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Gyroharmonic Analysis on

Relativistic Gyrogroups

Milton Ferreira?

Abstract

Einstein, Möbius, and Proper Velocity gyrogroups are relativistic gy-
rogroups that appear as three different realizations of the proper Lorentz
group in the real Minkowski space-time Rn,1. Using the gyrolanguage we
study their gyroharmonic analysis. Although there is an algebraic gyroiso-
morphism between the three models we show that there are some differences
between them. Our study focus on the translation and convolution oper-
ators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform,
Fourier-Helgason transform, its inverse, and Plancherel’s Theorem. We show
that in the limit of large t, t → +∞, the resulting gyroharmonic analysis
tends to the standard Euclidean harmonic analysis on Rn, thus unifying
hyperbolic and Euclidean harmonic analysis.

Keywords: Gyrogroups, gyroharmonic analysis, Laplace Beltrami operator,
eigenfunctions, generalized Helgason-Fourier transform, Plancherel’s theo-
rem.
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1. Introduction
Harmonic analysis is the branch of mathematics that studies the representation of
functions or signals as the superposition of basic waves called harmonics. Closely
related is the study of Fourier series and Fourier transforms. Its applications are
of major importance and can be found in diverse areas such as signal processing,
quantum mechanics, and neuroscience (see [23] for an overview). The classical
Fourier transform on Rn is still an area of research, particularly concerning Fourier

?Corresponding author (E-mail: milton.ferreira@ipleiria.pt)
Academic Editor: Abraham A. Ungar
Received 07 December 2015, Accepted 15 February 2016
DOI: 10.22052/mir.2016.13908

c© 2016 University of Kashan



70 M. Ferreira

transformation on more general objects such as tempered distributions. Some of
its properties can be translated in terms of the Fourier transform. For instance, the
Paley-Wiener theorem states that if a function is a nonzero distribution of compact
support then its Fourier transform is never compactly supported [22]. This is a
very elementary form of an uncertainty principle in the harmonic analysis setting.
Fourier series can be conveniently studied in the context of Hilbert spaces, which
provides a connection between harmonic analysis and functional analysis.

In the last century the Fourier transform was generalised to compact groups,
abelian locally compact groups, symmetric spaces, etc.. For compact groups, the
Peter-Weyl theorem establish the relationship between harmonics and irreducible
representations. This choice of harmonics enjoys some of the useful properties
of the classical Fourier transform in terms of carrying convolutions to pointwise
products, or otherwise showing a certain understanding of the underlying group
structure. For general nonabelian locally compact groups, harmonic analysis is
closely related to the theory of unitary group representations. Noncommutative
harmonic analysis appeared mainly in the context of symmetric spaces where many
Lie groups are locally compact and noncommutative. These examples are of in-
terest and frequently applied in mathematical physics, and contemporary number
theory, particularly automorphic representations. The development of noncommu-
tative harmonic analysis was done by many mathematicians like John von Neu-
mann, Harisch-Chandra and Sigurdur Helgason [13,14].

It is well-known that Fourier analysis is intimately connected with the action
of the group of translations on Euclidean space. The group structure enters into
the study of harmonic analysis by allowing the consideration of the translates of
the object under study (functions, measures, etc.). First we study the spectral
analysis finding the elementary components for the decomposition and second we
perform the harmonic or spectral synthesis, finding a way in which the object
can be construed as a combination of its elementary components [16]. Harmonic
analysis in Euclidean spaces is rich because of its connection with several classes
of transformations: the dilations and the rotations as well as the translations. The
Fourier transform in Rn has a very simple transformation law under dilations and
it commutes with the action of rotations.

The real hyperbolic space is commonly viewed as a homogeneous space obtained
from the quotient SO0(n, 1)/SO(n) where SO0(n, 1) is the proper Lorentz group
in the Minkowski space Rn,1 and SO(n) is the special orthogonal group. It is well
known that pure Lorentz transformations (the translations in hyperbolic space)
do not form a group since the composition of two is no longer a pure Lorentz
transformation. However, by incorporating the gyration operator it is possible to
obtain a gyroassociative law. The resulting algebraic structure called gyrogroup
by A.A. Ungar [25] repairs the breakdown of associativity and commutativity of
the relativistic additions. The gyrogroup structure is a natural extension of the
group structure, discovered in 1988 by A. A. Ungar in the context of Einstein’s
velocity addition law [24, 25]. It has been studied by A. A. Ungar and others
see, for instance, [6,8,26,27,29,30]. Gyrogroups provide a fruitful bridge between
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nonassociative algebra and hyperbolic geometry, just as groups lay the bridge
between associative algebra and Euclidean geometry.

In this survey paper we show the similarities and differences between gyro-
harmonic analysis on three relativistic gyrogroups: Möbius, Einstein, and Proper
Velocity gyrogroups. For the Möbius and Eintein cases we provide a generalization
of the results in [9,10] by replacing the real parameter σ by a complex parameter z,
under the identification 2z = n+σ−2, where n is the dimension of the hyperbolic
space.

The paper is organized as follows. In Section 2 we review harmonic analy-
sis on Rn as spectral theory of the Laplace operator. In Sections 3, 4, and 5 we
present the results concerning gyroharmonic analysis for the Einstein, Möbius, and
Proper Velocity gyrogroups, respectively. Each of these sections focus the follow-
ing aspects: the relativistic addition and its properties, the generalised translation
operator and the associated convolution operator, the eigenfunctions of the gen-
eralised Laplace-Beltrami operator, the generalized spherical functions, the gener-
alized Poisson transform, the generalized Helgason Fourier transform, its inverse
and Plancherel’s Theorem. We show that in the limit t → +∞ we recover the
well-known results in Euclidean harmonic analysis. Two appendices, A and B,
concerning all necessary facts on spherical harmonics and Jacobi functions, are
found at the end of the paper.

2. Euclidean Harmonic Analysis Revisited

Euclidean harmonic analysis in Rn is associated to the translation group (Rn,+)
and the spectral theory of the Laplace operator ∆. The Fourier transform of f ∈
L1(Rn) ∩ L2(Rn) is defined by

(Ff)(ξ) =

∫
Rn
e−i〈x,ξ〉f(x) dx.

Since F is a unitary operator on L1(Rn) ∩ L2(Rn) which is dense in L2(Rn) then
the Fourier transform can be uniquely extended to a unitary operator in L2(Rn),

denoted by the same symbol. Denoting (Ff)(ξ) = f̂(ξ) we can write the Fourier
inverse formula in polar coordinates

f(x) =
1

(2π)n

∫ ∞
0

(∫
Sn−1

f̂(λu) eiλ〈x,u〉du

)
λn−1 dλ.

The expression in parenthesis is an eigenfunction of the Laplace operator with
eigenvalue −λ2 (∆fλ = −λ2fλ). Thus, the function f can be represented by an
integral of such eigenfunctions. Defining the spectral projection operator

Pλf(x) =
1

(2π)n
λn−1

∫
Sn−1

f̂(λu) eiλ〈x,u〉 du
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we obtain the spectral representation formula

f(x) =

∫ ∞
0

Pλf(x) dλ.

We can also write
Pλf(x) =

∫
Rn
ϕλ(|x− y|)f(y) dy, (1)

where
ϕλ(r) = (2π)−

n
2 λ

n
2 r1−

n
2 Jn

2−1(rλ)

is a multiple of the usual spherical function, because ϕλ(0) = (2π)−nλn−1ωn−1
instead of one. Formula (1) involves only the distance |x − y| between points in
Rn and the Euclidean measure, which are both invariants of the Euclidean motion
group. The following characterisation of Pλf for f ∈ L2(Rn) was given in [21]

Theorem 2.1. [21] Let fλ(x) be a measurable function on (0,∞)×Rn such that
∆fλ = −λ2fλ for almost every λ. Then there exists f ∈ L2(Rn) with Pλf = fλ
a.e. if and only if one of the following equivalent conditions holds:

(i)

∫ ∞
0

(
sup
z,t

1

t

∫
Bt(z)

|fλ(x)|2 dx

)
dλ <∞

(ii) sup
z,t

∫ ∞
0

1

t

∫
Bt(z)

|fλ(x)|2 dx dλ <∞

(iii)

∫ ∞
0

(
lim
t→∞

1

t

∫
Bt(z)

|fλ(x)|2 dx

)
dλ <∞ for some z

(iv) lim
t→∞

∫ ∞
0

1

t

∫
Bt(z)

|fλ(x)|2 dxdλ <∞, for some z.

Furthermore, we have

||f ||22 = π

∫ ∞
0

(
lim
t→∞

1

t

∫
Bt(z)

|fλ(x)|2 dx

)
dλ.

3. Gyroharmonic Analysis on the Einstein Gyrogroup

3.1 Einstein Addition in the Ball

The Beltrami-Klein model of the n−dimensional real hyperbolic geometry can be
realised as the open ball Bnt = {x ∈ Rn : ‖x‖ < t} of Rn, endowed with the
Riemannian metric

ds2 =
‖dx‖2

1− ‖x‖
2

t2

+
(〈x, dx〉)2

t2
(

1− ‖x‖
2

t2

)2 .
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This metric corresponds to the metric tensor

gij(x) =
δij

1− ‖x‖
2

t2

+
xixj

t2
(

1− ‖x‖
2

t2

)2 , i, j ∈ {1, . . . , n}

and its inverse is given by

gij(x) =

(
1− ‖x‖

2

t2

)(
δij −

xixj
t2

)
, i, j ∈ {1, . . . , n}.

The group of all isometries of the Klein model [34] consists of the elements of
the group O(n) and the mappings given by

Ta(x) =
a+ Pa(x) + µaQa(x)

1 + 1
t2 〈a, x〉

(2)

where

Pa(x) =

{
〈a, x〉 a

‖a‖2 if a 6= 0

0 if a = 0
, Qa(x) = x− Pa(x), and µa =

√
1− ‖a‖

2

t2
.

Some properties are listed in the next proposition.

Proposition 3.1. Let a ∈ Bnt . Then

(i) P 2
a = Pa, Q2

a = Qa, 〈a, Pa(x)〉 = 〈a, x〉 , and 〈a,Qa(x)〉 = 0.

(ii) Ta(0) = a and Ta(−a) = 0.

(iii) Ta(T−a(x)) = T−a(Ta(x)) = x, ∀x ∈ Bnt .

(iv) Ta
(
±t a

‖a‖

)
= ±t a

‖a‖
. Moreover, Ta fixes two points on ∂Bnt and no point

of Bnt .

