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Gyrovector Spaces on the Open Convex Cone of

Positive Definite Matrices

Sejong Kim⋆

Abstract

In this article we review an algebraic definition of the gyrogroup and a
simplified version of the gyrovector space with two fundamental examples on
the open ball of finite-dimensional Euclidean spaces, which are the Einstein
and Möbius gyrovector spaces. We introduce the structure of gyrovector
space and the gyroline on the open convex cone of positive definite matrices
and explore its interesting applications on the set of invertible density ma-
trices. Finally we give an example of the gyrovector space on the unit ball
of Hermitian matrices.

Keywords: Gyrogroup, gyrovector space, gyroline, gyromidpoint, positive
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1. Introduction

In the theory of special relativity founded by Albert Einstein, the velocities are
3-dimensional vectors with speed bounded by the speed of light s ≈ 3× 108 m/s,
called the admissible vectors. The relativistic sum of two admissible vectors u and
v, called the Einstein vector addition is given by

u⊕E v =
1

1 + uTv

s2

{

u+
1

γu
v +

1

s2
γu

1 + γu
(uT

v)u

}

, (1)

where γu =
1

√

1− ‖u‖2

s2

is the well-known Lorentz factor. We denote as u
T
v the

usual inner product in matrix form. To study abstractly the Einstein vector addi-
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tion in special relativity, A. Ungar [16] has introduced a group-like structure that
he called a gyrogroup or gyrocommutative gyrogroup. Gyrogroups and gyrocommu-
tative gyrogroups are equivalent to Bol-loops and K-loops (Bruck loops) [6, 14],
respectively.

As a vector space is used in Euclidean geometry, a gyrovector space is a math-
ematical concept introduced by A. Ungar for studying hyperbolic geometry. We
review in Section 2 the definitions of gyrogroup and gyrovector space with two
important examples, the Einstein gyrovector space and Möbius gyrovector space.
The axioms of gyrovector space in this article are more loose than those proposed
by A. Ungar, but they also give a plenty of applications [4, 6]. For instance, the
Einstein gyrovector space and Möbius gyrovector space provide the algebraic tool
to study the Beltrami-Klein ball model and the Poincaré ball model of hyper-
bolic geometry, respectively. It has been proved that the Einstein and Möbius
gyrovector spaces are isomorphic. See [7, 16] for more details.

In Section 3 we see examples of gyrovector space on the open convex cone
of all positive definite matrices and on the set of all invertible density matrices.
Furthermore, we show the isomorphism between the gyrovector space of all qubit
invertible density matrices and the Einstein gyrovector space on the Bloch sphere,
the open unit ball of R3. It generalizes the result in Theorem 3.4 of [3].

A gyroline uniquely determined by given two points on the gyrovector space
plays an important role in the concepts of gyrocentroid and gyroparallelogram
law. In Section 4 we discuss a gyroline on the open convex cone of all positive
definite matrices and on the set of all invertible density matrices. Finally we give
a different example of a gyrovector space on the open unit ball of all Hermitian
matrices constructed by the exponential and logarithmic maps.

2. Gyrovector Spaces

We review in this section the algebraic structure of a gyrogroup as a natural exten-
sion of a group into the regime of the nonassociative algebra. We then introduce
a gyrovector space providing the setting for hyperbolic geometry just as a vector
space provides the setting for Euclidean geometry. A. A. Ungar has introduced
and intensely studied them in a series of papers and books; see [16] and its bibli-
ography.

The binary operation in a gyrogroup is not associative, in general. The break-
down of associativity for gyrogroup operations is salvaged in a modified form,
called gyroassociativity. The axioms for a (gyrocommutative) gyrogroup G are
reminiscent of those for a (commutative) group.

Definition 2.1. A binary system (G,⊕) is a gyrogroup if it satisfies the following
for all a, b, c ∈ G:

(G1) e⊕ a = a⊕ e = a (existence of identity);
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(G2) a⊕ (⊖a) = (⊖a)⊕ a = e (existence of inverses);

(G3) There is an automorphism gyr[a, b] : G → G for each a, b ∈ G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (gyroassociativity);

(G4) gyr[a⊕ b, b] = gyr[a, b] (loop property).

