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Abstract

In this paper, we consider a generalization of the real normed spaces and
give some examples.
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1. Introduction

A magma (S, ◦) is a set S with a binary operation ◦ : S×S → S, (a, b) 7→ a ◦ b for
any a, b ∈ S. An automorphism φ of a magma (S, ◦) is a bijection φ : S → S which
preserves the magma operation, that is φ(a ◦ b) = φ(a) ◦ φ(b) for any a, b ∈ S.
The set of all automorphisms of (S, ◦) is denoted by Aut(S, ◦). If there exists an
element e ∈ (S, ◦) such that e ◦ a = a ◦ e = a for any a ∈ S, then e is called the
identity of (S, ◦). For a ∈ (S, ◦), if there exists an element a′ ∈ (S, ◦) such that
a ◦ a′ = a′ ◦ a = e, then a′ is called the inverse of a.

A magma (G,⊕) is called a gyrogroup if it satisfies the following (G1) to (G5).

(G1) (G,⊕) has the identity e.

(G2) For any a ∈ (G,⊕), a has the inverse 	a.

(G3) For any a, b, c ∈ G, there exists a unique element gyr[a, b]c such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.
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(G4) For any a, b ∈ G, the map gyr[a, b] : G→ G defined by c 7→ gyr[a, b]c for any
c is an automorphism of the magma (G,⊕), that is gyr[a, b] ∈ Aut(G,⊕).
The map gyr[a, b] is called a gyroautomorphism of (G,⊕) generated by a and
b.

(G5) For any a, b ∈ G, gyr[a⊕ b, b] = gyr[a, b].

A gyrogroup (G,⊕) is gyrocommutative if the following (G6) is satisfied.

(G6) For any a, b ∈ G, a⊕ b = gyr[a, b](b⊕ a).

A concrete example of a gyrocommutative gyrogroup is provided by the ad-
dition of relativistically admissible velocities in Einstein’s special relativity, and
another concrete example is provided by the Poincaré disk model of hyperbolic ge-
ometry. Certain gyrocommutative gyrogroups admit scalar multiplication, giving
rise to gyrovector spaces. The gyrovector spaces are a generalization of the real
inner product spaces, where addition is not necessarily a commutative group but
a gyrocommutative gyrogroup. Ungar studied gyrogroups and gyrovector spaces
in several books [4, 5, 6, 7, 8, 9, 10]).

The author and O. Hatori define in [1] the generalized gyrovector spaces and
give a Mazur-Ulam type theorem for generalized gyrovector spaces. The general-
ized gyrovector spaces is a common generalization of the gyrovector spaces and of
the real normed spaces. A typical example of a generalized gyrovector space is the
positive cone of a unital C∗-algebra. The definition of the generalized gyrovector
spaces is as follows.

Definition 1.1. [1] Let (G,⊕) be a gyrocommutative gyrogroup with the map
⊗ : R×G→ G. Let φ be an injection from G into a real normed space (V, ‖ · ‖).
We say that (G,⊕,⊗, φ) (or (G,⊕,⊗) just for a simple notation) is a generalized
gyrovector space or a GGV in short if the following conditions (GGV0) to (GGV8)
are fulfilled:

(GGV0) ‖φ(gyr[u,v]a)‖ = ‖φ(a)‖ for any u,v,a ∈ G;

(GGV1) 1⊗ a = a for every a ∈ G;

(GGV2) (r1 + r2)⊗ a = (r1 ⊗ a)⊕ (r2 ⊗ a) for any a ∈ G, r1, r2 ∈ R;

(GGV3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a) for any a ∈ G, r1, r2 ∈ R;

(GGV4) (φ(|r| ⊗ a))/‖φ(r ⊗ a)‖ = φ(a)/‖φ(a)‖ for any a ∈ G \ {e}, r ∈ R \ {0},
where e denotes the identity element of the gyrogroup (G,⊕);

(GGV5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a for any u,v,a ∈ G, r ∈ R;

(GGV6) gyr[r1 ⊗ v, r2 ⊗ v] = idG for any v ∈ G, r1, r2 ∈ R;

(GGVV) ‖φ(G)‖ = {±‖φ(a)‖ ∈ R : a ∈ G} is a real one-dimensional vector
space with vector addition ⊕′ and scalar multiplication ⊗′;
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(GGV7) ‖φ(r ⊗ a)‖ = |r| ⊗′ ‖φ(a)‖ for any a ∈ G, r ∈ R;

(GGV8) ‖φ(a⊕ b)‖ ≤ ‖φ(a)‖ ⊕′ ‖φ(b)‖ for any a, b ∈ G.

One may feel that this definition is complicated. In this paper, we give a
definition of a generalization of the real normed spaces, which is simpler and more
general than the generalized gyrovector spaces. Also, we give some examples of
such a space.

2. Definitions and Examples

In the following definition 2.1 we extract the algebraic structures from a gyrovec-
tor space (or a generalized gyrovector space). For consistency, we use the term
"gyrolinear space" in this paper.

Definition 2.1. Let (X,⊕) be a gyrocommutative gyrogroup. Let ⊗ be a map
⊗ : R×X, (r,x) 7→ r⊗x. We say that (X,⊕,⊗) is a gyrolinear space if it satisfies
the following conditions:

(GL1) 1⊗ x = x ;

(GL2) (r1 + r2)⊗ x = (r1 ⊗ x)⊕ (r2 ⊗ x);

(GL3) (r1r2)⊗ x = r1 ⊗ (r2 ⊗ x);

(GL4) gyr[u,v](r ⊗ x) = r ⊗ gyr[u,v]x ;

(GL5) gyr[r1 ⊗ v, r2 ⊗ v] = idX ;

for any r, r1, r2 ∈ R and x,u,v ∈ X.

We consider a generalization of normed spaces in Definition 2.2. For conve-
nience, we use the term "normed gyrolinear space" in this paper.

Definition 2.2. Let (X,⊕,⊗) be a gyrolinear space. Let ‖·‖ be a map ‖·‖ : X →
R≥0, x 7→ ‖x‖. Let f be a strictly monotone increasing bijection f : ‖X‖ → R≥0,
where ‖X‖ = {‖x‖ ∈ R≥0;x ∈ X}. We say that (X,⊕,⊗, ‖ · ‖, f) is a normed
gyrolinear space if it satisfies the following conditions:

(NG1) ‖x‖ = 0 ⇐⇒ x = e;

(NG2) f(‖x⊕ y‖) ≤ f(‖x‖) + f(‖y‖);

(NG3) f(‖r ⊗ x‖) = |r|f(‖x‖);

(NG4) ‖ gyr[u,v](x)‖ = ‖x‖;

for any r ∈ R and x,y,u,v ∈ X.
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Lemma 2.3. Let (X,⊕,⊗) be a gyrolinear space. Let ‖·‖ be a map ‖·‖ : X → R≥0,
x 7→ ‖x‖. Put ‖X‖ = {‖x‖ ∈ R≥0;x ∈ X} and ±‖X‖ = {±‖x‖ ∈ R;x ∈ X}.
Then the following three properties are equivalent.

(a1) There is a strictly monotone increasing bijection f : ‖X‖ → R≥0 which
satisfies the conditions (NG1) to (NG4) for any r ∈ R and x,y,u,v ∈ X.

(a2) There is a strictly monotone increasing bijection f̃ : ±‖X‖ → R with f(0) =
0, which satisfies the conditions (NG1) to (NG4) for any r ∈ R and x,y,u,v
∈ X.

(a3) There is a one dimensional real linear space (±‖X‖,⊕′,⊗′) with addition ⊕′
and scalar multiplication ⊗′, which satisfies the following conditions:

(R1) ‖x‖ = 0 ⇐⇒ x = e;

(R2) ‖x⊕ y‖ ≤ ‖x‖ ⊕′ ‖y‖;
(R3) ‖r ⊗ x‖ = |r| ⊗′ ‖x‖ ;
(R4) ‖ gyr[u,v](x)‖ = ‖x‖;

for any r ∈ R and x,y,u,v ∈ X.

Proof. (a1)⇒ (a2) : Let f be a strictly monotone increasing bijection f : ‖X‖ →
R≥0 which satisfies the conditions (NG1) to (NG4) for any r ∈ R and x,y,u,v ∈
X. Note that f(0) = 0. Define the map f̃ : ±‖X‖ → R by

f̃(a) =

{
f(a) (a ∈ ‖X‖)
−f(−a) (−a ∈ ‖X‖)

then f̃ is a strictly monotone increasing bijection f̃ : ±‖X‖ → R with f̃(0) = 0.
It is trivial that f̃ satisfies the conditions (NG1) to (NG4) for any r ∈ R and
x,y,u,v ∈ X.