(v) The identity

1− 〈Ta(x), Ta(y)〉
t2

=

(
1− ‖a‖

2

t2

)(
1− 〈x,y〉t2

)
(

1 + 〈x,a〉
t2

)(
1 + 〈y,a〉

t2

) (3)

holds for all x, y ∈ Bnt . In particular, when x = y we have

1− ‖Ta(x)‖2

t2
=

(
1− ‖a‖

2

t2

)(
1− ‖x‖

2

t2

)
(

1 + 〈x,a〉
t2

)2 (4)

and when x = 0 in (3) we obtain

1− 〈a, Ta(y)〉
t2

=
1− ‖a‖

2

t2

1 + 〈y,a〉
t2

. (5)
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(vi) For R ∈ O(n)
R ◦ Ta = TRa ◦R. (6)

To endow the ball Bnt with a binary operation, closely related to vector addition
in Rn, we define the Einstein addition on Bnt by

a⊕ x := Ta(x), a, x ∈ Bnt . (7)

This definition agrees with Ungar’s definition for the Einstein addition since we
can write (2) as

a⊕ x =
1

1 + 〈a,x〉
t2

(
a+

1

γa
x+

1

t2
γa

1 + γa
〈a, x〉 a

)
(8)

where γa =

(√
1− ‖a‖

2

t2

)−1
is the relativistic gamma factor.

It is known that (Bnt ,⊕) is a gyrogroup (see [24, 27]), i.e., it satisfies the fol-
lowing axioms:

(G1) There is at least one element 0 satisfying 0⊕ a = a, for all a ∈ Bnt ;

(G2) For each a ∈ B there is an element 	a ∈ Bnt such that 	a⊕ a = 0;

(G3) For any a, b, c ∈ Bnt there exists a unique element gyr[a, b]c ∈ Bnt such that
the binary operation satisfies the left gyroassociative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c; (9)

(G4) The map gyr[a, b] : Bnt → Bnt given by c 7→ gyr[a, b]c is an automorphism of
(Bnt ,⊕);

(G5) The gyroautomorphism gyr[a, b] possesses the left loop property

gyr[a, b] = gyr[a⊕ b, b] (10)

for all a, b ∈ B.

The gyration operator can be given in terms of the Einstein addition ⊕ by the
equation (see [27])

gyr [a, b]c = 	(a⊕ b)⊕ (a⊕ (b⊕ c)).

The Einstein gyrogroup is gyrocommutative since Einstein addition satisfies

a⊕ b = gyr [a, b](b⊕ a). (11)

In the limit t→ +∞, the ball Bnt expands to the whole of the space Rn, Einstein
addition reduces to vector addition in Rn and, therefore, the gyrogroup (Bnt ,⊕)
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reduces to the translation group (Rn,+). Some useful gyrogroup identities ( [27],
pp. 48 and 68) that will be used in this paper are

	(a⊕ b) = (	a)⊕ (	b) (12)

a⊕ (	a⊕ b) = b (13)
(gyr [a, b])−1 = gyr [b, a] (14)

gyr [a⊕ b,	a] = gyr [a, b] (15)
gyr [	a,	b] = gyr [a, b] (16)

gyr [a,	a] = I (17)
gyr [a, b](b⊕ (a⊕ c)) = (a⊕ b)⊕ c (18)

Properties (14) and (15) are valid for general gyrogroups while properties (12) and
(18) are valid only for gyrocommutative gyrogroups. Combining formulas (15) and
(18) with (14) we obtain the identities

gyr [	a, a⊕ b] = gyr [b, a] (19)
b⊕ (a⊕ c) = gyr [b, a]((a⊕ b)⊕ c). (20)

In the special case when n = 1, the Einstein gyrogroup becomes a group
since gyrations are trivial (a trivial map being the identity map). For n ≥ 2 the
gyrosemidirect product of (Bnt ,⊕) and O(n) (see [27]) gives the group Bnt ogyr O(n)
for the operation

(a,R)(b, S) = (a⊕Rb, gyr [a,Rb]RS) .

This group is a realisation of the Lorentz group O(n, 1). In the limit t → +∞
the group Bnt ogyr O(n) reduces to the Euclidean group E(n) = Rn oO(n). In [9]
we developed the harmonic analysis on the Einstein gyrogroup depending on a
real parameter σ. We provide here a generalization of these results considering a
complex parameter z, under the identification 2z = n+ σ − 2. Most of the proofs
are analogous as in [9] and therefore will be omitted.

3.2 The Generalised Translation and Convolution
Definition 3.2. For a complex valued function f defined on Bnt , a ∈ Bnt and
z ∈ C we define the generalised translation operator τaf by

τaf(x) = ja(x)f((−a)⊕ x) (21)

with the automorphic factor ja(x) given by

ja(x) =


√

1− ‖a‖
2

t2

1− 〈a,x〉t2

z

. (22)

For z = n + 1 the multiplicative factor ja(x) agrees with the Jacobian of the
transformation T−a(x) = (−a)⊕x. For any z ∈ C, we obtain in the limit t→ +∞
the Euclidean translation operator τaf(x) = f(−a+ x) = f(x− a).
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Lemma 3.3. For any a, b, x, y ∈ Bnt the following relations hold

(i) j−a(−x) = ja(x) (23)
(ii) ja(a)ja(0) = 1 (24)

(iii) ja(x) = jx(a)ja(0)jx(x) (25)
(iv) ja(a⊕ x) = (j−a(x))−1 (26)
(v) j(−a)⊕x(0) = jx⊕(−a)(0) = jx(a)ja(0) = ja(x)jx(0) (27)

(vi) j(−a)⊕x((−a)⊕ x) = (ja(x))−1jx(x) (28)
(vii) τajy(x) = [τ−ajx(y)]jx(x)jy(0) (29)

(viii) τ−aja(x) = 1 (30)
(ix) τajy(x) = ja⊕y(x) (31)
(x) τaf(x) = [τxf(−gyr [x, a]a)]ja(0)jx(x) (32)

(xi) τbτaf(x) = τb⊕af(gyr [a, b]x) (33)
(xii) τ−aτaf(x) = f(x) (34)

(xiii) τbτaf(x) = [τ−bτxf(−gyr [−b, x⊕ a] gyr [x, a] a)] ja(0)jx(x). (35)

For the translation operator to be an unitary operator we have to properly de-
fine a Hilbert space. We consider the complex weighted Hilbert space L2(Bnt ,dµz,t)
with

dµz,t(x) =

(
1− ‖x‖

2

t2

)z−n+1
2

dx,

where dx stands for the Lebesgue measure in Rn. For the special case z = 0 we
recover the invariant measure associated to the transformations Ta(x).

Proposition 3.4. For f, g ∈ L2(Bnt ,dµz,t) and a ∈ Bnt we have∫
Bnt
τaf(x) g(x) dµz,t(x) =

∫
Bnt
f(x) τ−ag(x) dµz,t(x). (36)

Corollary 3.5. For f, g ∈ L2(Bnt ,dµz,t) and a ∈ Bnt we have

(i)

∫
Bnt
τaf(x) dµz,t(x) =

∫
Bnt
f(x)j−a(x) dµz,t(x); (37)

(ii) If z = 0 then
∫
Bnt
τaf(x) dµz,t(x) =

∫
Bnt
f(x) dµz,t(x); (38)

(iii) ||τaf ||2 = ||f ||2. (39)

From Corollary 3.5 we see that the generalised translation τa is an unitary operator
in L2(Bnt ,dµz,t) and the measure dµz,t is translation invariant only for the case
z = 0. Now we define the generalised convolution of two functions in Bnt .
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Definition 3.6. The generalised convolution of two measurable functions f and
g is given by

(f ∗ g)(x) =

∫
Bnt
f(y) τxg(−y) jx(x) dµz,t(y), x ∈ Bnt . (40)

By Proposition 3.4 and the change of variables −y 7→ z we can see that the
generalised convolution is commutative, i.e., f ∗ g = g ∗ f.

Before we prove that it is well defined for Re(z) < n−1
2 we need the following

lemma.

Lemma 3.7. Let Re(z) < n−1
2 . Then∫

Sn−1

|jx(rξ) jx(x)| dσ(ξ) ≤ Cz

with

Cz =


1, if Re(z) ∈]− 1, 0[

Γ
(
n
2

) (n−2Re(z)−1
2

)
Γ
(
n−Re(z)

2

)
Γ
(
n−Re(z)−1

2

) , if Re(z) ∈]−∞,−1] ∪ [0, n−12 [
. (41)

Proof. Using (A.2) in Appendix A we obtain∫
Sn−1

|jx(rξ) jx(x)| dσ(ξ) = 2F1

(
Re(z)

2
,

Re(z) + 1

2
;
n

2
;
r2‖x‖2

t4

)
.

Considering the function g(s) = 2F1

(
Re(z)

2 , Re(z)+1
2 ; n2 ; s

)
and applying (A.8) and

(A.6) in Appendix A we get

g′(s) =
Re(z)(Re(z) + 1)

2n
2F1

(
Re(z) + 2

2
,
Re(z) + 3

2
;
n

2
+ 1; s

)
.

=
Re(z)(Re(z) + 1)

2n︸ ︷︷ ︸
(I)

(1− s)
n−2Re(z)−3

2 2F1

(
n− Re(z)

2
,
n− Re(z)− 1

2
;
n

2
+ 1; s

)
︸ ︷︷ ︸

(II)

.

Since Re(z) < n−1
2 then the hypergeometric function (II) is positive for s > 0,

and therefore, positive on the interval [0, 1[. Studying the sign of (I) we conclude
that the function g is strictly increasing when Re(z) ∈] − ∞,−1] ∪ [0, n−12 [ and
strictly decreasing when Re(z) ∈] − 1, 0[. Since Re(z) < n−1

2 , then it exists the
limit lims→1− g(s) and by (A.5) it is given by

g(1) =
Γ
(
n
2

)
Γ
(
n−2Re(z)−1

2

)
Γ
(
n−Re(z)

2

)
Γ
(
n−Re(z)−1

2

) .
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Thus,
g(s) ≤ max{g(0), g(1)} = Cz

with g(0) = 1.

Proposition 3.8. Let Re(z) < n−1
2 and f, g ∈ L1(Bnt ,dµz,t). Then

||f ∗ g||1 ≤ Cz ||f ||1 ||g̃||1 (42)

where g̃(r) = ess sup
ξ∈Sn−1

y∈Bnt

g(gyr [y, rξ]rξ) for any r ∈ [0, t[.

In the special case when g is a radial function we obtain as a corollary that
||f ∗ g||1 ≤ Cz||f ||1||g||1 since g̃ = g. We can also prove that for f ∈ L∞(Bnt ,dµz,t)
and g ∈ L1(Bnt ,dµz,t) we have the inequality

||f ∗ g||∞ ≤ Cz ||g̃||1 ||f ||∞. (43)

By (42), (43), and the Riesz-Thorin interpolation Theorem we further obtain for
f ∈ Lp(Bnt ,dµz,t) and g ∈ L1(Bnt ,dµz,t) the inequality

||f ∗ g||p ≤ Cz ||g̃||1 ||f ||p.

To obtain a Young’s inequality for the generalised convolution we restrict ourselves
to the case Re(z) ≤ 0.