A gyrogroup (G,⊕) is gyrocommutative if it satisfies

a⊕ b = gyr[a, b](b⊕ a) (gyrocommutativity).

A gyrogroup is uniquely 2-divisible if for every b ∈ G, there exists a unique element
a ∈ G such that a⊕ a = b.

In (G3) the automorphism gyr[a, b] for each a, b ∈ G is called the Thomas

gyration or the gyroautomorphism, or simply, the gyration generated by a and b.
From (G2) and (G3) we have

gyr[a, b]c = ⊖(a⊕ b)⊕ [a⊕ (b ⊕ c)]

for all a, b, c ∈ G. In Euclidean space it plays a role of rotation in the plane
spanned by {a, b} leaving the orthogonal complement fixed.

It has been shown in [14] that gyrocommutative gyrogroups are equivalent to
Bruck loops with respect to the same operation. It follows that uniquely 2-divisible
gyrocommutative gyrogroups are equivalent to B-loops. The two approaches have
remained quite distinctive in the literature, but we primarily use a notion of gy-
rogroups rather than a notion of loops.

For arbitrary fixed positive constant s, we let

Bs = {v ∈ R
n : ‖v‖ < s}

be the open s-ball in the n-dimensional vector space Rn. We consider elements in
Rn naturally as column vectors, so that uT

v is the usual inner product written in
matrix form. We here see two important examples of gyrogroups [16].

Example 2.2. We define the binary operation ⊕E in Bs by

u⊕E v =
1

1 + uTv

s2

{

u+
1

γu
v +

1

s2
γu

1 + γu
(uT

v)u

}

(2)

for any u,v ∈ Bs, where γu is the well-known Lorentz factor such that

γu =
1

√

1− ‖u‖2

s2

.

The equation (2) is called the Einstein addition of relativistically admissible ve-
locities, introduced by Einstein in his 1905 paper. The binary system (Bs,⊕E)
forms a gyrocommutative gyrogroup, called the standard real relativistic gyrogroup

or the Einstein gyrogroup.
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Example 2.3. In the open s-ball Bs, we define the binary operation ⊕M by

u⊕M v =
1

1 +
2

s2
u
T
v +

1

s4
‖u‖2‖v‖2

{(

1 +
2u

T
v

s
2

+
‖v‖2

s
2

)

u+

(

1−
‖u‖2

s
2

)

v

}

(3)

for any u,v ∈ Bs. The equation (3) is called the Möbius addition, known as
Möbius translation on the open s-ball (see formula (4.5.5) of [13]). The binary
system (Bs,⊕M ) forms also a gyrocommutative gyrogroup, called the nonstandard

real relativistic gyrogroup or Möbius gyrogroup.

Suksumran and Wiboonton [15] have recently shown by using the Clifford
algebra that the open ball Bs equipped with binary operations ⊕E and ⊕M ,
respectively, is a uniquely 2-divisible gyrocommutative gyrogroup.

In the same way that vector spaces are commutative groups of vectors that
admit scalar multiplication, gyrovector spaces are gyrocommutative gyrogroups
of gyrovectors that admit properly scalar multiplication. We give a definition of
gyrovector spaces slightly different from Definition 6.2 in [16].

Definition 2.4. A gyrocommutative gyrogroup (G,⊕) equipped with a scalar
multiplication

(t, x) 7→ t⊗ x : R×G → G

is called a gyrovector space if it satisfies the following for s, t ∈ R and a, b, c ∈ G.

(V1) 1⊗ a = a, 0⊗ a = t⊗ e = e, and (−1)⊗ a = ⊖a.

(V2) (s+ t)⊗ a = s⊗ a⊕ t⊗ a.

(V3) (st)⊗ a = s⊗ (t⊗ a).

(V4) gyr[a, b](t⊗ c) = t⊗ gyr[a, b]c.

Definition 2.5. A topological gyrovector space is a gyrovector space (G,⊕,⊗)
equipped with Hausdorff topology such that both ⊕ : G×G → G and ⊗ : R×G →
G are continuous.