(a2)⇒ (a3) : Let f̃ be a strictly monotone increasing bijection f̃ : ±‖X‖ → R
with f̃(0) = 0, which satisfies the conditions (NG1) to (NG4) for any r ∈ R and
x,y,u,v ∈ X. Define the two operations ⊕′f : ±‖X‖ × ±‖X‖ → ±‖X‖ and
⊗′f : R×±‖X‖ → ±‖X‖ by

a⊕′f b = f−1(f(a) + f(b)),

r ⊗′f a = f−1(rf(a))

for any a, b ∈ ±‖X‖ and r ∈ R. Then (±‖X‖,⊕′,⊗′) is a one dimensional real
linear space. It is easy to check (±‖X‖,⊕′,⊗′) satisfies the conditions (R1) to
(R4).

(a3)⇒ (a1) : Let (±‖X‖,⊕′,⊗′) be a one dimensional real linear space which
satisfies the conditions (R1) to (R4). Note that 0 is the origin of the linear space
±‖X‖, since 0⊗′ ‖x‖ = ‖0⊗x‖ = ‖e‖ = 0. Since (±‖X‖,⊕′,⊗′) is isomorphic to
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R, usual real line, there is an isomorphism g : ±‖X‖ → R. Since 0 is the origin of
±‖X‖, we have g(0) = 0. Note that −g is also an isomorphism from ±‖X‖ to R.
Let x0 ∈ X \ {e}. We can assume that a0 = g(‖x0‖) > 0.

First, we prove that g(‖y‖) > 0 for any y ∈ X \ {e}. Assume that there is
y ∈ X such that g(‖y‖) < 0. Put A = {‖r⊗x0‖; r ∈ R} and B = {‖r⊗y‖; r ∈ R}.
Clearly, A ∪ B ⊂ ‖X‖. Since g(‖r ⊗ x0‖) = g(|r| ⊗′ ‖x0‖) = |r|g(‖x0‖), we have
g(A) = R≥0. Similarly, since g(‖r ⊗ y‖) = g(|r| ⊗′ ‖y‖) = |r|g(‖y‖), we have
g(B) = R≤0. Thus we have g(‖X‖) ⊃ g(A ∪ B) = R. However, g is a bijection
from ±‖X‖ to R, and ‖X‖ is a proper subset of ±‖X‖. It is a contradiction. So,
we have g(‖y‖) > 0 for any y ∈ X \ {e}.

Since g is a bijecton, g({‖r ⊗ x0‖; r ∈ R}) = R≥0 and g(y) ∈ R≥0 for any
y ∈ X, we have ‖X‖ = {‖r ⊗ x0‖; r ∈ R}. Put f = g|‖X‖ then f is a bijection
from ‖X‖ to R≥0.

Next, we prove that f is a strictly monotone increasing function. For x ∈ X
and 0 ≤ α ≤ β, we have

α⊗ ‖x‖ = ‖α⊗ x‖

=

∥∥∥∥(β + α

2
− β − α

2

)
⊗ x

∥∥∥∥
=

∥∥∥∥(β + α

2

)
⊗ x⊕

(
−β − α

2

)
⊗ x

∥∥∥∥
≤

(
β + α

2

)
⊗′ ‖x‖ ⊕′

(
β − α

2

)
⊗′ ‖x‖

=

(
β + α

2
+
β − α

2

)
⊗′ ‖x‖

= β ⊗′ ‖x‖.

Therefore, we have

0 < α < β ⇐⇒ 0 < α⊗′ ‖x‖ < β ⊗′ ‖x‖ (1)

for any x ∈ X \ {e}. Let a, b ∈ ‖X‖ and let α = f(a)/f(‖x0‖), β = f(b)/f(‖x0‖).
Then we have

α⊗′ ‖x0‖ = f−1(αf(‖x0‖)) = a.

Similarly, we have β ⊗′ ‖x0‖ = b. Clearly, α, β ≥ 0 and hence

0 < α < β ⇐⇒ 0 < a < b

as (1). By the definition of α and β, it is trivial that 0 < f(a) < f(b) ⇐⇒ 0 <
α < β. Thus we have,

0 < a < b ⇐⇒ 0 < f(a) < f(b),

f is a strictly monotone increasing function.
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Recall that
f(‖x‖ ⊕′ ‖y‖) = f(‖x‖) + f(‖y‖)

and
f(r ⊗′ ‖x‖) = rf(‖x‖)

for any x,y ∈ X and r ∈ R as f is a restriction of g. Since f is a strictly monotone
increasing function, (±‖X‖,⊕′,⊗′) satisfies the conditions (R1) to (R4), it is clear
that f satisfies the conditions (NG1) to (NG4).

In the sequel, for a normed gyrolinear space (X,⊕,⊗, ‖ · ‖, f), f̃ denotes the
function f̃ : ±‖X‖ → R which is defined by

f̃(a) =

{
f(a) (a ∈ ‖X‖)
−f(−a) (−a ∈ ‖X‖)

.

Moreover, (±‖X‖,⊕′f ,⊗′f ) denotes the one dimensional real vector space which is
defined by

a⊕′f b = f̃−1(f̃(a) + f̃(b)),

r ⊗′f a = f̃−1(rf̃(a))

for any a, b ∈ ±‖X‖ and r ∈ R. The following proposition 2.4 is an immediate
consequence of Lemma 2.3. The proposition is followed by examples 2.5, 2.6, 2.7
and 2.8.

Proposition 2.4. Let (G,⊕,⊗, φ) be a GGV with φ : G→ (V, ‖ · ‖). Then there
is a bijection f : ‖φ(G)‖ → R which satisfies ⊕′f = ⊕′ and ⊗′f = ⊗′ as Proposition
2.3. We have (G,⊕,⊗, ‖ · ‖′, f) is a normed gyrolinear space, where ‖ · ‖′ = ‖φ(·)‖.
Note that, if (G,⊕,⊗) is a gyrovector space, then G is a subset of V and φ is the
identity map. Hence ‖ · ‖′ = ‖ · ‖.

Example 2.5. A normed vector space (V, ‖ · ‖) is a normed gyrolinear space
(V,+,×, ‖·‖, id), where + is the vector addition of V, × is the scalar multiplication
of V and id is the identity map id : R≥0 → R≥0.

The admissible velocities in special relativity is a gyrovector space (cf. [6]).
Following Proposition 2.4, it is an example of a normed gyrolinear space.

Example 2.6. The Einstein gyrovector space is a normed gyrolinear space (R3
c ,⊕E ,

⊗E , ‖ ·‖, tanh−1 ·c ). Note that c is a speed of light in vacuum, ‖ ·‖ is the Euclidean
norm of R3 and R3

c = {u ∈ R3; ‖u‖ < c}. The Einstein gyrogroup addition ⊕E is
given by

u⊕Ev =
1

1 + 〈u,v〉
c2

{
u +

1

γu
v +

1

c2
γu

1 + γu
〈u,v〉u

}
, ∀u,v∈R3

c ,
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where 〈·, ·, 〉 is the Euclidean inner product of R3 and γu is a Lorenz factor of u,

γu = (1− ‖u‖2/c2)−
1
2 .

The Einstein scalar multiplication ⊗E is given by

r ⊗E u =

{
c tanh(r tanh−1 ‖u‖c ) u

‖u‖ (u ∈ R3
c \ {0})

0 (u = 0)

for any r ∈ R.

The Poincaré disk model is an example of a gyrovector space, and it is called
the Möbius gyrovector space (cf. [6]). Following Proposition 2.4, it is an example
of a normed gyrolinear space.

Example 2.7. The Möbius gyrovector space is a normed gyrolinear space (D,⊕M ,
⊗M , |·|, tanh−1). Note that D is the open unit disc of complex plane C. The Möbius
gyrogroup addition is given by

a⊕Mb =
a+ b

1 + āb
, ∀a, b∈ D.

The Möbius scalar multiplication ⊗M is given by

r ⊗E u =

{
tanh(r tanh−1 |a|) a

|a| (a ∈ D \ {0})
0 (a = 0)

for any r ∈ R.