Theorem 3.9. Let Re(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , s = 1 − q

r ,

f ∈ Lp(Bnt ,dµz,t) and g ∈ Lq(Bnt ,dµz,t). Then

||f ∗ g||r ≤ 2−Re(z)||g̃||1−sq ||g||sq ||f ||p (44)

where g̃(x) := ess sup
y∈Bnt

g(gyr [y, x]x), for any x ∈ Bnt .

The proof is analogous to the proof given in [9] and uses the following estimate:

|jx(y)jx(x)| ≤ 2−Re(z), ∀x, y ∈ Bnt , ∀Re(z) ≤ 0. (45)

Corollary 3.10. Let Re(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1+ 1
r , f ∈ L

p(Bnt ,dµz,t)
and g ∈ Lq(Bnt ,dµz,t) a radial function. Then,

||f ∗ g||r ≤ 2−Re(z)||g||q ||f ||p. (46)

Remark 1. For z = 0 and taking the limit t → +∞ in (44) we recover Young’s
inequality for the Euclidean convolution in Rn since in the limit g̃ = g.

Another important property of the Euclidean convolution is its translation invari-
ance. Next theorem shows that the generalised convolution is gyro-translation
invariant.
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Theorem 3.11. The generalised convolution is gyro-translation invariant, i.e.,

τa(f ∗ g)(x) = (τaf(·) ∗ g(gyr [−a, x] · ))(x). (47)

In Theorem 3.11 if g is a radial function then we obtain the translation invariant
property τa(f ∗ g) = (τaf) ∗ g. The next theorem shows that the generalised
convolution is gyroassociative.

Theorem 3.12. If f, g, h ∈ L1(Bnt ,dµz,t) then

(f ∗a (g ∗x h))(a) = (((f(x) ∗y g(gyr [a,−(y ⊕ x)]gyr [y, x]x))(y)) ∗a h(y))(a) (48)

Corollary 3.13. If f, g, h ∈ L1(Bnt , dµz,t) and g is a radial function then the
generalised convolution is associative. i.e.,

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

From Theorem 3.12 we see that the generalised convolution is associative up to a
gyration of the argument of the function g. However, if g is a radial function then
the corresponding gyration is trivial (that is, it is the identity map) and therefore
the convolution becomes associative. Moreover, in the limit t → +∞ gyrations
reduce to the identity, so that formula (48) becomes associative in the Euclidean
case. If we denote by L1

R(Bnt ,dµz,t) the subspace of L1(Bnt , dµz,t) consisting of
radial functions then, for Re(z) < n−1

2 , L1
R(Bnt ,dµz,t) is a commutative associative

Banach algebra under the generalised convolution.

3.3 Laplace Beltrami Operator ∆z,t and its Eigenfunctions
The gyroharmonic analysis on the Einstein gyrogroup is based on the generalised
Laplace Beltrami operator ∆z,t defined by

∆z,t =

(
1− ‖x‖

2

t2

)∆−
n∑

i,j=1

xixj
t2

∂2

∂xi∂xj
− 2(z + 1)

t2

n∑
i=1

xi
∂

∂xi
− z(z + 1)

t2

 .

A simpler representation formula for ∆z,t can be obtained using the Euclidean
Laplace operator ∆ and the generalised translation operator τa.

Proposition 3.14. For each f ∈ C2(Bnt ) and a ∈ Bnt

(∆z,tf)(a) = (ja(0))−1∆(τ−af)(0)− z(z + 1)

t2
(τ−af)(0) (49)

A very important property is that the generalised Laplace-Beltrami operator ∆z,t

commutes with generalised translations.

Proposition 3.15. The operator ∆z,t commutes with generalised translations, i.e.

∆z,t(τbf) = τb(∆z,tf) ∀ f ∈ C2(Bnt ), ∀ b ∈ Bnt .
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There is an important relation between the operator ∆z,t and the measure dµz,t.
Up to a constant the Laplace-Beltrami operator ∆z,t corresponds to a weighted
Laplace operator on Bnt for the weighted measure dµσ,t in the sense defined in [12],
Section 3.6. From Theorem 11.5 in [12] we know that the Laplace operator on a
weighted manifold is essentially self-adjoint if all geodesics balls are relatively com-
pact. Therefore, ∆z,t can be extended to a self adjoint operator in L2(Bnt ,dµz,t).

Proposition 3.16. The operator ∆z,t is essentially self-adjoint in L2(Bnt ,dµz,t).

Definition 3.17. For λ ∈ C, ξ ∈ Sn−1, and x ∈ Bnt we define the functions eλ,ξ;t
by

eλ,ξ;t(x) =

(√
1− ‖x‖

2

t2

)−z+n−1
2 +iλt

(
1− 〈x,ξ〉t

)n−1
2 +iλt

. (50)

The hyperbolic plane waves eλ,ξ;t(x) converge in the limit t → +∞ to the Eu-
clidean plane waves ei〈x,λξ〉. Since

eλ,ξ;t(x) =

(
1− 〈x, ξ〉

t

)−n−1
2 −iλt

(√
1− ‖x‖

2

t2

)−z+n−1
2 +iλt

then we obtain

lim
t→+∞

eλ,ξ;t(x) = lim
t→+∞

[(
1− 〈x, ξ〉

t

)t]−iλ
= ei〈x,λξ〉. (51)

Proposition 3.18. The function eλ,ξ;t is an eigenfunction of ∆z,t with eigenvalue

−λ2 − (n− 1− 2z)2

4t2
.

In the limit t → +∞ the eigenvalues of ∆z,t reduce to the eigenvalues of ∆ in
Rn. In the Euclidean case given two eigenfunctions ei〈x,λξ〉 and ei〈x,γω〉, λ, γ ∈ R,
ξ, ω ∈ Sn−1 of the Laplace operator with eigenvalues −λ2 and −γ2 respectively,
the product of the two eigenfunctions is again an eigenfunction of the Laplace
operator with eigenvalue −(λ2 + γ2 + 2λγ 〈ξ, ω〉). Indeed,

∆(ei〈x,λξ〉ei〈x,γω〉)=−‖λξ + γω‖2ei〈x,λξ+γω〉=−(λ2 + γ2 + 2λγ 〈ξ, ω〉)ei〈x,λξ+γω〉.
(52)

Unfortunately, in the hyperbolic case this is no longer true in general. The only
exception is the case n = 1 and z = 0 as the next proposition shows.

Proposition 3.19. For n ≥ 2 the product of two eigenfunctions of ∆z,t is not an
eigenfunction of ∆z,t and for n = 1 the product of two eigenfunctions of ∆z,t is
an eigenfunction of ∆z,t only in the case z = 0.
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In the case when n = 1 and z = 0 the hyperbolic plane waves (50) are independent
of ξ since they reduce to

eλ;t(x) =

(
1 + x

t

1− x
t

) iλt
2

and, therefore, the exponential law is valid, i.e., eλ;t(x)eγ;t(x) = eλ+γ;t(x). In the
Euclidean case the translation of the Euclidean plane waves ei〈x,λξ〉 decomposes
into the product of two plane waves one being a modulation. In the hyperbolic
case, the generalised translation of (50) factorises also in a modulation and the
hyperbolic plane wave but it appears an Einstein transformation acting on Sn−1
as the next proposition shows.

Proposition 3.20. The generalised translation of eλ,ξ;t(x) admits the factorisa-
tion

τaeλ,ξ;t(x) = ja(0) eλ,ξ;t(−a) eλ,a⊕ξ;t(x). (53)

Remark 2. The fractional linear mappings Ta(ξ) = a ⊕ ξ, a ∈ Bnt , ξ ∈ Sn−1 are
obtained from (2) making the formal substitutions x

t = ξ and Ta(x)
t = Ta(ξ) and

are given by

Ta(ξ) =
a
t + Pa(ξ) + µaQa(ξ)

1 + 〈ξ,a〉
t

.

They map Sn−1 onto itself for any t > 0 and a ∈ Bnt , and in the limit t → +∞
they reduce to the identity mapping on Sn−1. Therefore, formula (53) converges
in the limit to the well-known formula in the Euclidean case

ei〈−a+x,λξ〉 = ei〈−a,λξ〉ei〈x,λξ〉, a, x, λξ ∈ Rn.

Now we study the radial eigenfunctions of ∆z,t, the so called spherical functions.

Definition 3.21. For each λ ∈ C, we define the generalised spherical function
φλ;t by

φλ;t(x) =

∫
Sn−1

eλ,ξ;t(x) dσ(ξ), x ∈ Bnt . (54)

Using (A.2) in Appendix A and then (A.6) in Appendix A we can write this
function as

φλ;t(x) =

(
1− ‖x‖

2

t2

)−z+n−1
2

+iλt

2

2F1

(
n− 1 + 2iλt

4
,
n+ 1 + 2iλt

4
;
n

2
;
‖x‖2

t2

)
(55)

=

(
1− ‖x‖

2

t2

)−z+n−1
2

−iλt

2

2F1

(
n+ 1− 2iλt

4
,
n− 1− 2iλt

4
;
n

2
;
‖x‖2

t2

)
.

Therefore, φλ;t is a radial function that satisfies φλ;t = φ−λ;t i.e., φλ;t is an even
function of λ ∈ C. Putting ‖x‖ = t tanh s, with s ∈ R+, and using (A.7) in
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Appendix A we have the following relation between φλ;t and the Jacobi functions
ϕλt (see (B.2) in Appendix B):

φλ;t(t tanh s) = (cosh s)z 2F1

(
n− 1 + 2iλt

4
,
n− 1− 2iλt

4
;
n

2
;− sinh2(s)

)
= (cosh s)zϕ

(n2−1,−
1
2 )

λt (s). (56)

The following theorem characterises all generalised spherical functions.

Theorem 3.22. The function φλ;t is a generalised spherical function with eigen-
value
−λ2− (n−1−2z)2

4t2 . Moreover, if we normalize spherical functions such that φλ;t(0) =
1, then all generalised spherical functions are given by φλ;t.

Now we study the asymptotic behavior of φλ;t at infinity.

Lemma 3.23. For Im(λ) < 0 we have

lim
s→+∞

φλ;t(t tanh s)e(
n−1−2z

2 −iλt)s = c(λt)

where c(λt) is the Harish-Chandra c-function given by

c(λt) =
2
n−1−2z

2 −iλtΓ
(
n
2

)
Γ(iλt)

Γ
(
n−1+2iλt

4

)
Γ
(
n+1+2iλt

4

) . (57)

Remark 3. Using the relation Γ(z)Γ
(
z + 1

2

)
= 21−2z

√
π Γ(2z) we can write

Γ

(
n+ 1 + 2iλt

4

)
= Γ

(
n− 1 + 2iλt

4
+

1

2

)
=

21−
n−1+2iλt

2
√
π Γ
(
n−1+2iλt

2

)
Γ
(
n−1+2iλt

4

)
and, therefore, (57) simplifies to

c(λt) =
2n−2−z√

π

Γ
(
n
2

)
Γ (iλt)

Γ
(
n−1
2 + iλt

) (58)

Finally, we have the addition formula for the generalised spherical functions.