Remark 2.6. In a topological gyrovector space (G,⊕,⊗), it has been proved from
[4] that

gyr[s⊗ a, t⊗ a] = idG

for any s, t ∈ R and a ∈ G, where id denotes the identity map on G.

We have seen two distinctive examples of gyrocommutative gyrogroups in the
open s-ball Bs of the n-dimensional vector space Rn. Via defining a scalar mul-
tiplication we see two common examples of inner product gyrovector spaces, also
corresponding to two models of hyperbolic geometry.
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Example 2.7. Let Bs be the Einstein gyrogroup with Einstein addition ⊕E , or
the Möbius gyrogroup with Möbius addition ⊕M , respectively. We define a map
⊗ : R×Bs → Bs by

t⊗ v = s ·

(

1 + ‖v‖
s

)t

−
(

1− ‖v‖
s

)t

(

1 + ‖v‖
s

)t

+
(

1− ‖v‖
s

)t

v

‖v‖

= s tanh

(

t tanh−1 ‖v‖

s

)

v

‖v‖
,

(4)

for t ∈ R and v(6= 0) ∈ Bs, and define t ⊗ 0 := 0. We call (Bs,⊕E,⊗) and
(Bs,⊕M ,⊗) the Einstein gyrovector space and the Möbius gyrovector space, re-
spectively.

The Beltrami-Klein ball model of hyperbolic geometry is algebraically regulated
by Einstein gyrovector spaces. The geodesics of this model, called gyrolines, are
Euclidean straight lines in the open s-ball. On the other hand, the Poincaré
ball model of hyperbolic geometry is algebraically regulated by Möbius gyrovector
spaces. The geodesics of this model are Euclidean circular arcs in the open s-ball
that intersect the boundary of the ball orthogonally.

3. On the Cone of Positive Definite Matrices

We have seen two fundamental examples of a gyrovector space, Einstein gyrovector
space and Möbius gyrovector space, on the open s-ball Bs. In this section we give
an example of a gyrovector space on the open convex cone P of all n× n positive
definite matrices.

Example 3.1. [4, Example 2.2, Example 3.2] Let P be an open convex cone of
positive definite Hermitian matrices. Define the binary operation ⊕ and a scalar
multiplication ◦ by

⊕ : P× P → P, A⊕B = A1/2BA1/2,

◦ : R× P → P, t ◦A = At

for any A,B ∈ P and t ∈ R. Then the system (P,⊕, ◦) forms a gyrovector space,
and the gyroautomorphism generated by A and B is given by

gyr[A,B]C = U(A,B)CU(A,B)−1, (5)

where U(A,B) = (A1/2BA1/2)−1/2A1/2B1/2 is a unitary part of the polar decom-
position for A1/2B1/2 such that

A1/2B1/2 = (A⊕B)1/2U(A,B).
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Indeed, let us check (V4). For any A,B,X ∈ P

gyr[A,B](t ◦X) = U(A,B)XtU(A,B)−1

= U(A,B) exp(t logX)U(A,B)−1

= exp[t logU(A,B)XU(A,B)−1]

= [U(A,B)XU(A,B)−1]t = t ◦ gyr[A,B]X.

One can easily see that the binary operation ⊕ and the scalar multiplication ◦
are both continuous. Thus, the system (P,⊕, ◦) is a topological gyrovector space.

Remark 3.2. The inner product on Mn(C), the vector space of all n×n matrices
with complex entries, is naturally defined as 〈A,B〉 = tr(AB∗), where X∗ is a
complex conjugate transpose of a matrix X . The gyroautomorphism on P preserves
the inner product, and so the norm induced by inner product. Indeed, for any
A,B,X, Y ∈ P

〈gyr[A,B]X, gyr[A,B]Y 〉 = tr[U(A,B)XU(A,B)−1(U(A,B)Y U(A,B)−1)∗]

= tr[U(A,B)XY ∗U(A,B)∗]

= tr[XY ∗] = 〈X,Y 〉.

A. Ungar has explained a gyrogroup structure for qubit density matrices in
Chapter 9, [16]. We now see an example of gyrovector space for arbitrary dimen-
sional density matrices.

