The term K-loop with “K” after Karzel, which refers to the gyrocommu-
tative gyrogroup, was coined by the author in [56] as evidenced from [26, pp. 169-
170]. The term K-loop is in use by some authors, and its prehistory is unfolded
in [42, p. 142] and in [60, Remark 6.12].

Prior to its introduction by the author, the term “K-loop” has already been in
use by Sŏıkis, in 1970 [45] and later, but independently, by Basarab, in 1992 [9].
Unlike the term “K-loop” that Ungar coined, the “K” in each of the terms “K-loop”
coined by Sŏıkis and by Basarab does not refer to “Karzel”.

Finally, in 1991 [58] the author has realized that a most appropriate term
for the abstract Thomas precession is Thomas gyration (or gyration, in short) so
that, accordingly, the weakly commutative and weakly associative laws of Ein-
stein addition became the gyrocommutative and the gyroassociative laws. Hence,
consistently, the extension by abstraction of the Einstein groupoid (R3

c ,⊕) is now
called a gyrocommutative gyrogroup.

Merging gyroterminology with terminology [59], the emergence of gyrolanguage
is thus natural. It is a language in which we prefix a gyro to terms that describe
concepts in algebra and geometry to mean the analogous concepts in gyroalgebra
and gyrogeometry. An interesting example is provided by the term gyrolayout,
which has been coined by D. K. Urribarri, S. M. Castro and S. R. Martig in
the title of their paper [81], where the 3-dimensional Einstein gyrovector space is
employed for the generation of computer hyperbolic visualization.
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