The positive cone of a unital C∗-algebra is a exapmle of a generalized gyrovector
space (cf [1]). As Proposition 2.4, it is an example of a normed gyrolinear space.

Example 2.8. Let A be a unital C∗-algebra with the norm ‖ · ‖ and A −1+ be the
positive cone of A . Define the binary operation ⊕A on A −1+ by

a⊕A b = a
1
2 ba

1
2 , a, b ∈ A −1+ .

Define the scalar multiplication ⊗A : R×A −1+ → A −1+ by

r ⊗A a = ar, r ∈ R, a ∈ A −1+

and the norm ‖ ·‖′ = ‖ log ·‖. Then (A −1+ ,⊕A,⊗A, ‖ ·‖′, id) is a normed gyrolinear
space, where id is the identity map id : R≥0 → R≥0.

The density matrices is an example of a gyrolinear space.
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Example 2.9. A qubit density matrix is a 2× 2 positive semidefinite Hermitian
matrix with trace 1. Let D be the set of all invertible qubit density matrices.
Define a binary operation on D by

A⊕B =
A

1
2BA

1
2

Tr(A
1
2BA

1
2 )
,

then (D,⊕) is a gyrocommutative gyrogroup ([2]). The identity of (D,⊕) is
1

2
E, where E is the identity matrix. The inverse of A ∈ D is 	A =

A−1

TrA−1
. The

gyroautomorphism gyr[A,B] is given by gyr[A,B]C =
XCX∗

Tr(XCX∗)
for any C ∈D,

where X = X(A,B) is a unitary matrix given by X = (A
1
2BA

1
2 )−

1
2A

1
2B

1
2 . Define

the map ⊗R×D →D by

r ⊗A =
Ar

TrAr

then (D,⊕,⊗) is a gyrolinear space. Actually, (D,⊕,⊗) satisfies the conditions
(GL1) to (GL5) as follows.

(GL1): 1⊗A = A1

TrA1 = A, since TrA = 1.
(GL2): We have

(r ⊗A)⊕ (s⊗A) =
( Ar

TrAr )
1
2 ( As

TrAs )( Ar

TrAr )
1
2

Tr(( Ar

TrAr )
1
2 ( As

TrAs )( Ar

TrAr )
1
2 )

=
Ar+s

TrAr+s
= (r + s)⊗A.

(GL3): We have

r ⊗ (s⊗A) =
( As

TrAs )r

Tr( As

TrAs )r
=

Ars

TrArs
= (rs)⊗A.

(GL4): Put X = (A
1
2BA

1
2 )−

1
2A

1
2B

1
2 , then

gyr[A,B](r ⊗ C) =
X Cr

TrCrX
∗

Tr(X Cr

TrCrX∗)

=
XCrX∗

TrXCrX∗

Since X is unitary, we have XCrX∗ = (XCX∗)r and hence

gyr[A,B](r ⊗ C) =
XCrX∗

TrXCrX∗
=

(XCX∗)r

Tr(XCX∗)r
= r ⊗ gyr[A,B]C.

(GL5): Put X = ((r ⊗A)
1
2 (s⊗A)(r ⊗A)

1
2 )−

1
2 (r ⊗A)

1
2 (s⊗A)

1
2 . Then

X =

{(
Ar

TrAr

) 1
2
(

As

TrAs

)(
Ar

TrAr

) 1
2

}− 1
2 (

Ar

TrAr

) 1
2
(

As

TrAs

) 1
2

= E
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and hence gyr[A,B]C =
ECE∗

Tr(ECE∗)
= C for any C ∈D.

3. Constructing Normed Gyrolinear Spaces
In this section we construct new normed gyrolinear spaces from given normed
gyrolinear spaces.

Proofs of the following Lemma 3.1 and 3.2 are elementary, easy and omitted.

Lemma 3.1. Let (G1,⊕1) and (G2,⊕2) be (gyrocommutative) gyrogroups. Define
the binary operation ⊕ on G = G1 ×G2 by

(x1, x2)⊕ (y1, y2) = (x1 ⊕1 y1, x2 ⊕2 y2)

for any (x1, x2), (y1, y2) ∈ G1×G2. Then (G,⊕) is a (gyrocommutative) gyrogroup.
The identity of (G,⊕) is (e1, e2), where ei is the identity of (Gi,⊕i) (i = 1, 2).
The inverse of x = (x1, x2) ∈ G is 	x = (	1x1,	2x2). The gyroautomorphisms
are

gyr[(x1, x2), (y1, y2)](a1, a2) = (gyr[x1, y1]a1, gyr[x2, y2]a2)

for any (x1, x2), (y1, y2), (a1, a2) ∈ G.

Lemma 3.2. Let (X1,⊕1,⊗1) and (X2,⊕2,⊗2) be gyrolinear spaces. Define the
binary operation ⊕ on X = X1 ×X2 by

(x1, x2)⊕ (y1, y2) = (x1 ⊕1 y1, x2 ⊕2 y2)

for any (x1, x2), (y1, y2) ∈ G. Define the scalar multiplication ⊗ on G by

r ⊗ (x1, x2) = (r ⊗1 x1, r ⊗2 x2)

for any r ∈ R and (x1, x2), (y1, y2) ∈ G. Then (G,⊕,⊗) is a gyrolinear space.

Proposition 3.3. Let (X1,⊕1,⊗1, ‖ · ‖1, f) and (X2,⊕2,⊗2, ‖ · ‖2, f) be normed
gyrolinear spaces. Then X = X1 × X2 is a gyrolinear space with ⊕ and ⊗ as in
Lemma 3.2. Put

‖(x1, x2)‖ = f−1(f(‖x1‖1) + f(‖x2‖2))

for any (x1, x2) ∈ X. Then (X,⊕,⊗, ‖ · ‖, f) is a normed gyrolinear space.

Proof. Since (X1,⊕1,⊗1, ‖ · ‖1, f) is a normed gyrolinear space, f is a bijection
from ‖X1‖1 to R. Similarly, f is also a bijection from ‖X2‖2 to R. It means that
‖X1‖1 = ‖X2‖2. Since

f−1(f(a) + f(b)) ∈ ‖X1‖1 = ‖X2‖2

for any a, b ∈ ‖X1‖1 = ‖X2‖2, we have ‖X‖ = ‖X1‖1 = ‖X2‖2. Thus f is a
monotone increasing bijection from ‖X‖ to R≥0.



152 T. Abe

(NG1): Let ei be the identity of Xi for i = 1, 2, then e = (e1, e2) is the identity
of G. Since f(0) = 0,

‖(x1, x2)‖ = 0 ⇐⇒ f−1(f(‖x1‖1) + f(‖x2‖2))

⇐⇒ f(‖x1‖1) + f(‖x2‖2)

⇐⇒ f(‖x1‖1) = 0 and f(‖x2‖2) = 0

⇐⇒ ‖x1‖1 = 0 and ‖x2‖2 = 0

⇐⇒ x1 = e1, x2 = e2.

It follows that ‖x‖ = 0 ⇐⇒ x = e.
(NG2): Let x = (x1, x2),y = (y1, y2) ∈ X. We have

f(‖x⊕ y‖) = f(‖(x1 ⊕1 y1, x2 ⊕2 y2)‖)
= f(‖x1 ⊕1 y1‖1) + f(‖x2 ⊕2 y2‖2)

≤ f(‖x1‖1) + f(‖y1‖1) + f(‖x2‖2) + f(‖y2‖2)

= f(‖(x1, x2)‖) + f(‖(y1, y2)‖)
= f(‖x‖) + f(‖y‖).

(NG3): We have

f(‖α⊗ (x1, x2)‖) = f(‖(α⊗1 x1, α⊗2 x2)‖)
= f(‖α⊗1 x1‖) + f(‖α⊗2 x2‖)
= |α|f(‖x1‖1) + |α|f(‖x2‖2)

= |α|(f(‖x1‖1) + f(‖x2‖2))

= |α|f(‖(x1, x2)‖)

for any (x1, x2) ∈ X.
(NG4): Let x = (x1, x2),u = (u1, u2),v = (v1, v2) ∈ X. We have

f(‖ gyr[u,v](x)‖) = f(‖(gyr[u1, v1](x1), gyr[u2, v2](x2))‖)
= f(‖(gyr[u1, v1](x1)‖1) + f(‖ gyr[u2, v2](x2))‖2)

= f(‖x1‖1) + f(‖x2‖2)

= f(‖x‖).