Example 3.3. [3] Let Dn be a set of all n× n invertible density matrices, which
are positive definite Hermitian matrices of trace 1. We define a binary operation
⊙ and a scalar multiplication ⋆ given by

⊙ :Dn × Dn → Dn, ρ⊙ σ =
ρ

1

2σρ
1

2

tr(ρσ)
=

ρ⊕ σ

tr(ρ⊕ σ)

⋆ :R× Dn → Dn, t ∗ ρ =
ρt

tr(ρt)
=

t ◦ ρ

tr(t ◦ ρ)

for any ρ, σ ∈ Dn and t ∈ R. Then (Dn,⊙, ⋆) is a gyrovector space. Note that the

identity element in (Dn,⊙, ⋆) is
1

n
In and the inverse of ρ is (−1)⋆ρ =

1

tr(ρ−1)
ρ−1,

where In denotes the n× n identity matrix.

In [3, Theorem 3.4] it has been shown the relationship between the Einstein gy-
rogroup (Bs=1,⊕E) and the gyrogroup (D2,⊙) of 2×2 invertible density matrices.
In other words, the map

ρ : (Bs=1,⊕E) → (D2,⊙), v =





v1
v2
v3



 7→ ρv =
1

2

(

1 + v3 v1 − iv2
v1 + iv2 1− v3

)

is a gyrogroup isomorphism. We give an extension of the isomorphism between
gyrovector spaces.
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Theorem 3.4. The Einstein gyrovector space (Bs=1,⊕E,⊗) and the gyrovector

space (D2,⊙, ⋆) of 2× 2 invertible density matrices are isomorphic.

Proof. It remains to show that

ρt⊗v = t ⋆ ρv =
1

tr(ρtv)
ρtv

for any t ∈ R. Set

T = {t ∈ R : ρt⊗v =
1

tr(ρtv)
ρtv for any v ∈ Bs=1}

Our goal is to show that the set T contains all dyadic rational numbers, since this
implies by the density of dyadic rational numbers that T = R.

Easily 0, 1 ∈ T . Moreover,
1

2
∈ T . Indeed,

1

2
⊗ v =

γv

γv + 1
v.

So we obtain from [3, Lemma 3.3] that

ρ 1

2
⊗v =

1

2

(

1 + γv

γv+1v3
γv

γv+1 (v1 − iv2)
γv

γv+1 (v1 + iv2) 1− γv

γv+1v3

)

=
1

2

γv

γv + 1

(

1 + v3 +
1
γv

v1 − iv2

v1 + iv2 1− v3 +
1
γv

)

=
1

tr(ρ
1/2
v )

ρ1/2
v

.

This gives us that
t

2
∈ T whenever t ∈ T .

From ρu⊕v = ρu ⊙ ρv we have

ρ2⊗v =
1

tr(ρ2
v
)
ρ2
v

and ρ(−1)⊗v =
1

tr(ρ−1
v )

ρ−1
v

.

That is, 2t ∈ T and −t ∈ T whenever t ∈ T . Then for s, t ∈ T

ρ(2s−t)⊗v = ρ(2s)⊗v⊕(−t)⊗v

= ρ(2s)⊗v ⊙ ρ(−t)⊗v

= (2s) ◦ ρv ⊙ (−t) ◦ ρv

= (2s− t) ◦ ρv.

In other words, 2s − t ∈ T whenever s, t ∈ T . So the set T contains all dyadic
rational numbers in R.

It is still an open question whether or not the Einstein gyrovector space (Bs=1,

⊕E,⊗) and the gyrovector space (Dn,⊙, ⋆) are isomorphic for n > 2.
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4. Gyrolines and Gyromidpoints

The gyroline passing through the points a and b in the gyrovector space (G,⊕,⊗)
is defined in Definition 6.19, [16], by

L : R×G×G → G, L(t; a, b) = a⊕ t⊗ (⊖a⊕ b). (6)

The gyroline is uniquely determined by given points, and a left gyrotranslation of
a gyroline is again a gyroline by Theorem 6.21 in [16]. In other words,

x⊕ L(t; a, b) = L(t;x⊕ a, x⊕ b)

for any x ∈ G.

