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An Extension of Poincaré Model of Hyperbolic

Geometry with Gyrovector Space Approach

Mahfouz Rostamzadeh? and Sayed-Ghahreman Taherian

Abstract

The aim of this paper is to show the importance of analytic hyperbolic
geometry introduced in [9]. In [1], Ungar and Chen showed that the alge-
bra of the group SL(2,C) naturally leads to the notion of gyrogroups and
gyrovector spaces for dealing with the Lorentz group and its underlying hy-
perbolic geometry. They defined the Chen addition and then Chen model of
hyperbolic geometry. In this paper, we directly use the isomorphism prop-
erties of gyrovector spaces to recover the Chen’s addition and then Chen
model of hyperbolic geometry. We show that this model is an extension of
the Poincaré model of hyperbolic geometry. For our purpose we consider
the Poincaré plane model of hyperbolic geometry inside the complex open
unit disc D. Also we prove that this model is isomorphic to the Poincaré
model and then to other models of hyperbolic geometry. Finally, by gyrovec-
tor space approach we verify some properties of this model in details in full
analogue with Euclidean geometry.

Keywords: Hyperbolic geometry, gyrogroup, gyrovector space, Poincaré model,
analytic hyperbolic geometry.
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1. Introduction
Gyrogroups are noncommutative and nonassociative algebraic structures and this
noncommutativity-nonassociativity turns out to be generated by the Thomas pre-
cession, well-known in the special theory of relativity. Gyrogroups also revealed
themselves to be specially fitting in order to deal with formerly unsolved problems
in special relativity (e.g. the problem of determining the Lorentz transformation
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that links given initial and final time-like 4-vectors). Gyrogroups are split up into
gyrocommutative gyrogroups and nongyrocommutative. It turns out that intro-
ducing (gyrocommutative) gyrogroups, Ungar gave a concrete physical realization
to formerly well-known algebraic systems called K-loops discovered by Helmut
Karzel(e. g. see [2, 3]) in his study of neardomains. Since his 1988 pioneering pa-
per [7] Ungar has studied gyrogroups and gyrovector spaces in several books [8–14]
and many papers.

Some gyrocommutative gyrogroups admit a multiplication which turn them to
a gyrovector space. Gyrovector spaces, in turn, provide the setting for hyperbolic
geometry in the same way that vector spaces provide the setting for Euclidean ge-
ometry, thus enabling the two geometries to be unified. Armed with a gyrovector
space structure, hyperbolic geometry is perfect for use in relativity physics. Abra-
ham A. Ungar introduced the analytic hyperbolic geometry in [9]. The nonas-
sociative algebra of gyrovector spaces is the framework for analytic hyperbolic
geometry just as the associative algebra of vector spaces is the framework for an-
alytic Euclidean geometry. Moreover, gyrovector spaces include vector spaces as
a special, degenerate case corresponding to trivial gyroautomorphisms. Hence,
Ungar gyrovector space approach forms the theoretical framework for uniting Eu-
clidean and hyperbolic geometry.

In this paper, our aim is to use the gyrovector space approach of Ungar to
investigate the analytical hyperbolic geometry. For our purpose we consider the
Poincaré model of hyperbolic geometry defined inside the complex open unit disc
D = {a ∈ C | |a| =

√
aā < 1} where ā is the conjugate of a. Using the gyrovector

spaces isomorphism, we extend the Poincaré model of hyperbolic geometry to the
whole plane C which is called in [1] Chen model of hyperbolic geometry. We recover
Chen gyrogroup and Chen gyrovector space of [1]. But our approach is different
from [1]. We directly use the isomorphism properties of gyrovector spaces. As an
application of gyrovector spaces as the algebraic settings of analytical hyperbolic
geometry, we obtain some concepts of the new model by using gyrovector space
properties.

2. Preliminaries and Well-known Results

Definition 2.1. (Gyrogroups). A groupoid (G,+) is a gyrogroup if its binary
operation satisfies the following axioms.

G1. In G there is at least one element, 0, called a left identity, satisfying 0+a = a
for all a ∈ G.

G2. There is an element 0 ∈ G satisfying axiom G1 such that for each a ∈ G
there is an element −a ∈ G, called a left inverse of a, satisfying −a+ a = 0.
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G3. For any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that the
binary operation obeys the left gyroassociative law a + (b + c) = (a + b) +
gyr[a, b]c.

G4. The map gyr[a, b] : G→ G given by c 7→ gyr[a, b]c is an automorphism of the
groupoid (G,+), i.e. gyr[a, b] ∈ Aut(G,+) and the automorphism gyr[a, b] of
G is called the gyroautomorphism of G generated by a, b ∈ G. The operator
gyr : G×G→ Aut(G,+) is called the gyrator of G.

G5. Finally, the gyroautomorphism gyr[a, b] generated by any a, b ∈ G possesses
the left loop property gyr[a, b] = gyr[a, b+ a].