Thus ‖ gyr[u,v](x)‖ = ‖x‖.

Proposition 3.4. Let (X,⊕,⊗, ‖ · ‖, f) be a normed gyrolinear space. Let h be a
strictly monotone increasing injection (not necessarily bijection) h : ‖G‖ → R≥0
with h(0) = 0. Put ‖ · ‖′ = h(‖ · ‖). Then (X,⊕,⊗, ‖ · ‖′, fh−1) is a normed
gyrolinear space.
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Proof. Note that h is a bijection from ‖X‖ to h(‖X‖) = ‖X‖′. Since f is a bijection
from ‖X‖ to R≥0, we have fh−1 is a bijection from ‖X‖′ to R≥0. Moreover, fh−1
is also a strictly monotone increasing function as f and h are strictly monotone
increasing.

(NG1): ‖x‖′ = 0 ⇐⇒ h(‖x‖) = 0 ⇐⇒ ‖x‖ = 0 ⇐⇒ x = e.
(NG2): For any x, y ∈ X, we have

fh−1(‖x⊕ y‖′) = f(‖x⊕ y‖)
≤ f(‖x‖) + f(‖y‖) = fh−1(‖x‖′) + fh−1(‖y‖′).

(NG3): fh−1(‖α⊗ x‖′) = f(‖α⊗ x‖) = |α|f(‖x‖) = |α|fh−1(‖x‖).
(NG4): ‖ gyr[u, v]x‖′ = h(‖ gyr[u, v]x‖) = h(‖x‖) = ‖x‖′.

Example 3.5. The Einstein gyrovector space (R3
c ,⊕E ,⊗E , ‖ · ‖, tanh−1

·
c
) is a

normed gyrolinear space. Put ‖ · ‖′ = tanh−1
‖ · ‖
c

, then (R3
c ,⊕E ,⊗E , ‖ · ‖′, id) is

also a normed gyrolinear space as Proposition 3.4.

Example 3.6. The Möbius gyrovector space (D,⊕M ,⊗M , |·|, tanh−1) is a normed
gyrolinear space. Put ‖·‖ = tanh−1 |·|, then (D,⊕M ,⊗M , ‖·‖′, id) is also a normed
gyrolinear space as Proposition 3.4.

Example 3.7. Let 1 ≤ p ≤ ∞ and Lp(X) be the Lp space on a measure space X
with a measure µ. The Lp-norm ‖ · ‖p is given by

‖f‖p =

(∫
X

|f |pdµ
) 1

p

.

Since (Lp, ‖ · ‖p) is a normed space, (Lp,+,×, ‖ · ‖p, id) is a normed gyrolinear
space. By Proposition 3.4, (Lp,+,×, ‖ · ‖pp, k) is also a normed gyrolinear space,
where k(x) = x

1
p .

Proposition 3.8. Let (X1,⊕1,⊗1, ‖ · ‖1, f) and (X2,⊕2,⊗2, ‖ · ‖2, g) be normed
gyrolinear spaces. Then X = X1 × X2 is a gyrolinear space with ⊕ and ⊗ as in
Lemma 3.2. Let k be a strictly monotone increasing injection k : R≥0 → R≥0 with
k(0) = 0. Put

‖(a, b)‖k = k(f(‖a‖1) + g(‖b‖2))

for any (a, b) ∈ X. Then (X,⊕,⊗, ‖ · ‖k, k−1) is a normed gyrolinear space. In
particular, if k = id, then

‖(a, b)‖ = f(‖a‖1) + g(‖b‖2).

Proof. Put ‖ · ‖′1 = f(‖ · ‖1) then (X1,⊕1,⊗1, ‖ · ‖′1, id) is a gyrolinear space as
Proposition 3.4. Similarly, put ‖ · ‖′2 = g(‖ · ‖2) then (X2,⊕2,⊗2, ‖ · ‖′2, id) is
also a gyrolinear space. Put ‖(a, b)‖ = ‖a‖′1 + ‖b‖′2 for any (a, b) ∈ X. Then
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(X,⊕,⊗, ‖ · ‖, id) is a gyrolinear space as Proposition 3.3. Note that ‖X‖ = R≥0.
Let k be a strictly monotone increasing injection k : R≥0 → R≥0 with k(0) = 0.
Since ‖X‖ = R≥0, k is a strictly monotone increasing bijection from ‖X‖ to
k(‖X‖). Put ‖ · ‖k = k(‖ · ‖) then (X,⊕,⊗, ‖ · ‖k, k−1) is a gyrolinear space as
Proposition 3.4. Note that

‖(a, b)‖ = f(‖a‖1) + g(‖b‖2)

and
‖(a, b)‖k = k(f(‖a‖1) + g(‖b‖2))

for any (a, b) ∈ X.

The following Lemma 3.9 is trivial.

Lemma 3.9. Let (X,⊕,⊗) be a gyrolinear space. Let Y be a set and φ be a
injection φ : X → Y . Define the binary operation ⊕φ on φ(X) by

φ(a)⊕φ φ(b) = φ(a⊕ b)

and the map ⊗φ : R× φ(X)→ φ(X) by

r ⊗φ φ(a) = φ(r ⊗ a)

for any r ∈ R and a, b ∈ X. Then (φ(X),⊕φ,⊗φ) is a gyrolinear space. Moreover,
if (X,⊕,⊗, ‖ · ‖, f) is a normed gyrolinear space, then (φ(X),⊕φ,⊗φ, ‖ · ‖′, f) is a
normed gyrolinear space, where

‖φ(a)‖′ = ‖a‖

for any a ∈ X. Note that the identity of (φ(X),⊕φ) is φ(e), where e is the identity
of (X,⊕)

Proposition 3.10. Let (X,⊕,⊗, ‖ · ‖, f) be a normed gyrolinear space. Let α be
a nonzero real number. Define the binary operation ⊕α on G by

a⊕α b =
1

α
⊗ (α⊗ a⊕ α⊗ b)

for any a, b ∈ G. Then (X,⊕α,⊗, ‖ · ‖′, f) is a normed gyrolinear space, where
‖ · ‖′ = |α| ⊗′f ‖ · ‖.

Proof. Let (X,⊕,⊗, ‖·‖, f) be a normed gyrolinear space. Let α be a nonzero real

number and φ be a map φ : X → X which is defined by φ(x) =
1

α
⊗x for any x ∈ X.

Note that φ is a bijection. Actually, φ−1(x) = α ⊗ x as α ⊗ (
1

α
⊗ x) = 1⊗ x = x
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since the conditions (GL3) and (GL1). By Lemma 3.9, (X,⊕α,⊗α, ‖ · ‖′, f) is a
normed gyrolinear space, where

(
1

α
⊗ x)⊕α (

1

α
⊗ y) =

1

α
⊗ (x⊕ y), (2)

r ⊗α (
1

α
⊗ x) =

1

α
⊗ (r ⊗ x) (3)

‖ 1

α
⊗ x‖′ = ‖x‖ (4)

for any x, y ∈ X and r ∈ R. Put a =
1

α
⊗ x and b =

1

α
⊗ y then x = α ⊗ a and

y = α⊗ b. Hence we have

a⊕α b =
1

α
⊗ (α⊗ a⊕ α⊗ b)

for any a, b ∈ X as (2). Note that
1

α
⊗ (r ⊗ x) = r ⊗ (

1

α
⊗ x) for any r ∈ R

and x ∈ X as the condition (GL3). It follows that r ⊗α a = r ⊗α (
1

α
⊗ x) =

r⊗ (
1

α
⊗ x) = r⊗ a since (3). So, we have ⊕α = ⊕. The equation (4) follows that

‖a‖′ = ‖α⊗ a‖ = |α| ⊗′f ‖a‖.

Proposition 3.11. Let (X,⊕,⊗, ‖ · ‖, f) be a normed gyrolinear space. Let α be
a nonzero real number. Define the binary operation ⊕α on G by

a⊕α b =
1

α
⊗ (α⊗ a⊕ α⊗ b)

for any a, b ∈ G. Then (X,⊕α,⊗, ‖ · ‖, f) is a normed gyrolinear space.