Proposition 3.24. For every λ ∈ C, t ∈ R+, and x, y ∈ Bnt

τaφλ;t(x) = ja(0)

∫
Sn−1

e−λ,ξ;t(a) eλ,ξ;t(x) dσ(ξ)

= ja(0)

∫
Sn−1

eλ,ξ;t(a) e−λ,ξ;t(x) dσ(ξ). (59)
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3.4 The Generalised Poisson Transform
Definition 3.25. Let f ∈ L2(Sn−1). Then the generalised Poisson transform is
defined by

Pλ,tf(x) =

∫
Sn−1

eλ,ξ;t(x) f(ξ) dσ(ξ), x ∈ Bnt . (60)

For a spherical harmonic Yk of degree k we have by (A.1)

(Pλ,tYk)(x) = Ck,ν

(
1− |x|

2

t2

)µ
2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
‖x‖2

t2

)
Yk
(x
t

)
(61)

with ν = n−1+2iλt
2 , µ = 1−σ+2iλt

4 , and Ck,ν = 2−k (ν)k
(n/2)k

. For f =
∑∞
k=0 akYk ∈

L2(Sn−1) then is given by

(Pλ,tf)(x) =

∞∑
k=0

akCk,ν

(
1− |x|

2

t2

)µ
2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
‖x‖2

t2

)
Yk
(x
t

)
.

(62)

Proposition 3.26. The Poisson transform Pλ,t is injective in L2(Sn−1) if and
only if λ 6= i

(
2k+n−1

2t

)
for all k ∈ Z+.

Corollary 3.27. Let λ 6= i
(
2k0+n−1

2t

)
, k0 ∈ Z+. Then the space of functions

f̂(λ, ξ) as f ranges over C∞0 (Bnt ) is dense in L2(Sn−1).

3.5 The Generalised Helgason Fourier Transform
Definition 3.28. For f ∈ C∞0 (Bnt ), λ ∈ C and ξ ∈ Sn−1 we define the generalised
Helgason Fourier transform of f as

f̂(λ, ξ; t) =

∫
Bnt
e−λ,ξ;t(x) f(x) dµz,t(x). (63)

Remark 4. If f is a radial function i.e., f(x) = f(‖x‖), then f̂(λ, ξ; t) is indepen-
dent of ξ and we obtain by (54) the generalised spherical transform of f defined
by

f̂(λ; t) =

∫
Bnt
φ−λ;t(x) f(x) dµz,t(x). (64)

Moreover, by (51) we recover in the Euclidean limit the usual Fourier transform
in Rn.
From Propositions 3.16 and 3.18 we obtain the following result.

Proposition 3.29. If f ∈ C∞0 (Bnt ) then

∆̂z,tf(λ, ξ; t) = −
(
λ2 +

(n− 1− 2z)2

4t2

)
f̂(λ, ξ; t). (65)
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Now we study the hyperbolic convolution theorem with respect to the generalised
Helgason Fourier transform. We begin with the following lemma.

Lemma 3.30. For a ∈ Bnt and f ∈ C∞0 (Bnt ) we have

τ̂af(λ, ξ; t) = ja(0) e−λ,ξ;t(a) f̂(λ, (−a)⊕ ξ; t). (66)

Theorem 3.31 (Generalised Hyperbolic convolution theorem). Let f, g ∈ C∞0 (Bnt ).
Then

f̂ ∗ g(λ, ξ) =

∫
Bnt
f(y) e−λ,ξ;t(y) ̂̃gy(λ, (−y)⊕ ξ; t) dµz,t(y) (67)

where g̃y(x) = g(gyr [y, x]x).

Since in the limit t→ +∞ gyrations reduce to the identity and (−y)⊕ ξ reduces
to ξ, formula (67) converges in the Euclidean limit to the well-know Convolution
Theorem: f̂ ∗ g = f̂ · ĝ. By Remark 4 if g is a radial function we obtain the
pointwise product of the generalised Helgason Fourier transform.

Corollary 3.32. Let f, g ∈ C∞0 (Bnt ) and g radial. Then

f̂ ∗ g(λ, ξ; t) = f̂(λ, ξ; t) ĝ(λ; t). (68)

3.6 Inversion of the Generalised Helgason Fourier Trans-
form and Plancherel’s Theorem

We obtain first an inversion formula for the radial case, that is, for the generalised
spherical transform.

Lemma 3.33. The generalised spherical transform H can be written as

H = Jn
2−1,−

1
2
◦Mz

where Jn
2−1,−

1
2
is the Jacobi transform (B.1) in Appendix B with parameters α =

n
2 − 1 and β = − 1

2 and

(Mzf)(s) := 21−nAn−1t
n(cosh s)−zf(t tanh s). (69)

The previous lemma allow us to obtain a Paley-Wiener Theorem for the gener-
alised Helgason Fourier transform by using the Paley-Wiener Theorem for the
Jacobi transform (Theorem B.1 in Appendix B). Let C∞0,R(Bnt ) denotes the space
of all radial C∞ functions on Bnt with compact support and E(C × Sn−1) the
space of functions g(λ, ξ) on C× Sn−1, even and holomorphic in λ and of uniform
exponential type, i.e., there is a positive constant Ag such that for all n ∈ N

sup
(λ,ξ)∈C×Sn−1

|g(λ, ξ)|(1 + |λ|)n eAg|Im(λ)| <∞

where Im(λ) denotes the imaginary part of λ.
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Corollary 3.34. (Paley-Wiener Theorem) The generalised Helgason Fourier trans-
form is bijective from C∞0,R(Bnt ) onto E(C × Sn−1).

In the sequel we denote Cn,t,z =
1

22z+2−ntn−1πAn−1
.

Theorem 3.35. For all f ∈ C∞0,R(Bnt ) we have for the radial case the inversion
formulas

f(x) = Cn,t,z

∫ +∞

0

f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ (70)

or
f(x) =

Cn,t,z
2

∫
R
f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ. (71)

Now that we have an inversion formula for the radial case we present our main
results, the inversion formula for the generalised Helgason Fourier transform and
the associated Plancherel’s Theorem.

Proposition 3.36. For f ∈ C∞0 (Bnt ) and λ ∈ C,

f ∗ φλ;t(x) =

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) dσ(ξ). (72)

Theorem 3.37. (Inversion formula) If f ∈ C∞0 (Bnt ) then we have the general
inversion formulas

f(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ (73)

or
f(x) =

Cn,t,z
2

∫
R

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ. (74)

Theorem 3.38. (Plancherel’s Theorem) The generalised Helgason Fourier trans-
form extends to an isometry from L2(Bnt ,dµz,t) onto L2(R+×Sn−1, Cn,t,z|c(λt)|−2
dλ dσ), i.e.,∫

Bnt
|f(x)|2 dµz,t(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ; t)|2 |c(λt)|−2 dσ(ξ) dλ. (75)

Having obtained the main results we now study the limit t→ +∞ of the previous
results. It is anticipated that in the Euclidean limit we recover the usual inversion
formula for the Fourier transform and Plancherel’s Theorem on Rn. To see that
this is indeed the case, we observe that from (58)

1

|c(λt)|2
=

(An−1)2

πn−122n−2−2z

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

, (76)
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with An−1 =
2π

n
2

Γ
(
n
2

) being the surface area of Sn−1. Finally, using (76) the gener-

alised Helgason inverse Fourier transform (73) simplifies to

f(x) =
An−1

(2π)ntn−1

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

dσ(ξ) dλ

=
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)
λn−1

N (n)(λt)
dξ dλ (77)

with

N (n)(λt) =

∣∣∣∣∣ Γ(iλt)

Γ
(
n−1
2 + iλt

) ∣∣∣∣∣
2

(λt)
n−1

. (78)

Some particular values are N (1)(λt) = 1, N (2)(λt) = coth (λt) , N (3) = 1, and
N (4)(λt) = (2λt)2 coth(πλt)

1+(2λt)2 . Since lim
t→+∞

N (n)(λt) = 1, for any n ∈ N and λ ∈ R+

(see [3]), we conclude that in the Euclidean limit the generalised Helgason inverse
Fourier transform (77) converges to the usual inverse Fourier transform in Rn
written in polar coordinates:

f(x) =
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λξ) ei〈x,λξ〉 λn−1 dξ dλ, x, λξ ∈ Rn.

Finally, Plancherel’s Theorem (75) can be written as∫
Bnt
|f(x)|2 dµz,t(x) =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ)|2 λn−1

N (n)(λt)
dξ dλ (79)

and, therefore, we have an isometry between the spaces L2(Bnt ,dµz,t)
and L2(R+ × Sn−1, λn−1

(2π)nN(n)(λt)
dλ dξ). Applying the limit t → +∞ to (79) we

recover Plancherel’s Theorem in Rn :∫
Rn
|f(x)|2 dx =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λξ)|2 λn−1 dξ dλ.

4. Gyroharmonic Analysis on the Möbius Gyrogroup
The Möbius gyrogroup appears in the study of the Poincaré ball model of hyper-
bolic geometry. Considering again the open ball Bnt = {x ∈ Rn : ‖x‖ < t} of Rn,
we now endow it with the Poincaré metric

ds2 =
dx21 + . . .+ dx2n(

1− ‖x‖
2

t2

)2 .
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The group of all conformal orientation preserving transformations of Bnt is given
by the mappings Kϕa, where K ∈ SO(n) and ϕa are Möbius transformations on
Bnt given by (see [1, 2, 8])

ϕa(x) =
(1 + 2

t2 〈a, x〉+ 1
t2 ‖x‖

2)a+ (1− 1
t2 ‖a‖

2)x

1 + 2
t2 〈a, x〉+ 1

t4 ‖a‖2‖x‖2
. (80)

Möbius addition ⊕M on the ball appears considering the identification

a⊕M x := ϕa(x), a, x ∈ Bnt . (81)

Möbius addition satisfies the “gamma identity”

γa⊕Mv = γaγb

√
1 +

2

c2
〈a, b〉+

1

t4
||a||2||b||2 (82)

for all a, b ∈ Bnt where γa is the Lorentz factor. The gyrogroup (Bnt ,⊕M ) is gy-
rocommutative. In [10] we developed harmonic analysis on the Möbius gyrogroup
depending on a real parameter σ. We provide here a generalization of these results
considering a complex parameter z under the identification 2z = n+ σ − 2. Most
of the proofs are analogous as in [10] and therefore will be omitted.