Example 4.1. From Example 3.1 we obtain the gyroline on (P,⊕, ◦) passing
through A and B such that

L(t;A,B) = A⊕ t ◦ ((−1) ◦A⊕B) = A1/2(A−1/2BA−1/2)tA1/2 (7)

for t ∈ [0, 1]. This is usually called the weighted geometric mean of A and B,
and denoted by L(t;A,B) = A#tB. Moreover, it is known in [1, Chapter 6] as
a unique geodesic connecting from A to B on P with respect to the Riemannian
trace metric δ:

δ(A,B) = ‖ log(A−1/2BA−1/2)‖F ,

where ‖X‖F denotes the Frobenius norm of X . Note that for any A,B,C,D ∈ P

and t ∈ [0, 1]
δ(A#tB,C#tD) ≤ (1− t)δ(A,C) + tδ(B,D).

It is also satisfied that for any invertible matrix M ,

M(A#tB)M∗ = (MAM∗)#t(MBM∗).

This implies that a left gyrotranslation of a gyroline is again a gyroline.

Since the map t ∈ [0, 1] 7→ A#tB for any A,B ∈ P is introduced by two-variable
geometric mean, a variety of approaches to extend it to multivariable geometric
means have been recently developed. Among them we introduce a least squares
mean as a hot topic of matrix means.

Remark 4.2. It is known in [1, Chapter 6] that (P, δ) is a Bruhat-Tits space (a
Hadamard space or a non-positive curvature space), which is a complete metric
space satisfying the semi-parallelogram law. For an n-dimensional positive prob-
ability vector ω = (w1, . . . , wn) and positive definite matrices A1, . . . , An, there
exists a unique minimizer of the weighted sum of squares of Riemannian distances
to each point.

argmin
Z∈P

n
∑

i=1

wiδ
2(Z,Ai). (8)
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This is called the least squares mean (the Karcher mean or Riemannian barycen-
ter), and denoted by Λ(ω;A1, . . . , An). Vanishing the gradient of the objective

function f(Z) =

n
∑

i=1

wiδ
2(Z,Ai), we obtain that the least squares mean coincides

with the unique positive solution of the Karcher equation

n
∑

i=1

wi log(Z
1/2A−1

i Z1/2) = O. (9)

Many interesting properties for the least squares mean including the monotonicity
have been studied; see [2, 8, 9, 10, 11].

A. Ungar has introduced in [16] a gyrocentroid as a barycenter of points on the
gyrovector space. It would be interesting to find a connection between the least
squares mean and the gyrocentroid.

We finally give a formula of the gyroline on the gyrovector space (Dn,⊙, ⋆).

Theorem 4.3. For any ρ, σ ∈ (Dn,⊙, ⋆) and t ∈ [0, 1]

L(t; ρ, σ) =
1

tr(ρ#tσ)
ρ#tσ.

Proof. Let ρ, σ ∈ (Dn,⊙, ⋆) and t ∈ [0, 1]. From Example 3.3 we have

(−1) ⋆ ρ⊙ σ =
(−1) ◦ ρ⊕ σ

tr((−1) ◦ ρ⊕ σ)
,

and

t ⋆ [(−1) ⋆ ρ⊙ σ] =
t ◦ [(−1) ◦ ρ⊕ σ]

tr(t ◦ [(−1) ◦ ρ⊕ σ])
.

Thus, we obtain

L(t; ρ, σ) = ρ⊙ t ⋆ [(−1) ⋆ ρ⊙ σ] =
ρ⊕ t ◦ [(−1) ◦ ρ⊕ σ]

tr(ρ⊕ t ◦ [(−1) ◦ ρ⊕ σ])
=

ρ#tσ

tr(ρ#tσ)
.