Proof. By Proposition 3.10, (X,⊕α,⊗, ‖·‖′, f) is a normed gyrolinear space, where

‖ · ‖′ = |α| ⊗′f ‖ · ‖. Note that f(‖ · ‖) = f(
1

α
⊗′f ‖ · ‖′) = | 1

α
|f(‖ · ‖′). Put

h(a) = f−1(| 1
α
|f(a)), then h is a strictly monotone increasing bijection from ‖X‖

to ‖X‖. Since ‖ · ‖ = h(‖ · ‖′), (X,⊕α,⊗, ‖ · ‖, f) is a normed gyrolinear space as
Proposition 3.4.

4. Structures on a Normed Gyrolinear Space and a Mazur-Ulam Theorem

Definition 4.1. Let (X,⊕,⊗, ‖ · ‖, f) be a normed gyrolinear space. The gyro-
metric % on X is defined by

%(a, b) = ‖a	 b‖

for any a, b ∈ X.
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Note that the gyrometric % on (X,⊕,⊗, ‖ · ‖, f) is not necessarily a metric on
X, but d = f% is a metric on X.

Definition 4.2. Let (X,⊕,⊗, ‖ · ‖, f) be a gyrolinear space. Put

L[a, b](s) = a⊕ s⊗ (	a⊕ b)

for any a, b ∈ X and s ∈ R. We call L[a, b](R) the unique gyroline that passes
through a and b. We call L[a, b]([0, 1]) the gyrosegment ab. We call p(a, b) =

L[a, b](
1

2
) the gyromidpoint of a and b.

The gyromidpoint p(a, b) can be rewritten by 1
2⊗(a�b), where� is a coaddition

of (X,⊕).

Example 4.3. Let (V,+,×, ‖·‖, id) be a normed space. The gyrometric %(a, b) =
‖a − b‖ is the usual metric induced by its norm. L[a, b](s) = a + s(−a + b) and
hence the gyroline is the line, the gyrosegment is the segment, the gyromidpoint

is the arithmetic mean
a+ b

2
.

Example 4.4. Let (A −1+ ,⊕A,⊗a, ‖ · ‖′, id) be a normed gyrolinear space of the
positive cone. The gyrometric

%(a, b) = ‖a	 b‖′ = ‖ log a
1
2 b−1a

1
2 ‖

is the Thompson metric.

L[a, b](s) = a
1
2 (a

1
2 b−1a

1
2 )−sa

1
2

and hence the gyrosegment is the geodesic. The gyromidpoint

p(a, b) = a
1
2 (a

1
2 b−1a

1
2 )−

1
2 a

1
2

is the geometric mean.

The celebrated Mazur-Ulam theorem asserts that surjective isometry between
two normed vector spaces is a real linear isomorphism followed by a translation.
In [1], author and Hatori give a generalization of the Mazur-Ulam theorem for
generalized gyrovector spaces. This theorem holds for normed gyrolinear space as
the following Theorem 4.5 and Corollary 4.6. There are no gaps between proofs
for normed gyrolinear spaces and for generalized gyrovector spaces in [1]. Refer to
[1] for the proofs.

Theorem 4.5. Let (Xi,⊕i,⊗i, ‖ · ‖i, fi) be a normed gyrolinear space and %i be
the gyrometric for i = 1, 2. Let T : X1 → X2 be a surjection. If T preserves the
gyrometric,

%2(Ta, Tb) = %1(a, b)
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for any a, b ∈ X1, then T preserves the gyromidpoint,

Tp(a, b) = p(Ta, Tb)

for any a, b ∈ X1.

Corollary 4.6. Let (Xi,⊕i,⊗i, ‖ · ‖i, fi) be a normed gyrolinear space and %i be
the gyrometric for i = 1, 2. Let T : X1 → X2 be a surjection. Suppose that T
preserves the gyrometric,

%2(Ta, Tb) = %1(a, b)

for any a, b ∈ X1. Then T is of the form T (·) = T (e1) ⊕ T (·), where e1 is the
identity of X1 and T0 is an isometrical isomorphism in the sense that the equalities

T0(a⊕1 b) = T0(a)⊕2 T0(b); (5)
T0(α⊗1 a) = α⊗2 T0(a); (6)
%2(T0a, T0b) = %1(a, b). (7)

for every a, b ∈ G1 and α ∈ R hold.

5. A Normed Gyrolinear Space Induced by a Metric Space

5.1 A Gyrocommutative Gyrogroup Induced by a Metric
Space

A dyadic symset is a magma (X, ◦) satisfying for all a, b, c ∈ X the following
axioms (d1) to (d4):

(d1) a ◦ a = a;

(d2) a ◦ (a ◦ b) = b;

(d3) a ◦ (b ◦ c) = (a ◦ b) ◦ (a ◦ c);

(d4) the equation x ◦ a = b has a unique solution x ∈ X, called the midpoint of
a and b, and denoted a]b.

In the paper [3], Lawson and Lim show a strong equivalence between pointed
dyadic symsets and uniquely 2-divisible gyrocommutative gyrogroups in the fol-
lowing sense.

Let (X, ◦) be a dyadic symset and e ∈ X. Define a new binary operation ⊕ on
X by x⊕ y = (e]x) ◦ (e ◦ y) then (X,⊕) is a uniquely 2-divisible gyrocommutative
gyrogroup with the identity e. Conversely, let (X,⊕) be a uniquely 2-divisible
gyrocommutative gyrogroup. Define a new binary operation ◦ on X by x ◦ y =
2⊗ x	 y, then (X, ◦) is a dyadic symset.

As the consequence of the fact, we have a uniquely 2-divisible gyrocommutative
gyrogroup which is induced by a metric space as following Lemma 5.3.
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Definition 5.1. Let (X, d) be a metric space. We say that (X, d) satisfies the
condition K if the following conditions (K1) to (K3) are hold.

(K1) For any pair x, y ∈ X, there exists a unique element c ∈ X such that

d(x, c) = d(c, y) =
1

2
d(x, y).

We call c the metric midpoint of x and y and write

c = mid(x, y).

(K2) For any elements x, y ∈ X, there exists a unique element z ∈ X such that
x = mid(y, z). We write

z = ϕx(y)

and we call the map ϕx : X → X the metric reflection in the point x.

(K3) The metric reflection ϕx : X → X is an isometry for any x ∈ X.

Note that mid(x, y) = mid(y, x). Moreover, z = ϕx(y) ⇐⇒ z = mid(y, z) ⇐⇒
y = ϕx(z) and hence ϕ−1x = ϕx.

Definition 5.2. Let (X, d) be a metric space that satisfies the condition K. For
fixed e ∈ X, we define the binary operation ⊕e on X by

x⊕e y = ϕx̃ϕe(y),

where x̃ = mid(e, x) for any x, y ∈ X. We call ⊕e the binary operation induced
by the metric d on X at e ∈ X.

Theorem 5.3. Let (X, d) be a metric space that satisfies the condition K and let
e ∈ X. Let ⊕e is the binary operation on X induced by the metric d at e. Then
(X,⊕e) is a uniquely 2-divisible gyrocommutative gyrogroup.

Proof. Let (X, d) be a metric space that satisfies the condition K and let e ∈ X.
Define a binary operation ◦ by x ◦ y = ϕx(y).

First, we prove that (X, ◦) is a dyadic symset.
(d1): a ◦ a = ϕa(a) = a.
(d2): a ◦ (a ◦ b) = ϕaϕa(b) = b.
(d3): Since ϕa is an isometry,

d(x, b) = d(b, y) =
1

2
d(x, y)

implies

d(ϕa(x), ϕa(y)) = d(ϕa(b), ϕa(y)) =
1

2
d((ϕa(x), ϕa(y))).
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Therefore, b = mid(x, y) implies that ϕa(b) = mid(ϕa(x), ϕa(y)). It follows that
ϕϕa(b)(ϕa(x)) = ϕa(y). Since y = ϕb(x), we have

(a ◦ b) ◦ (a ◦ x) = ϕϕa(b)(ϕa(x)) = ϕa(ϕb(x)) = a ◦ (b ◦ x).

(d4): x ◦ a = b ⇐⇒ ϕx(a) = b ⇐⇒ x = mid(a, b). The midpoint of a and b
is a]b = mid(a, b).

Since (X, ◦) is a dyadic symset, we have (X,⊕) is a uniquely 2-divisible gy-
rocommutative gyrogroup, where the binary operation ⊕ is defined by x ⊕ y =
(e]x) ◦ (e ◦ y). Note that x⊕ y = (e]x) ◦ (e ◦ y) = ϕϕe(x)(ϕe(y)).