4.7 The Generalised Translation and Convolution
For the Möbius gyrogroup the generalised translation operator is defined by

τaf(x) = ja(x)f((−a)⊕M x) (83)

where a ∈ Bnt , f is a function defined on Bnt , and the automorphic factor ja(x) is
given by

ja(x) =

(
1− ‖a‖

2

t2

1− 2
t2 〈a, x〉+ ‖a‖2‖x‖2

t4

)z
(84)

with z ∈ C. For z = n the multiplicative factor ja(x) agrees with the Jacobian
of the transformation ϕ−a(x) = (−a) ⊕ x and for z = n the translation operator
reduces to τaf(x) = f((−a) ⊕ x). For any z ∈ C, we obtain in the limit t → +∞
the Euclidean translation operator τaf(x) = f(−a+ x) = f(x− a). The relations
in Lemma 3.3 are also true in this case. We define the complex weighted Hilbert
space L2(Bnt ,dµz,t), where

dµz,t(x) =

(
1− ‖x‖

2

t2

)2z−n

dx,

and dx stands for the Lebesgue measure in Rn. Proposition 3.4 and Corollary
3.5 remains the same in this case. For two measurable functions f and g the
generalised convolution is defined by

(f ∗ g)(x) =

∫
Bnt
f(y) τxg(−y) jx(x) dµz,t(y), x ∈ Bnt . (85)
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Proposition 4.1. Let Re(z) < n−1
2 and f, g ∈ L1(Bnt ,dµz,t). Then

||f ∗ g||1 ≤ Cz ||f ||1 ||g̃||1 (86)

where g̃(r) = ess sup
ξ∈Sn−1

y∈Bnt

g(gyr [y, rξ]rξ) for any r ∈ [0, t[ and

Cz =


1, if Re(z) ∈

]
2, n−22

[
Γ
(
n
2

)
(n− 2 Re(z)− 1)

Γ
(
n−2Re(z)

2

)
Γ (n− Re(z)− 1)

, if Re(z) ∈]−∞, 2] ∪ [n−22 , n−12 [
.

(87)

For the case of the Möbius gyrogroup Young’s inequality for the generalised con-
volution is given by the next theorem.

Theorem 4.2. Let Re(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , s = 1 − q

r ,

f ∈ Lp(Bnt ,dµz,t) and g ∈ Lq(Bnt ,dµz,t). Then

||f ∗ g||r ≤ 2−
Re(z)

2 ||g̃||1−sq ||g||sq ||f ||p (88)

where g̃(x) := ess sup
y∈Bnt

g(gyr [y, x]x), for any x ∈ Bnt .

The proof is analogous to the proof given in [9] and uses the following estimate:

|jx(y)jx(x)| ≤ 2−
Re(z)

2 , ∀x, y ∈ Bnt , ∀Re(z) ≤ 0. (89)

Corollary 4.3. Let Re(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , f ∈ L

p(Bnt ,dµz,t)
and g ∈ Lq(Bnt ,dµz,t) a radial function. Then,

||f ∗ g||r ≤ 2−
Re(z)

2 ||g||q ||f ||p. (90)

For z = 0 and taking the limit t → +∞ in (44) we recover Young’s inequality
for the Euclidean convolution in Rn since in the limit g̃ = g. The generalised
convolution (85) is gyro-translation invariant and gyroassociative in a similar way
as expressed in Theorems 3.11 and 3.12.

4.8 Laplace Beltrami Operator and Eigenfunctions
The gyroharmonic analysis on the Möbius gyrogroup is based on the Laplace
Beltrami operator ∆z,t defined by

∆z,t =

(
1− ‖x‖

2

t2

)((
1− ‖x‖

2

t2

)
∆− 2(2z + 2− n)

t2

n∑
i=1

xi
∂

∂xi
+

2z(2z − n+ 2)

t2

)
.

A simpler representation formula for ∆z,t can be obtained using the Euclidean
Laplace operator ∆ and the generalised translation operator τa.
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Proposition 4.4. For each f ∈ C2(Bnt ) and a ∈ Bnt

(∆z,tf)(a) = (ja(0))−1∆(τ−af)(0)− 2z(2z + 2− n)

t2
f(a) (91)

An important fact is that the generalised Laplace-Beltrami operator ∆z,t com-
mutes with generalised translations.

Proposition 4.5. The operator ∆z,t commutes with generalised translations, i.e.

∆z,t(τbf) = τb(∆z,tf) ∀ f ∈ C2(Bnt ), ∀ b ∈ Bnt .

The operator ∆z,t can be extended to a self adjoint operator in L2(Bnt ,dµz,t).

Proposition 4.6. The operator ∆z,t is essentially self-adjoint in L2(Bnt ,dµz,t).

Definition 4.7. For λ ∈ C, ξ ∈ Sn−1, and x ∈ Bnt we define the functions eλ,ξ;t
by

eλ,ξ;t(x) =

(
1− ‖x‖

2

t2

)−z+n−1
2 + iλt

2

(∥∥ξ − x
t

∥∥2)n−1
2 + iλt

2

. (92)

The hyperbolic plane waves eλ,ξ;t(x) converge in the limit t → +∞ to the Eu-
clidean plane waves ei〈x,λξ〉.

Proposition 4.8. The function eλ,ξ;t is an eigenfunction of ∆z,t with eigenvalue

−λ2 − (n− 1− 2z)2

t2
.

In the limit t→ +∞ the eigenvalues of ∆z,t reduce to the eigenvalues of ∆ in Rn.
Proposition 3.19 holds also in the Möbius case. In the case when n = 1 and z = 0
the hyperbolic plane waves (92) are independent of ξ since they reduce to

eλ;t(x) =

(
1 + x

t

1− x
t

) iλt
2

and, therefore, the exponential law is valid in this particular case, i.e.

eλ;t(x)eγ;t(x) = eλ+γ;t(x).

Proposition 4.9. The generalised translation of eλ,ξ;t(x) admits the factorisation

τaeλ,ξ;t(x) = ja(0) eλ,ξ;t(−a) eλ,a⊕Mξ;t(x). (93)
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Remark 5. The fractional linear mappings a⊕M ξ, a ∈ Bnt , ξ ∈ Sn−1 are obtained
from (80) making the formal substitutions x

t = ξ and ϕa(x)
t = ϕa(ξ) and are given

by

a⊕M ξ =
2
(
1 + 1

t 〈a, ξ〉
)
a
t +

(
1− ‖a‖

2

t2

)
ξ

1 + 2
t 〈a, ξ〉+ ‖a‖2

t2

.

They map Sn−1 onto itself for any t > 0 and a ∈ Bnt , and in the limit t → +∞
they reduce to the identity mapping on Sn−1. Therefore, formula (93) converges
in the limit to the well-known formula in the Euclidean case

ei〈−a+x,λξ〉 = ei〈−a,λξ〉ei〈x,λξ〉, a, x, λξ ∈ Rn.

The radial eigenfunctions of ∆z,t, the so called spherical functions, are defined
by

φλ;t(x) =

∫
Sn−1

eλ,ξ;t(x) dσ(ξ), x ∈ Bnt . (94)

Using (A.4) in Appendix A and then (A.6) in Appendix A we have

φλ;t(x) =

(
1− ‖x‖

2

t2

)−2z+n−1+iλt
2

2F1

(
n− 1 + iλt

2
,

1 + iλt

2
;
n

2
;
‖x‖2

t2

)
(95)

=

(
1− ‖x‖

2

t2

)−2z+n−1−iλt
2

2F1

(
n− 1− iλt

2
,

1− iλt

2
;
n

2
;
‖x‖2

t2

)
.

Therefore, φλ;t is a radial function that satisfies φλ;t = φ−λ;t i.e., φλ;t is an even
function of λ ∈ C. Putting ‖x‖ = t tanh s, with s ∈ R+, and using (A.7) in
Appendix A we have the following relation between φλ;t and the Jacobi functions
ϕλt (see (B.2) in Appendix B):

φλ;t(t tanh s) = (cosh s)2z 2F1

(
n− 1− iλt

2
,
n− 1 + iλt

2
;
n

2
;− sinh2(s)

)
= (cosh s)2zϕ

(n2−1,
n
2−1)

λt (s). (96)

Now we study the asymptotic behavior of φλ;t at infinity.

Lemma 4.10. For Im(λ) < 0 we have

lim
s→+∞

φλ;t(t tanh s)e(n−1−2z−iλt)s = c(λt)

where c(λt) is the Harish-Chandra c-function given by

c(λt) =
2n−1−2z−iλtΓ

(
n
2

)
Γ(iλt)

Γ
(
n−1+iλt

2

)
Γ
(
1+iλt

2

) . (97)
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The addition formula for the generalised spherical functions is given in the next
theorem.

Proposition 4.11. For every λ ∈ C, t ∈ R+, and x, y ∈ Bnt

τaφλ;t(x) = ja(0)

∫
Sn−1

e−λ,ξ;t(a) eλ,ξ;t(x) dσ(ξ)

= ja(0)

∫
Sn−1

eλ,ξ;t(a) e−λ,ξ;t(x) dσ(ξ). (98)

4.9 The Generalised Poisson Transform
Definition 4.12. Let f ∈ L2(Sn−1). Then the generalised Poisson transform is
defined by

Pλ,tf(x) =

∫
Sn−1

eλ,ξ;t(x) f(ξ) dσ(ξ), x ∈ Bnt . (99)

For f =
∑∞
k=0 akYk ∈ L2(Sn−1) we have by (A.3)

(Pλ,tf)(x) =

∞∑
k=0

akck,ν

(
1− |x|

2

t2

)µ
2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
‖x‖2

t2

)
Yk
(x
t

)
.

(100)
with ck,ν = (ν)k

(n/2)k
, ν = n−1+iλt

2 , and µ = −z + n−1
2 + iλt

2 .

Proposition 4.13. The Poisson transform Pλ,t is injective in L2(Sn−1) if and
only if
λ 6= i

(
2k+n−1

t

)
for all k ∈ Z+.

Corollary 4.14. Let λ 6= i
(
2k+n−1

t

)
, k ∈ Z+. Then the space of functions f̂(λ, ξ)

as f ranges over C∞0 (Bnt ) is dense in L2(Sn−1).

4.10 The Generalised Helgason Fourier Transform
Definition 4.15. For f ∈ C∞0 (Bnt ), λ ∈ C and ξ ∈ Sn−1 we define the generalised
Helgason Fourier transform of f as

f̂(λ, ξ; t) =

∫
Bnt
e−λ,ξ;t(x) f(x) dµz,t(x). (101)

Remark 6. If f is a radial function i.e., f(x) = f(‖x‖), then f̂(λ, ξ; t) is indepen-
dent of ξ and we obtain by (54) the generalised spherical transform of f defined
by

f̂(λ; t) =

∫
Bnt
φ−λ;t(x) f(x) dµz,t(x). (102)

Moreover, by (51) we recover in the Euclidean limit the usual Fourier transform
in Rn.
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From Propositions 4.6 and 4.8 we obtain the following result.

Proposition 4.16. If f ∈ C∞0 (Bnt ) then

∆̂z,tf(λ, ξ; t) = −
(
λ2 +

(n− 1− 2z)2

t2

)
f̂(λ, ξ; t). (103)

The hyperbolic convolution theorem remains the same in the Möbius case.