Remark 4.4. It has been shown in Proposition 3.8 of [5] that the map L(t; ρ, σ)
is a minimal geodesic on Dn with respect to the Hilbert projective metric. In
Theorem 4.2 and Remark 4.3 of [5], moreover,

L

(

1

2
; ρu, ρv

)

=
ρu#ρv

tr(ρu#ρv)
=

γuu+ γvv

γu + γv

for any u,v ∈ Bs=1. This is known as the Einstein gyromidpoint in Theorem 6.92,
[16].
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5. Applications and Remarks

We have seen in Example 3.1 that (P,⊕, ◦) is a gyrovector space. Let us denote
H as the real vector space of all Hermitian matrices. The exponential map from
H to P given by

expA =

∞
∑

n=0

1

n!
An

is a diffeomorphism, and its inverse is the logarithm map denoted by log.
We define a map f : H → B(H) := {A ∈ H : ‖A‖ < 1} by

f(X) := tanh ‖X‖
X

‖X‖
, X 6= O,

and f(O) := O, where ‖ · ‖ denotes the Frobenius or Hilbert-Schmidt norm. Since

the function g(x) =
tanhx

x
for x > 0 is bijective, so is f . Then the composition

defined as

g = f ◦ log : P → B(H), g(A) := tanh ‖ logA‖
logA

‖ logA‖
, A 6= I (10)

and g(I) = O, is also a bijection. It means that every element in B(H) can be
uniquely written as g(A) for some A ∈ P.

Furthermore, defining a binary operation ⋄ on B(H) by

g(A) ⋄ g(B) := g(A⊕B)

gives us an isomorphism g from (P,⊕) onto (B(H), ⋄). So the binary system
(B(H), ⋄) is a gyrocommutative gyrogroup. Also, setting

t ∗ g(A) := g(t ◦A) = g(At)

for all t ∈ R and A ∈ P gives us a gyrovector space (B(H), ⋄, ∗). Indeed, the
following are satisfied for any s, t ∈ R and A,B,X ∈ P.

(V1) 1 ∗ g(A) = g(A) and 0 ∗ g(A) = g(I) = O.

(V2) Using an isomorphism g we have

(s+ t) ∗ g(A) = g(As+t) = g(As/2AtAs/2)

= g(As ⊕At) = g(As) ⋄ g(At) = s ∗ g(A) ⋄ t ∗ g(A).

(V3) (st) ∗ g(A) = g(Ast) = g((As)t) = t ∗ (s ∗ g(A)).

(V4) We note by the gyroassociativity and an isomorphism g that

gyr[g(A), g(B)]g(X) = g(gyr[A,B]X). (11)
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Then

gyr[g(A), g(B)](t ∗ g(X)) = gyr[g(A), g(B)]g(t ⋆ X)

= g(gyr[A,B](t ⋆ X)) = g(t ⋆ gyr[A,B]X)

= t ∗ g(gyr[A,B]X) = t ∗ gyr[g(A), g(B)]g(X).

Remark 5.1. Since gyr[s ◦ A, t ◦ A] = idP on the gyrovector space (P,⊕, ◦) for
any s, t ∈ R, we also have

gyr[s ∗ g(A), t ∗ g(A)]g(X) = gyr[g(s ◦A), g(t ◦A)]g(X)

= g(gyr[s ◦A, t ◦A]X) = g(X).

The second equality follows from the equation (11). This means that

gyr[s ∗ g(A), t ∗ g(A)] = idB(H) .

The following gives us a formula of the gyroline on the gyrovector space (B(H),
⋄, ∗).

Proposition 5.2. For given A,B ∈ P, the gyroline connecting from g(A) to g(B)
on the gyrovector space (B(H), ⋄, ∗) is g(A#tB).

Proof. By the general equation (6) of gyroline on the gyrovector space,

L(t; g(A), g(B)) = g(A) ⋄ t ∗ ((−1) ∗ g(A) ⋄ g(B))

= g(A) ⋄ t ∗ (g(A−1) ⋄ g(B))

= g(A) ⋄ t ∗ g(A−1/2BA−1/2)

= g(A) ⋄ g((A−1/2BA−1/2)t)

= g(A1/2(A−1/2BA−1/2)tA1/2).

Remark 5.3. On the gyrovector space (B(H), ⋄, ∗), it would be interesting to
investigate any geometric aspect such as metric relations and gyrocentroids.
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