Let (X,⊕) be a gyrogroup. For a ∈ X, the left translation λa : X → X is
defined by λa(x) = a⊕ x for any x ∈ X. It is well known that

gyr[a, b] = λ	(a⊕b)λaλb (8)

for any a, b ∈ X.

Proposition 5.4. Let (X, d) be a metric space which satisfies the condition K
and let e ∈ X. Let ⊕e is the binary operation on X induced by the metric d at e.
Then

d(a⊕e x, a⊕e y) = d(x, y) (9)

and
d(gyr[a, b]x, gyr[a, b]y) = d(x, y) (10)

for any a, b, x, y ∈ X.

Proof. Let a ∈ X and put ã = mid(e, a). Since the condition (K3), we have ϕã
and ϕe are isometries. Hence

d(a⊕e x, a⊕e y) = d(ϕãϕex, ϕãϕey) = d(x, y)

for x, y ∈ X. It follows that

d(gyr[a, b]x, gyr[a, b]y) = d(λ	(a⊕b)λaλb(x), λ	(a⊕b)λaλb(y)) = d(x, y)

for any a, b, x, y ∈ X.

5.2 Preparations

Let (X, d) be a metric space. A geodesic path joining x ∈ X and y ∈ X is a map
δ from [0, l] to X such that δ(0) = x, δ(l) = y and d(δ(t1), δ(t2)) = |t1− t2| for all
t1, t2 ∈ [0, l]. In particular, l = d(x, y). (X, d) is called a uniquely geodesic space
if any pairs x, y ∈ X has exactly one geodesic path joining x and y.
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In this subsection, (X, d) is a uniquely geodesic space with condition K and
γx,y is a map from [0, 1] to X defined by

γx,y(t) = δx,y(td(x, y))

for any t ∈ [0, 1], where δx,y denotes the geodesic path joining x and y. It is easy
to show that γx,y(0) = x, γx,y(1) = y and

d(γx,y(t1), γx,y(t2)) = |t1 − t2|d(x, y)

for any t1, t2 ∈ [0, 1].
Note that γx,y(s) is a unique point c in X which satisfies d(x, c) = sd(x, y) and

d(c, y) = (1− s)d(x, y) for any 0 ≤ s ≤ 1.
For x ∈ X, define the map φx on X by the equation

φx(y) = ϕy(x)

for any y ∈ X. Then we have

φx(y) = c ⇐⇒ ϕy(x) = c ⇐⇒ mid(x, c) = y.

It implies that φx is a bijection on X for any x ∈ X.

Lemma 5.5. Let x, y, z, c ∈ X. Then the following holds.

(y1) For any s ∈ R \ {0},{
d(x, z) = |s|d(x, y)

d(z, y) = |1− s|d(x, y)
⇐⇒

{
d(x, y) = | 1s |d(x, z)

d(y, z) = |1− 1
s |d(x, z).

(y2) For any 0 ≤ s ≤ 1,

c = γx,y(s) ⇐⇒

{
d(x, c) = sd(x, y)

d(c, y) = (1− s)d(x, y).

(y3)

c = φx(y) ⇐⇒

{
d(x, c) = 2d(x, y)

d(c, y) = (2− 1)d(x, y).

(y4) For any natural number n,

c = φnx(y) ⇐⇒

{
d(x, c) = 2nd(x, y)

d(c, y) = (2n − 1)d(x, y).
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(y5) For any s > 1,

c = φnx(γx,y(
s

2n
)) ⇐⇒

{
d(x, c) = sd(x, y)

d(c, y) = (s− 1)d(x, y),

where n ∈ N which satisfies 2n−1 < s ≤ 2n.

(y6) For any s > 0,{
d(x, c) = sd(x, y)

d(c, y) = |s− 1|d(x, y)
⇐⇒

{
d(x, c′) = sd(x, y)

d(c′, y) = (1 + s)d(x, y),

where c′ = ϕx(c).

In particular, for any real number s, there exists a unique point c in X such
that d(e, c) = |s|d(e, x) and d(c, x) = |1− s|d(e, x).

Proof. (y1) and (y2) are obvious.
(y3): We have

c = φx(y) ⇐⇒ mid(x, c) = y

⇐⇒ d(x, y) = d(c, y) =
1

2
d(x, c)

⇐⇒ d(x, c) = 2d(x, y) and d(c, y) = d(x, y).

(y4): We will prove by induction. When n = 1, the argument is true by (y2).
Let k be a natural number and suppose that φkx(y) is a unique point ck ∈ X which
satisfies

d(x, ck) = 2kd(x, y) and d(ck, y) = (2k − 1)d(x, y).

Note that

c = φk+1
x (y) ⇐⇒ c = φx(ck)

⇐⇒ mid(x, c) = ck

⇐⇒ d(x, ck) = d(c, ck) =
1

2
d(x, c)

⇐⇒ d(x, c) = 2d(x, ck) and d(c, ck) = d(x, ck)

⇐⇒ d(x, c) = 2k+1d(x, y) and d(c, ck) = 2kd(x, y).

(⇒): Let c = φk+1
x (y). We have

d(x, c) = 2k+1d(x, y)

and
d(y, c) ≤ d(y, ck) + d(ck, c) = (2k+1 − 1)d(x, y),
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d(y, c) ≥ d(x, c)− d(x, y) = (2k+1 − 1)d(x, y).

Therefore
d(y, c) = (2k+1 − 1)d(x, y).

(⇐): Let c be a point of X which satisfies

d(x, c) = 2k+1d(x, y) and d(c, y) = (2k+1 − 1)d(x, y).

Then
d(x, y) =

1

2k+1
d(x, c) and d(y, c) = (1− 1

2k+1
)d(x, c)

as (y1). It implies that y = γx,c(
1

2k+1 ). Put c′ = mid(x, c), then we have

d(x, c′) =
1

2
d(x, c) = 2kd(x, y)

and

d(y, c′) = d(γx,c(
1

2k + 1
), γx,c(

1

2
))

= (
1

2
− 1

2k+1
)d(x, c) = (2k − 1)d(x, y).

By the inductive assumption, we have c′ = φkx(y) and hence c = φk+1
x (y).

By the principle of induction, the proof of (y4) is complete.
(y5): Let s > 1. Then there exist n ∈ N such that 2n−1 < s ≤ 2n. Put s′ =

s

2n
,

then
1

2
< s′ ≤ 1.

(⇒): Let c0 be a point in X that satisfies

d(x, c0) = s′d(x, y) and d(c0, y) = (1− s′)d(x, y).

Following (y1) we have c0 = γx,y(s′). Let c be a point in X that satisfies

d(x, c) = 2nd(x, c0) and d(c, c0) = (2n − 1)d(x, c0).

Since (y3), we have c = φnx(c0). Put b = mid(x, y), then

d(c0, b) = d(γx,y(s′), γx,y(
1

2
)) = (s′ − 1

2
)d(x, y) = (1− 1

2s′
)d(x, c0)

and

d(x, b) =
1

2
d(x, y) =

1

2s′
d(x, c0) =

1

2n+1s′
d(x, c) =

1

2s
d(x, c).

Thus,

d(b, c) ≤ d(b, c0) + d(c0, c) = (2n − 1

2s′
)d(x, c0)

= (1− 1

2n+1s′
)d(x, c) = (1− 1

2s
)d(x, c),
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d(b, c) ≥ d(x, c)− d(x, b) = (1− 1

2n+1s′
)d(x, c) = (1− 1

2s
)d(x, c)

and hence
d(b, c) = (1− 1

2s
)d(x, c).

Therefore, we have b = γx,c(
1
2s ). Since b = mid(x, y), we have y = γx,c(

1
s ), that is,

d(x, y) =
1

s
d(x, c) and d(y, c) = (1− 1

s
)d(x, c).

By (y1) we have

d(x, c) = sd(x, y) and d(c, y) = (s− 1)d(x, y).

(⇐): Let c be a point in X which satisfies

d(x, c) = sd(x, y) and d(c, y) = (s− 1)d(x, y).

By (y1) and (y2) we have y = γx,c(
1
s ). Let c1 = mid(x, c) and ck+1 = mid(x, ck)

for any k ∈ N. Then ck = γx,c(
1
2k

) and φkx(ck) = c for any k ∈ N. Thus we have

d(y, cn) = (
1

s
− 1

2n
)d(x, c) = (1− s

2n
)d(x, y)

and
d(x, cn) =

1

2n
d(x, c) =

s

2n
d(x, y).