Lemma 4.17. For a ∈ Bnt and f ∈ C∞0 (Bnt )

τ̂af(λ, ξ; t) = ja(0) e−λ,ξ;t(a) f̂(λ, (−a)⊕ ξ; t). (104)

Theorem 4.18 (Generalised Hyperbolic convolution theorem). Let f, g ∈ C∞0 (Bnt ).
Then

f̂ ∗ g(λ, ξ) =

∫
Bnt
f(y) e−λ,ξ;t(y) ̂̃gy(λ, (−y)⊕ ξ; t) dµz,t(y) (105)

where g̃y(x) = g(gyr [y, x]x).

Since in the limit t→ +∞ gyrations reduce to the identity and (−y)⊕ ξ reduces
to ξ, formula (105) converges in the Euclidean limit to the well-know Convolution
Theorem: f̂ ∗ g = f̂ · ĝ. By Remark 6 if g is a radial function we obtain the
pointwise product of the generalised Helgason Fourier transform.

Corollary 4.19. Let f, g ∈ C∞0 (Bnt ) and g radial. Then

f̂ ∗ g(λ, ξ; t) = f̂(λ, ξ; t) ĝ(λ; t). (106)

4.11 Inversion of the Generalised Helgason Fourier Trans-
form and Plancherel’s Theorem

We obtain first an inversion formula for the radial case, that is, for the generalised
spherical transform.

Lemma 4.20. The generalised spherical transform H can be written as

H = Jn
2−1,

n
2−1 ◦Mz

where Jn
2−1,

n
2−1 is the Jacobi transform (B.1) in Appendix B with parameters

α = β = n
2 − 1 and

(Mzf)(s) := 22−2nAn−1t
n(cosh s)−2zf(t tanh s). (107)
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The previous lemma allow us to obtain a Paley-Wiener Theorem for the gener-
alised Helgason Fourier transform by using the Paley-Wiener Theorem for the
Jacobi transform (Theorem B.1 in Appendix B). Let C∞0,R(Bnt ) denotes the space
of all radial C∞ functions on Bnt with compact support and E(C × Sn−1) the
space of functions g(λ, ξ) on C× Sn−1, even and holomorphic in λ and of uniform
exponential type, i.e., there is a positive constant Ag such that for all n ∈ N

sup
(λ,ξ)∈C×Sn−1

|g(λ, ξ)|(1 + |λ|)n eAg|Im(λ)| <∞

where Im(λ) denotes the imaginary part of λ.

Corollary 4.21. (Paley-Wiener Theorem) The generalised Helgason Fourier trans-
form is bijective from C∞0,R(Bnt ) onto E(C × Sn−1).

In the sequel we denote Cn,t,z =
1

24z+3−2ntn−1πAn−1
.

Theorem 4.22. For all f ∈ C∞0,R(Bnt ) we have for the radial case the inversion
formulas

f(x) = Cn,t,z

∫ +∞

0

f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ (108)

or

f(x) =
Cn,t,z

2

∫
R
f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ. (109)

Now that we have an inversion formula for the radial case we present our main
results, the inversion formula for the generalised Helgason Fourier transform and
the associated Plancherel’s Theorem.

Proposition 4.23. For f ∈ C∞0 (Bnt ) and λ ∈ C,

f ∗ φλ;t(x) =

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) dσ(ξ). (110)

Theorem 4.24. (Inversion formula) If f ∈ C∞0 (Bnt ) then we have the general
inversion formulas

f(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ (111)

or

f(x) =
Cn,t,z

2

∫
R

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ. (112)
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Theorem 4.25. (Plancherel’s Theorem) The generalised Helgason Fourier trans-
form extends to an isometry from L2(Bnt ,dµz,t) onto L2(R+×Sn−1, Cn,t,z|c(λt)|−2
dλdσ), i.e.,∫

Bnt
|f(x)|2 dµz,t(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ; t)|2 |c(λt)|−2 dσ(ξ) dλ. (113)

By (76) the generalised Helgason inverse Fourier transform (111) simplifies to

f(x) =
An−1

(2π)ntn−1

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

dσ(ξ) dλ

=
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)
λn−1

N (n)(λt)
dξ dλ (114)

with N (n)(λt) defined by (78). As in the Einstein case, the generalised Helgason
inverse Fourier transform (114) converges, when t → +∞, to the usual inverse
Fourier transform in Rn written in polar coordinates:

f(x) =
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λξ) ei〈x,λξ〉 λn−1 dξ dλ, x, λξ ∈ Rn.

Finally, Plancherel’s Theorem (113) can be written as∫
Bnt
|f(x)|2 dµz,t(x) =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ)|2 λn−1

N (n)(λt)
dξ dλ (115)

and, therefore, we have an isometry between the spaces L2(Bnt ,dµz,t)
and L2(R+ × Sn−1, λn−1

(2π)nN(n)(λt)
dλ dξ). Applying the limit t → +∞ to (115)

we recover Plancherel’s Theorem in Rn :∫
Rn
|f(x)|2 dx =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λξ)|2 λn−1 dξ dλ.

5. Gyroharmonic Analysis on the Proper Velocity
Gyrogroup

In this section we present the main results about the gyroharmonic analysis on
the proper velocity gyrogroup. Proper velocities in special relativity theory are
velocities measured by proper time, that is, by traveler’s time rather than by
observer’s time [6]. The addition of proper velocities was defined by A.A. Ungar
in [6] giving rise to the proper velocity gyrogroup.
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Definition 5.1. Let (V,+, 〈 , 〉) be a real inner product space with addition +,
and inner product 〈 , 〉 . The PV (Proper Velocity) gyrogroup (V,⊕) is the real
inner product space V equipped with addition ⊕ given by

a⊕ x = x+

(
βa

1 + βa

〈a, x〉
t2

+
1

βx

)
a (116)

where t ∈ R+ and βa, called the relativistic beta factor, is given by the equation

βa =
1√

1 + ||a||2
t2

. (117)

PV addition is the relativistic addition of proper velocities rather than coordinate
velocities as in Einstein addition. PV addition satisfies the beta identity

βa⊕x =
βaβx

1 + βaβx
〈a,x〉
t2

(118)

or, equivalently,
βx
βa⊕x

=
1

βa
+ βx

〈a, x〉
t2

. (119)

It is known that (V,⊕) is a gyrocommutative gyrogroup (see [27]). In the limit
t → +∞, PV addition reduces to vector addition in (V,+) and, therefore, the
gyrogroup (V,⊕) reduces to the translation group (V,+). To see the connection
between proper velocity addition, proper Lorentz transformations, and real hyper-
bolic geometry let us consider the one sheeted hyperboloid Hn

t = {x ∈ Rn+1 :
x2n+1 − x21 − . . .− x2n = t2 ∧ xn+1 > 0} in Rn+1 where t ∈ R+ is the radius of the
hyperboloid. The n−dimensional real hyperbolic space is usually viewed as the
rank one symmetric space G/K of noncompact type, where G = SO0(n, 1) is the
identity connected component of the group of orientation preserving isometries of
Hn
t and K =SO(n) is the maximal compact subgroup of G which stabilizes the

base point O := (0, ..., 0, 1) in Rn+1. Thus, Hn
t
∼= SO0(n, 1)/SO(n) and it is one

model for real hyperbolic geometry with constant negative curvature. Restricting
the semi-Riemannian metric dx2n+1 − dx21 − . . . − dx2n on the ambient space we
obtain the Riemannian metric on Hn

t which is given by

ds2 =
(〈x, dx〉)2

t2 + ‖x‖2
− ‖dx‖2

with x = (x1, . . . , xn) ∈ Rn and dx = (dx1, . . . , dxn). This metric corresponds to
the metric tensor

gij(x) =
xixj

t2 + ‖x‖2
− δij , i, j ∈ {1, . . . , n}

whereas the inverse metric tensor is given by

gij(x) = −δij −
xixj
t2

, i, j ∈ {1, . . . , n}.
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The group of all orientation preserving isometries of Hn
t consists of elements of

the group SO(n) and proper Lorentz transformations acting on Hn
t . A simple

way of working in Hn
t is to consider its projection into Rn. Given an arbitray

point (x,
√
t2 + ||x||2) ∈ Hn

t we define the mapping Π : Hn
t → Rn, such that

Π(x,
√
t2 + ||x||2) = x.

A proper Lorentz boost in the direction ω ∈ Sn−1 and rapidity α acting in an
arbitrary point (x,

√
t2 + ||x||2) ∈ Hn

t yields a new point (x, xn+1)ω,α ∈ Hn
t given

by (see [7])

(x, xn+1)ω,α =
(
x+

(
(cosh(α)− 1) 〈ω, x〉 − sinh(α)

√
t2 + ||x||2

)
ω,

cosh(α)
√
t2 + ||x||2 − sinh(α) 〈ω, x〉

)
. (120)

Since√
t2 +

∥∥∥x+
(

(cosh(α)− 1) 〈ω, x〉 − sinh(α)
√
t2 + ||x||2

)
ω
∥∥∥2 = xn+1

the projection of (120) into Rn is given by

Π(x, xn+1)ω,α = x+
(

(cosh(α)− 1) 〈ω, x〉 − sinh(α)
√
t2 + ||x||2

)
ω. (121)

Rewriting the parameters of the Lorentz boost to depend on a point a ∈ Rn as

cosh(α) =

√
1 +
||a||2
t2

, sinh(α) = −||a||
t
, and ω =

a

||a||
. (122)

and replacing (122) in (121) we finally obtain the relativistic addition of proper
velocities in Rn :

a⊕ x = x+


√

1 + ||a||2
t2 − 1

||a||2
〈a, x〉+

√
1 +
||x||2
t2

 a

= x+

(
βa

1 + βa

〈a, x〉
t2

+
1

βx

)
a (123)

The results presented for the Proper Velocity gyrogroup were obtained in [11].
The proofs are omitted here.

5.12 The Generalised Translation and Convolution

For the proper velocity gyrogroup the generalised translation operator is defined
by

τaf(x) = ja(x)f((−a)⊕P x) (124)
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where a ∈ R, f is a complex function defined on Rn, and the automorphic factor
ja(x) is given by

ja(x) =

(
βa

1− βaβx 〈a,x〉t2

)z
(125)

with z ∈ C. For z = 1 the multiplicative factor ja(x) agrees with the Jacobian
of the transformation (−a) ⊕P x and for z = 0 the translation operator reduces
to τaf(x) = f((−a) ⊕ x). For any z ∈ C, we obtain in the limit t → +∞ the
Euclidean translation operator τaf(x) = f(−a + x) = f(x − a). The relations in
Lemma 3.3 are also true in this case. We define the complex weighted Hilbert
space L2(Rn,dµz,t), where

dµz,t(x) =

(
1 +
‖x‖2

t2

)− 2z+1
2

dx,

and dx stands for the Lebesgue measure in Rn. For the special case z = 0 we
recover the invariant measure associated to a ⊕ x. Proposition 3.4 and Corollary
3.5 remains the same in this case. For two measurable functions f and g the
generalised convolution is defined by

(f ∗ g)(x) =

∫
Rn
f(y) τxg(−y) jx(x) dµz,t(y), x ∈ Rn. (126)

Proposition 5.2. Let Re(z) < n−1
2 and f, g ∈ L1(Rn,dµz,t). Then

||f ∗ g||1 ≤ Cz ||f ||1 ||g̃||1 (127)

where g̃(r) = ess sup
ξ∈Sn−1

y∈Rn

g(gyr [y, rξ]rξ) for any r ∈ [0, t[ and

Cz =


1, if Re(z) ∈]− 1, 0[

Γ
(
n
2

)
Γ
(
n−2Re(z)−1

2

)
Γ
(
n−Re(z)

2

)
Γ
(
n−Re(z)−1

2

) , if Re(z) ∈]−∞,−1] ∪ [0, n−12 [
. (128)

For the case of the PV gyrogroup Young’s inequality for the generalised convolution
is given by the next theorem.