It implies that cn = γx,y( s
2n ) and hence c = φnx(γx,y( s

2n )).
(y6): Let s > 0.

(⇒): Let c ∈ X be a point in X such that

d(x, c) = sd(x, y) and d(c, y) = |1− s|d(x, y).

Since ϕx is an isometry and ϕx(x) = x, we have

d(x, ϕx(c)) = d(x, c) = sd(x, y)

and
d(ϕx(c), ϕx(y)) = d(c, y) = |1− s|d(x, y).

By the definition of ϕx, we have d(a, ϕx(a)) = 2d(x, a) for any a ∈ X and hence

d(ϕx(y), y) = 2d(x, y),

d(ϕx(c), c) = 2d(x, c) = 2sd(x, y).

We first assume that 0 < s ≤ 1. Then

d(ϕx(c), y) ≤ d(ϕx(c), x) + d(x, y) = (1 + s)d(x, y)
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and
d(ϕx(c), y) ≥ d(ϕx(y), y)− d(ϕx(y), ϕx(c)) = (1 + s)d(x, y).

It follows that
d(ϕx(c), y) = (1 + s)d(x, y).

Next, we assume that 1 < s. Then

d(ϕx(c), y) ≤ d(ϕx(c), x) + d(x, y) = (1 + s)d(x, y)

and
d(ϕx(c), y) ≥ d(ϕx(c), c)− d(c, y) = (1 + s)d(x, y).

It follows that
d(ϕx(c), y) = (1 + s)d(x, y).

(⇐): Since (y2) to (y5), there exists a point c in X such that

d(x, c) = sd(x, y) and d(c, y) = |s− 1|d(x, y).

We have
d(x, ϕx(c)) = sd(x, y) and d(ϕx(c), y) = (1 + s)d(x, y)

as opposite direction. Let c′ ∈ X be a point such that

d(x, c′) = sd(x, y) and d(c′, y) = (1 + s)d(x, y).

Put t = 1 + s then t > 1 and

d(y, c′) = td(y, x) and d(c′, x) = (t− 1)d(y, x).

Since (y4), such a point c′ is unique in X. Thus c′ = ϕx(c).

By Lemma 5.5, for any x, y ∈ X and any s ∈ R, there exists a unique point
c ∈ X such that d(x, c) = |s|d(x, y) and d(c, y) = |1 − s|d(x, y). We will denote
the such point c by γx,y(s).

Lemma 5.6. For any x, y ∈ X and s, t ∈ R, the equation

d(γx,y(s), γx,y(t)) = |s− t|d(x, y)

holds.

Proof. Put ar = γx,y(r) for any r ∈ R. We can assume that s ≤ t.
(the case: 0 ≤ s ≤ t ≤ 1): trivial.
(the case: 0 ≤ s ≤ 1 ≤ t): By the definition of ar, we have

d(x, as) = |s|d(x, y) = sd(x, y),

d(as, y) = |1− s|d(x, y) = (1− s)d(x, y)

d(x, at) = |t|d(x, y) = td(x, y),

d(at, y) = |1− t|d(x, y) = (t− 1)d(x, y).
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Then

d(as, at) ≤ d(as, y) + d(y, at) = (t− s)d(x, y),

d(as, at) ≥ d(x, at)− d(x, as) = (t− s)d(x, y)

and hence
d(as, at) = (t− s)d(x, y).

(the case: 1 ≤ s ≤ t): Since (y1), we have y = γx,at(
1
t ). Let c = γx,at(

s
t ), then,

since 0 ≤ 1
t ,
s
t ≤ 1, we have

d(x, c) =
s

t
d(x, at) = sd(x, y),

d(y, c) = |1
t
− s

t
|d(x, at) = |1− s|d(x, y).

It implies that c = as. Thus

d(as, at) = |s
t
− 1|d(x, at) = |s− t|d(x, y).

As the above part of the proof, we have

0 ≤ s, t⇒ d(γx,y(s), γx,y(t)) = |s− t|d(x, y).

(the case: s ≤ 0 ≤ 1 ≤ t): By the definition of at we have

d(x, at) = td(x, y),

d(at, y) = (t− 1)d(x, y).

It follows that

d(at, x) =
t

t− 1
d(at, y),

d(x, y) = (1− t

t− 1
)d(at, y).

It implies that x = γat,y( t
t−1 ). Let c = γat,y( t−st−1 ). Since 0 ≤ t

t−1 ,
t−s
t−1 , we have

d(y, c) = |1− t− s
t− 1

|d(y, at) = (1− s)d(x, y),

d(c, x) = | t− s
t− 1

− t

t− 1
|d(y, at) = |s|d(x, y).

Hence c = as. Thus

d(at, as) = d(at, c) =
t− s
t− 1

d(at, y) = (t− s)d(x, y).
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(the case: s ≤ 0 ≤ t ≤ 1): By the definition of ar and triangle inequality, we
have

d(as, at) ≤ d(as, x) + d(x, at)

= −sd(x, y) + td(x, y) = (t− s)d(x, y),

d(as, at) ≥ d(y, as) + d(y, at)

= (1− s)d(x, y) + (1− t)d(x, y) = (t− s)d(x, y)

and hence
d(as, at) = (t− s)d(x, y).

(the case: s ≤ t ≤ 0): For any r ∈ R, we have

γx,y(r) = γy,x(1− r)

by the definition. Since 0 ≤ 1− s, 1− t, we have

d(γx,y(s), γx,y(t)) = d(γy,x(1− s), γy,x(1− t)) = (t− s)d(y, x).

Lemma 5.7. Let x, y ∈ X. The equation

ϕγx,y(s)(γx,y(t)) = γx,y(2s− t)

holds for any s, t ∈ R.

Proof. Since Lemma 5.6, we have

d(γx,y(2s− t), γx,y(s)) = |s− t|d(x, y),

d(γx,y(s), γx,y(t)) = |s− t|d(x, y)

and
d(γx,y(2s− t), γx,y(t)) = |2s− 2t|d(x, y).

Thus

d(γx,y(2s− t), γx,y(s)) = d(γx,y(s), γx,y(t)) =
1

2
d(γx,y(2s− t), γx,y(t))

and hence
γx,y(s) = mid(γx,y(t), γx,y(2s− t)).

Therefore,
ϕγx,y(s)(γx,y(t)) = γx,y(2s− t).
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5.3 A Normed Gyrolinear Space Induced by a Metric Space
In this subsection, let (X, d) be a uniquely geodesic space which satisifies the
condition K. For x, y ∈ X and s ∈ R, γe,x(s) denote the unique point c ∈ X that
satisfies d(x, c) = |s|d(x, y) and d(c, y) = |1− s|d(x, y).

Definition 5.8. Let (X, d) be a uniquely geodesic space that satisfies the condition
K. For fixed e ∈ X, we define the scalar multiplication ⊗e on X by

s⊗e x = γe,x(s)

for any x ∈ X and s ∈ R. We call ⊗e the scalar multiplication induced by the
metric d on X at e.

In the following part of this subsection e is a point in X. ⊕e is the binary
operation induced by the metric d on X at e, and ⊗e is the scalar multiplication
induced by the metric d on X at e.

Proposition 5.9. Let (X, d) be a uniquely geodesic space which satisfies the con-
dition K. Let e ∈ X and put ‖x‖e = d(e, x) for any x ∈ X. Assume that (X, d)
satisfies the following condition:

(K4) x→ y implies ϕx(a)→ ϕy(a) for any x, y, a ∈ X.

Then (X,⊕e,⊗e, ‖ · ‖e, id) is a normed gyrolinear space with gyrometric d.

Proof. Recall that (X,⊕e) is a gyrocommutative gyrogroup by Lemma 5.3.
(GL1): It is an immediate consequence of γe,x(1) = x.

(GL2): By Lemma 5.7, we have

(r ⊗e x)⊕e (s⊗e x) = ϕmid(e,r⊗ex)ϕe(s⊗e x)

= ϕmid(e,γe,x(r))((−s)⊗e x)

= ϕγe,x( r
2 )

(γe,x(−s))

= γe,x(
2r

2
− (−s))

= γe,x(r + s)

= (r + s)⊗e x

(GL3): Put z = r⊗e (s⊗e x), then z = γe,s⊗ex(r). Since (y1), x = γe,s⊗ex( 1
s ).

We have z = (rs)⊗e x as

d(e, z) = d(e, r ⊗e (s⊗e x)) = |r|d(e, s⊗e x) = |rs|d(e, x)

and

d(x, z) = d(γe,s⊗ex(
1

s
), γe,s⊗ex(r))

= |r − 1

s
|d(e, s⊗e x) = |rs− 1|d(e, x).
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(GL4): Since gyr[x, y] is an automorphism, gyr[x, y]e = e. By equation (10) of
Proposition 5.4, gyr[x, y] is a isometry. Hence we have

c = r ⊗e a ⇐⇒

{
d(e, c) = |r|d(e, a)

d(c, a) = |1− r|d(e, a)

⇐⇒

{
d(gyr[x, y]e, gyr[x, y]c) = |r|d(gyr[x, y]e, gyr[x, y]a)

d(gyr[x, y]c, gyr[x, y]a) = |1− r|d(gyr[x, y]e, gyr[x, y]a)

⇐⇒

{
d(e, gyr[x, y]c) = |r|d(e, gyr[x, y]a)

d(gyr[x, y]c, gyr[x, y]a) = |1− r|d(e, gyr[x, y]a)

⇐⇒ gyr[x, y]c = γe,gyr[x,y]a(r)

⇐⇒ gyr[x, y]c = r ⊗e γ[x, y]a

(GL5): For any x ∈ X, since (X,⊕e) satisfies the condition (G5), we have

gyr[n⊗e x, x] = gyr[((n− 1)⊗e x)⊕e x, x]

= gyr[(n− 1)⊗e x, x]

for any integer n. It follows that

gyr[n⊗e x, x] = gyr[0⊗e x, x] = gyr[e, x] = idX

for any integer n. Also, we have

gyr[x,m⊗e x] = gyr−1[m⊗e x, x] = idX

for any integer m. Since gyrocommutative gyrogroup satisfies the equation

gyr[a, b] gyr[b, c]gyr[c, a] = id

for any a, b, c ([6]Theorem 3.31), we have

gyr[n⊗e x,m⊗e x] = gyr[n⊗e x, x] gyr[x,m⊗e x] gyr[m⊗e x, n⊗e x] = idX

for any integers n,m. It follows that

gyr[
n

m
⊗e y, y] = gyr[n⊗e (

1

m
⊗e y),m⊗e (

1

m
⊗e y)] = idX (11)

for any y ∈ X and rational number
n

m
.

Let {kn} be a sequence of rational numbers such that kn → α. Then we have
kn ⊗e x = γe,x(kn)→ γe,x(α) = α⊗e x by Lemma 5.6. By the condition (K4) we
have

λkn⊗ex(a) = ϕkn⊗exϕe(a)→ ϕα⊗exϕe(a) = λα⊗ex(a)
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for any x, a ∈ X. Thus we have

gyr[kn ⊗e x, x](a) = λ	(kn⊗ex⊕ex)λkn⊗exλx(a)

= λ(−kn−1)⊗exλkn⊗exλx(a)

→ λ(−α−1)⊗exλα⊗exλx(a)

= λ	(α⊗ex⊕ex)λα⊗exλx(a)

= gyr[α⊗e x, x](a)

for any real number α and a, x ∈ X, where {kn} is a sequence of rational numbers
such that kn → α. Following (11) we have gyr[α⊗e x, x] = idX for any x ∈ X and
α ∈ R. Thus we have

gyr[r ⊗e x, s⊗e x] = gyr[
r

s
⊗e (s⊗e x), s⊗e x] = idX

for any x ∈ X and r, s ∈ R.
(NG1): ‖x‖e = 0 ⇐⇒ d(e, x) = 0 ⇐⇒ x = e
(NG2): Following Proposition 5.4, we have

‖x⊕e y‖e = d(e, x⊕e y)

≤ d(e, x) + d(x, x⊕e y)

= d(e, x) + d(e, y) = ‖x‖e + ‖y‖e

for any x, y ∈ X.
(NG3): For any x ∈ X and r ∈ R, we have

‖r ⊗e x‖e = d(e, r ⊗e x)

= d(γe,x(0), γe,x(r))

= |0− r|d(e, x) = |r|‖x‖e

by Lemma 5.6.
(NG4): Since any gyroautomorphism preserves the identity e and Proposition

5.4, we have

‖ gyr[x, y]a‖e = d(e, gyr[x, y]a)

= d(gyr[x, y]e, gyr[x, y]a)

= d(e, a) = ‖a‖e

for any a, x, y ∈ X.
Finally, since Proposition 5.4, we have

d(x, y) = d(e, x	e y) = ‖x	e y‖.
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The following Corollary 5.10 is a immediately consequence of Proposition 5.9
and Proposition 3.4.

Corollary 5.10. Let X be a set and % be a function % : X ×X → X that satisfies
%(x, y) = 0 if and only if x = y. Let e ∈ X and put ‖x‖′e = %(e, x) for any x ∈ X.
Let f be a monotone increasing bijection f : ‖X‖′e → R≥0, where ‖X‖′e = {‖x‖′e :
x ∈ X}. Put d = f%. Suppose that (X, d) is a uniquely geodesic space that satisfies
the condition K and the condition (K4). Then (X,⊕e,⊗e, ‖ · ‖′e, f) is a normed
gyrolinear space with gyrometric %.

Proof. Put ‖x‖e = d(e, x). By Proposition 5.9, (X,⊕e,⊗e, ‖ · ‖e, id) is a normed
gyrolinear space. Since f is a monotone increasing bijection f : ‖X‖′e → R≥0, we
have

‖X‖e = {‖x‖e : x ∈ X} = {f‖x‖′e : x ∈ X} = R≥0
and hence f−1 is a monotone increasing bijection f−1 : ‖X‖ → ‖X‖′e. Note
that 0 ∈ ‖X‖′ as ‖e‖′ = 0. Since f−1 is strictly monotone increasing, we have
f−1(0) = 0. By Proposition 3.4, we have (X,⊕e,⊗e, ‖ · ‖′, f). Finally, we have

%(x, y) = f−1d(x, y) = f−1‖x	e y‖ = ‖x	e y‖′.

5.4 Examples
Example 5.11. Let ‖ · ‖ be the Euclidean norm and d be the Euclidean metric
on Rn. Then the Euclidean space (Rn, d) is a uniquely geodesic metric space that
satisfies the condition K with

mid(x, y) =
x+ y

2

and
ϕx(y) = 2x− y

for any x, y ∈ R. In this case, (Rn,⊕0) = (Rn,+) as

x⊕0 y = ϕmid(0,x)ϕ0(y)

= ϕ x
2
(−y)

= x+ y

for any x, y ∈ X. Moreover, ⊗0 coincides with the usual scalar multiplication on
Rn as

d(0, rx) = ‖rx‖ = |r|‖x‖ = rd(0, x)

and
d(x, rx) = ‖x− rx‖ = |1− r|‖x‖ = |1− r|d(0, x)

for any x ∈ Rn and r ∈ R.
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Example 5.12. Let D = {z ∈ C : |z| < 1}. The Möbius addition ⊕ in D is given
by the equation

a⊕ b =
a+ b

1 + ab

for any a, b ∈ D. (D,⊕) is a gyrocommutative gyrogroup (see [6]) and is called
the Möbius gyrogroup. The identity of (D,⊕) is the origin of C and 	a = −a for
every a ∈ D. Moreover, the Möebius multiplication is given by

r ⊗ a = tanh(r tanh−1 |a|) a
|a|

for any a ∈ D and r ∈ R. The Möbius gyrometric % is given by the equation

%(a, b) = |(	a)⊕ b|
(

=

∣∣∣∣−a+ b

1− ab

∣∣∣∣)
for every a, b ∈ D. (D, %) is a metiric space in itself, and (D, tanh−1 %) is a met-
ric space again. (D, %) doesn’t satisfy the condition K. However, (D, tanh−1 %)
satisfies the condition K with

mid(a, b) =
1

2
⊗ (a� b)

and
ϕa(b) = (2⊗ a)⊕ (−b)

for any a, b ∈ D. Let ⊕0 be the binary operation on D induced by tanh−1 % at 0
then ⊕0 = ⊕. Moreover, (D, tanh−1 %) is a uniquely geodesic metric space. Let
⊗0 be the scalar multiplication on D induced by tanh−1 % at 0 then ⊗0 = ⊗.
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