Theorem 5.3. [11] Let Re(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , s = 1 − q

r ,

f ∈ Lp(Rn,dµz,t) and g ∈ Lq(Rn,dµz,t). Then

||f ∗ g||r ≤ 2−Re(z)||g̃||1−sq ||g||sq ||f ||p (129)

where g̃(x) := ess sup
y∈Rn

g(gyr [y, x]x), for any x ∈ Rn.
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The proof is analogous to the proof given in [9] and uses the following estimate:

|jx(y)jx(x)| ≤ 2−Re(z), ∀x, y ∈ Rn, ∀Re(z) ≤ 0. (130)

Corollary 5.4. Let Re(z) ≤ 0, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , f ∈ L

p(Rn,dµz,t)
and g ∈ Lq(Rn,dµz,t) a radial function. Then,

||f ∗ g||r ≤ 2−Re(z)||g||q ||f ||p. (131)

For z = 0 and taking the limit t → +∞ in (44) we recover Young’s inequality
for the Euclidean convolution in Rn since in the limit g̃ = g. The generalised
convolution (126) is gyrotranslation invariant and gyroassociative in a similar way
as expressed in Theorems 3.11 and 3.12.

5.13 Laplace Beltrami Operator and Eigenfunctions

The gyroharmonic analysis on the proper velocity gyrogroup is based on the
Laplace Beltrami operator ∆z,t defined by

∆z,t = ∆ +

n∑
i,j=1

xixj
t2

∂2

∂xi∂xj
+ (n− 2z)

n∑
i=1

xi
t2

∂

∂xi
+
z(z + 1)

t2
(1− β2

x). (132)

A simpler representation formula for ∆z,t can be obtained using the Euclidean
Laplace operator ∆ and the generalised translation operator (124).

Proposition 5.5. For each f ∈ C2(Rn) and a ∈ Rn

∆z,tf(a) = (ja(0))−1∆(τ−af)(0). (133)

An important fact is that the generalised Laplace-Beltrami operator ∆z,t com-
mutes with generalised translations.

Proposition 5.6. The operator ∆z,t commutes with generalised translations, i.e.

∆z,t(τbf) = τb(∆z,tf) ∀ f ∈ C2(Rn), ∀ b ∈ Rn.

There is an important relation between the operator ∆z,t and the measure dµz,t.
Up to a constant the Laplace-Beltrami operator ∆z,t corresponds to a weighted
Laplace operator on Bnt for the weighted measure dµσ,t in the sense defined in [12],
Section 3.6. From Theorem 11.5 in [12] we know that the Laplace operator on a
weighted manifold is essentially self-adjoint if all geodesics balls are relatively com-
pact. Therefore, ∆z,t can be extended to a self adjoint operator in L2(Bnt ,dµz,t).

Proposition 5.7. The operator ∆z,t is essentially self-adjoint in L2(Rn,dµz,t).
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Definition 5.8. For λ ∈ C, ξ ∈ Sn−1, and x ∈ Rn we define the functions eλ,ξ;t
by

eλ,ξ;t(x) =
(βx)

−z+n−1
2 +iλt(

1− 〈βx x,ξ〉t

)n−1
2 +iλt

. (134)

The hyperbolic plane waves eλ,ξ;t(x) converge in the limit t → +∞ to the Eu-
clidean plane waves ei〈x,λξ〉.

Proposition 5.9. The function eλ,ξ;t is an eigenfunction of ∆z,t with eigenvalue

−λ2 − (n− 1)2

4t2
+
nz

t2
.

As we can see the parametrization of the eigenvalues of the Laplace-Beltrami
operator in the PV gyrogroup is different from the cases of Möbius and Einstein
gyrogroups. In the limit t→ +∞ the eigenvalues of ∆z,t reduce to the eigenvalues
of ∆ in Rn. Proposition 3.19 holds also in the PV case. In the case when n = 1
and z = 0 the hyperbolic plane waves (134) are independent of ξ since they reduce
to

eλ;t(x) =

(√
1 +

x2

t2
− x

t

)−iλt
and, therefore, the exponential law is valid in this particular case, i.e.

eλ;t(x)eγ;t(x) = eλ+γ;t(x).

Proposition 5.10. The generalised translation of eλ,ξ;t(x) admits the factorisa-
tion

τaeλ,ξ;t(x) = ja(0) eλ,ξ;t(−a) eλ,Ta(ξ);t(x). (135)

where

Ta(ξ) =
ξ + a

t + βa
1+βa

〈a,ξ〉a
t2

1
βa

+ 〈a,ξ〉
t

. (136)

Remark 7. The fractional linear mappings Ta(ξ), with a ∈ Rn, ξ ∈ Sn−1 defined in
(136) map the unit sphere Sn−1 onto itself for any t > 0 and a ∈ Rn. Moreover, in
the limit t → +∞ they reduce to the identity mapping on Sn−1. It is interesting
to observe that the fractional linear mappings obtained from PV addition (123)
making the formal substitutions x

t = ξ and a⊕x
t = a⊕ ξ given by

a⊕ ξ = ξ +

(
βa

1 + βa

〈a, ξ〉
t

+
√

2

)
a

t

do not map Sn−1 onto itself. This is different in comparison with the Möbius
and Einstein gyrogroups. It can be explained by the fact that the hyperboloid
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is tangent to the null cone and therefore, the extension of PV addition to the
the null cone is not possible by the formal substitutions above. Surprisingly, by
Proposition 5.10 we obtained the induced PV addition on the sphere which is given
by the fractional linear mappings Ta(ξ).

The radial eigenfunctions of ∆z,t, the so called spherical functions, are defined by

φλ;t(x) =

∫
Sn−1

eλ,ξ;t(x) dσ(ξ), x ∈ Rn. (137)

Using (A.4) in Appendix A and then (A.6) in Appendix A we have

φλ;t(x) =

(
1 +
‖x‖2

t2

)2z−n+1−2iλt
4

2F1

(
n− 1 + 2iλt

4
,
n+ 1 + 2iλt

4
;
n

2
; 1− β2

x

)
(138)

=

(
1 +
‖x‖2

t2

)2z−n+1+2iλt
4

2F1

(
n− 1− 2iλt

4
,
n+ 1− 2iλt

4
;
n

2
; 1− β2

x

)
.

Therefore, φλ;t is a radial function that satisfies φλ;t = φ−λ;t i.e., φλ;t is an even
function of λ ∈ C. Applying (A.7) in Appendix A we obtain that

φλ;t(x) =

(
1 +
‖x‖2

t2

) z
2

2F1

(
n− 1− 2iλt

4
,
n− 1 + 2iλt

4
;
n

2
;−‖x‖

2

t2

)
.

Finally, considering x = t sinh(s) ξ, with s ∈ R+ and ξ ∈ Sn−1 we have the
following relation between φλ;t and the Jacobi functions ϕλt (see (B.2) in Appendix
B):

φλ;t(t sinh(s) ξ) = (cosh s)z ϕ
(n2−1,−

1
2 )

λt (s). (139)

Now we study the asymptotic behavior of φλ;t at infinity.

Lemma 5.11. For Im(λ) < 0 we have

lim
s→+∞

φλ;t(t sinh s) e(
n−1
2 −z−iλt)s = c(λt)

where c(λt) is the Harish-Chandra c-function given by

c(λt) =
2n−2−z√

π

Γ
(
n
2

)
Γ (iλt)

Γ
(
n−1
2 + iλt

) . (140)

The addition formula for the generalised spherical functions is given in the next
theorem.

Proposition 5.12. For every λ ∈ C, t ∈ R+, and a, x ∈ Rn

τaφλ;t(x) = ja(0)

∫
Sn−1

e−λ,ξ;t(a) eλ,ξ;t(x) dσ(ξ)

= ja(0)

∫
Sn−1

eλ,ξ;t(a) e−λ,ξ;t(x) dσ(ξ). (141)
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5.14 The Generalised Poisson Transform

Definition 5.13. Let f ∈ L2(Sn−1). Then the generalised Poisson transform is
defined by

Pλ,tf(x) =

∫
Sn−1

eλ,ξ;t(x) f(ξ) dσ(ξ), x ∈ Rn. (142)

For f =
∑∞
k=0 akYk ∈ L2(Sn−1) we have by (A.3)

Pλ,tf(x) =

∞∑
k=0

akck,ν(βx)
−z+n−1

2
+iλt

2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
; 1− β2

x

)
Yk
(
βx
x

t

)
.

(143)
with ck,ν = 2−k (ν)k

(n/2)k
and ν = n−1

2 + iλt.

Proposition 5.14. The Poisson transform Pλ,t is injective in L2(Sn−1) if and
only if
λ 6= i

(
2k+n−1

2t

)
for all k ∈ Z+.

Corollary 5.15. Let λ 6= i
(
2k+n−1

2t

)
, k ∈ Z+. Then for f in C∞0 (Rn) the space

of functions f̂(λ, ξ) is dense in L2(Sn−1).

5.15 The Generalised Helgason Fourier Transform

Definition 5.16. For f ∈ C∞0 (Rn), λ ∈ C and ξ ∈ Sn−1 we define the generalised
Helgason Fourier transform of f as

f̂(λ, ξ; t) =

∫
Rn
e−λ,ξ;t(x) f(x) dµz,t(x). (144)

Remark 8. If f is a radial function i.e., f(x) = f(‖x‖), then f̂(λ, ξ; t) is indepen-
dent of ξ and we obtain by (54) the generalised spherical transform of f defined
by

f̂(λ; t) =

∫
Rn
φ−λ;t(x) f(x) dµz,t(x). (145)

Moreover, by (51) we recover in the Euclidean limit the usual Fourier transform
in Rn.
From Propositions 5.7 and 5.9 we obtain the following result.

Proposition 5.17. If f ∈ C∞0 (Rn) then

∆̂z,tf(λ, ξ; t) = −
(
λ2 +

(n− 1)2

4t2
− nz

t2

)
f̂(λ, ξ; t). (146)

Now we study the hyperbolic convolution theorem with respect to the generalised
Helgason Fourier transform. We begin with the following lemma.
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Lemma 5.18. For a ∈ Rn and f ∈ C∞0 (Rn)

τ̂af(λ, ξ; t) = ja(0) e−λ,ξ;t(a) f̂(λ, (−a)⊕ ξ; t). (147)

Theorem 5.19 (Generalised Hyperbolic convolution theorem). Let f, g ∈ C∞0 (Rn).
Then

f̂ ∗ g(λ, ξ) =

∫
Rn
f(y) e−λ,ξ;t(y) ̂̃gy(λ, T−y(ξ); t) dµz,t(y) (148)

where g̃y(x) = g(gyr [y, x]x).

Since in the limit t → +∞ gyrations reduce to the identity and T−y(ξ) reduces
to ξ, formula (148) converges in the Euclidean limit to the well-know Convolution
Theorem: f̂ ∗ g = f̂ · ĝ. By Remark 8 if g is a radial function we obtain the
pointwise product of the generalised Helgason Fourier transform.

Corollary 5.20. Let f, g ∈ C∞0 (Rn) and g radial. Then

f̂ ∗ g(λ, ξ; t) = f̂(λ, ξ; t) ĝ(λ; t). (149)

5.16 Inversion of the Generalised Helgason Fourier Trans-
form and Plancherel’s Theorem

We obtain first an inversion formula for the radial case, that is, for the generalised
spherical transform.

Lemma 5.21. The generalised spherical transform denoted by H can be written
as

H = Jn
2−1,−

1
2
◦Mz

where Jn
2−1,−

1
2
is the Jacobi transform (see (B.1) in Appendix B) with parameters

α = n
2 − 1 and β = − 1

2 and

(Mz,tf)(s) := 21−nAn−1t
n(cosh s)−zf(t sinh s). (150)

The previous lemma allow us to obtain a Paley-Wiener Theorem for the gener-
alised Helgason Fourier transform by using the Paley-Wiener Theorem for the
Jacobi transform (Theorem B.1 in Appendix B). Let C∞0,R(Rn) denotes the space
of all radial C∞ functions on Rn with compact support and E(C × Sn−1) the
space of functions g(λ, ξ) on C× Sn−1, even and holomorphic in λ and of uniform
exponential type, i.e., there is a positive constant Ag such that for all n ∈ N

sup
(λ,ξ)∈C×Sn−1

|g(λ, ξ)|(1 + |λ|)n eAg|Im(λ)| <∞

where Im(λ) denotes the imaginary part of λ.
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Corollary 5.22. (Paley-Wiener Theorem) The generalised Helgason Fourier trans-
form is bijective from C∞0,R(Rn) onto E(C × Sn−1).

In the sequel we denote Cn,t,z =
1

22z−n+2tn−1πAn−1
.

Theorem 5.23. For all f ∈ C∞0,R(Rn) we have for the radial case the inversion
formulas

f(x) = Cn,t,z

∫ +∞

0

f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ (151)

or
f(x) =

Cn,t,z
2

∫
R
f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ. (152)

Now that we have an inversion formula for the radial case we present our main
results, the inversion formula for the generalised Helgason Fourier transform and
the associated Plancherel’s Theorem.

Proposition 5.24. For f ∈ C∞0 (Rn) and λ ∈ C,

f ∗ φλ;t(x) =

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) dσ(ξ). (153)

Theorem 5.25. (Inversion formula) If f ∈ C∞0 (Rn) then we have the general
inversion formulas

f(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ (154)

or
f(x) =

Cn,t,z
2

∫
R

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ. (155)

Theorem 5.26. (Plancherel’s Theorem) The generalised Helgason Fourier trans-
form extends to an isometry from L2(Rn,dµz,t) onto L2(R+×Sn−1, Cn,t,z|c(λt)|−2
dλ dσ), i.e.,∫

Rn
|f(x)|2 dµz,t(x) = Cn,t,z

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ; t)|2 |c(λt)|−2 dσ(ξ) dλ. (156)

By (76) the generalised Helgason inverse Fourier transform (154) simplifies to

f(x) =
An−1

(2π)ntn−1

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

dσ(ξ) dλ

=
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)
λn−1

N (n)(λt)
dξ dλ (157)
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with N (n)(λt) defined by (78). As in the Einstein case, the generalised Helgason
inverse Fourier transform (157) converges, when t → +∞, to the usual inverse
Fourier transform in Rn written in polar coordinates:

f(x) =
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λξ) ei〈x,λξ〉 λn−1 dξ dλ, x, λξ ∈ Rn.

Finally, Plancherel’s Theorem (156) can be written as∫
Rn
|f(x)|2 dµz,t(x) =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ)|2 λn−1

N (n)(λt)
dξ dλ (158)

and, therefore, we have an isometry between the spaces L2(Rn,dµz,t)
and L2(R+ × Sn−1, λn−1

(2π)nN(n)(λt)
dλ dξ). Applying the limit t → +∞ to (158)

we recover Plancherel’s Theorem in the Euclidean setting:∫
Rn
|f(x)|2 dx =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λξ)|2 λn−1 dξ dλ.

6. Appendices

A Spherical Harmonics
A spherical harmonic of degree k ≥ 0 denoted by Yk is the restriction to Sn−1 of
a homogeneous harmonic polynomial in Rn. The set of all spherical harmonics of
degree k is denoted by Hk(Sn−1). This space is a finite dimensional subspace of
L2(Sn−1) and we have the direct sum decomposition

L2(Sn−1) =

∞⊕
k=0

Hk(Sn−1).

The following integrals are obtained from the generalisation of Proposition 5.2
in [34].

Lemma A.1. Let ν ∈ C, k ∈ N0, t ∈ R+, and Yk ∈ Hk(Sn−1). Then∫
Sn−1

Yk(ξ)(
1− 〈x,ξ〉

t

)ν dσ(ξ) = 2−k
(ν)k

(n/2)k
2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
‖x‖2

t2

)
Yk
(x
t

)
(A.1)

where x ∈ Bnt , (ν)k, denotes the Pochhammer symbol, and dσ is the normalised
surface measure on Sn−1. In particular, when k = 0, we have∫

Sn−1

1(
1− 〈x,ξ〉t

)ν dσ(ξ) = 2F1

(
ν

2
,
ν + 1

2
;
n

2
;
‖x‖2

t2

)
. (A.2)
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For the Möbius case we need a generalization of Lemma 2.4 in [19].

Lemma A.2. Let ν ∈ C, k ∈ N0, t ∈ R+, and Yk ∈ Hk(Sn−1). Then∫
Sn−1

Yk(ξ)∥∥x
t
− ξ
∥∥2ν dσ(ξ) =

(ν)k
(n/2)k

2F1

(
ν + k, ν − n

2
+ 1; k +

n

2
;
‖x‖2

t2

)
Yk
(x
t

)
(A.3)

where x ∈ Bnt , In particular, when k = 0, we have∫
Sn−1

1∥∥x
t − ξ

∥∥2ν dσ(ξ) = 2F1

(
ν, ν − n

2
+ 1;

n

2
;
‖x‖2

t2

)
. (A.4)

The Gauss Hypergeometric function 2F1 is an analytic function for |z| < 1 defined
by

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!

with c /∈ −N0. If Re(c − a − b) > 0 and c /∈ −N0 then exists the limit
lim
t→1−

2F1(a, b; c; t) and equals

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (A.5)

Some useful properties of this function are

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z) (A.6)

2F1(a, b; c; z) = (1− z)−b 2F1

(
c− a, b; c; z

z − 1

)
(A.7)

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z). (A.8)

B Jacobi Functions
The classical theory of Jacobi functions involves the parameters α, β, λ ∈ C (see
[17, 18]). Here we introduce the additional parameter t ∈ R+ since we develop
our hyperbolic harmonic analysis on a ball of arbitrary radius t and a hyperboloid
of radius t. For α, β, λ ∈ C, t ∈ R+, and α 6= −1,−2, . . . , we define the Jacobi
transform as

Jα,βg(λt) =

∫ +∞

0

g(r) ϕ
(α,β)
λt (r) ωα,β(r) dr (B.1)

for all functions g defined on R+ for which the integral (B.1) is well defined. The
weight function ωα,β is given by

ωα,β(r) = (2 sinh(r))2α+1(2 cosh(r))2β+1
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and the function ϕ(α,β)
λt (r) denotes the Jacobi function which is defined as the even

C∞ function on R that equals 1 at 0 and satisfies the Jacobi differential equation(
d2

dr2
+ ((2α+ 1) coth(r) + (2β + 1) tanh(r))

d

dr
+ (λt)2 + (α+ β + 1)2

)
ϕ

(α,β)
λt (r) = 0.

The function ϕ(α,β)
λt (r) can be expressed as an hypergeometric function

ϕ
(α,β)
λt (r) = 2F1

(
α+ β + 1 + iλt

2
,
α+ β + 1− iλt

2
;α+ 1;− sinh2(r)

)
. (B.2)

Since ϕ(α,β)
λt are even functions of λt ∈ C then Jα,βg(λt) is an even function of

λt. Inversion formulas for the Jacobi transform and a Paley-Wiener Theorem are
found in [18]. We denote by C∞0,R(R) the space of even C∞-functions with compact
support on R and E the space of even and entire functions g for which there are
positive constants Ag and Cg,n, n = 0, 1, 2, . . . , such that for all λ ∈ C and all
n = 0, 1, 2, . . .

|g(λ)| ≤ Cg,n(1 + |λ|)−n eAg|Im(λ)|

where Im(λ) denotes the imaginary part of λ.

Theorem B.1. ( [18],p.8) (Paley-Wiener Theorem) For all α, β ∈ C with α 6=
−1,−2, . . . the Jacobi transform is bijective from C∞0,R(R) onto E .

The Jacobi transform can be inverted under some conditions [18]. Here we only
refer to the case which is used in this paper.

Theorem B.2. ( [18],p.9) Let α, β ∈ R such that α > −1, α ± β + 1 ≥ 0. Then
for every g ∈ C∞0,R(R) we have

g(r) =
1

2π

∫ +∞

0

(Jα,βg)(λt) ϕ
(α,β)
λt (r) |cα,β(λt)|−2 t dλ, (B.3)

where cα,β(λt) is the Harish-Chandra c-function associated to Jα,β(λt) given by

cα,β(λt) =
2α+β+1−iλtΓ(α+ 1)Γ(iλt)

Γ
(
α+β+1+iλt

2

)
Γ
(
α−β+1+iλt

2

) . (B.4)

This theorem provides a generalisation of Theorem 2.3 in [18] for arbitrary t ∈
R+. From [18] and considering t ∈ R+ arbitrary we have the following asymptotic
behavior of φα,βλt for Im(λ) < 0 :

lim
r→+∞

ϕ
(α,β)
λt (r)e(−iλt+α+β+1)r = cα,β(λt). (B.5)
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