Definition 2.2. A gyrogroup (G,+) is a gyrocommutative gyrogroup if its binary
operation obeys the gyrocommutative law a+ b = gyr[a, b](b+ a)

Remark 1. Another equivalent definition of gyrocommutative gyrogroup, which
also are called K-loops, comes from H. Karzel(cf., [2, 3]) as follows:
A loop (P,+) is said to be a K-loop if the following properties hold:
For all a, b ∈ P ,

K1 : gyr[a, b] ∈ Aut(P,+)

K2 : gyr[a, b] = gyr[a, b+ a]

K3 : −(a+ b) = (−a) + (−b)

Example 2.3. Let D := {z ∈ C | |z| < 1} be the complex open unit disc and ⊕E
be the Einstein’s velocity addition in Beltrami-Klein model of hyperbolic geometry,
hence for a, b ∈ D,

a⊕E b =
a+ b

1+ < a, b >
+

γa
1 + γa

(
< a, b > a− |a|2 b

1+ < a, b >
)

where γa = 1√
1−|a|2

. It is proved that (D,⊕E) is a gyrocommutative gyrogroup(e.g

see [4] and [1, 9]).

Example 2.4. Let D := {z ∈ C | |z| < 1} be the complex open unit disc of
Poincaré hyperbolic plane. By the Möbius transformation z 7→ eiθ a+z

1+az̄ we define
⊕M on D as a ⊕M b = a+b

1+āb . Then (D,⊕M ) is a gyrocommutative gyrogroup,
which is called Möbius gyrogroup(e.g. see [1, 9]).

2.1 Gyrovector Space

Gyrovector spaces provide the setting for hyperbolic geometry just as vector spaces
provide the setting for Euclidean geometry. The elements of a gyrovector space
are called points. Any two points of a gyrovector space give rise to a gyrovector.
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Definition 2.5. (Real Inner Product Gyrovector Spaces). A real inner product
gyrovector space (G,⊕,⊗) (gyrovector space, in short) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:
(1) G is a subset of a real inner product vector space V called the carrier of
G,G ⊂ V , from which it inherits its inner product, < ., . >, and norm, |·|, which are
invariant under gyroautomorphisms, that is, < gyr[u, v]a, gyr[u, v]b >=< a, b > for
all points a, b, u, v ∈ G.
(2) G admits a scalar multiplication, ⊗, possessing the following properties. For
all real numbers r, r1, r2 ∈ R and all points a ∈ G:
V1 1⊗ a = a.
V2 Scalar Distributive Law: (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a.
V3 Scalar Associative Law: r1 ⊗ (r2 ⊗ a) = (r1r2)⊗ a.
V4 Scaling Property: |r|⊗a|r⊗a| = a

|a| .
V5 Gyroautomorphism Property: gyr[u, v](r ⊗ a) = r ⊗ gyr[u, v]a.
V6 Identity Automorphism: gyr[r1 ⊗ v, r2 ⊗ v] = I.
(3) Real vector space structure (|G|,⊕,⊗) for the set |G| of one dimensional "vec-
tors" |G| = {±|a| | a ∈ G} ⊂ R with vector addition ⊕ and scalar multiplication
⊗, such that for all r ∈ R and a, b ∈ G,
V7 Homogeneity Property: |r ⊗ a| = |r| ⊗ |a|.
V8 Gyrotriangle Inequality: |a⊕ b| ≤ |a| ⊕ |b|.

Definition 2.6. (Gyrovector Space Isomorphisms). Let (G,⊕G,⊗G) and (H,⊕H ,
⊗H) be two gyrovector spaces. A bijective map φ : G → H is an isomorphism
from G to H if for all u, v ∈ G and r ∈ R,
(1) φ(u⊕G v) = φ(u)⊕H φ(v),
(2) φ(r ⊗G u) = r ⊗H φ(u) and
(3) < u

|u| ,
v
|v| >=< φ(u)

|φ(u)| ,
φ(v)
|φ(v)| >.

Example 2.7. We can form by

⊗ : R×D → D; (r, a) 7→ r⊗a := tanh(r ·tanh−1(|a|))· a
|a|
, if r 6= 0 and r⊗0 := 0

a multiplication of scalars with elements of D. Then ⊗ turns gyrogroups (D,⊕E)
and (D,⊕M ) into gyrovector spaces (D,⊕E ,⊗E) and (D,⊕M ,⊗M ). The gyrovec-
tor space (D,⊕E ,⊗E) provide algebraic settings for the Beltrami-Klein model
of hyperbolic geometry and (D,⊕M ,⊗M ) provide algebraic settings for Poincaré
model of hyperbolic geometry. Since a⊕M b = 1

2⊗(2⊗a⊕E2⊗b), Einstein gyrovec-
tor space (D,⊕E ,⊗E) and Möbius gyrovector space (D,⊕M ,⊗M ) are isomorphic.
It means Beltrami-Klein model and Poincaré model are isomorphic. The coinci-
dence ⊗E = ⊗M = ⊗ stems from the fact that for parallel vectors in D, Möbius
addition and Einstein addition coincide (cf., [11]).
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3. Results

3.2 An Extension of Möbius Gyrovector Space to the Whole
Space C

In this section we give a gyrovector space isomorphic to the Möbius gyrovector
space (D,⊕M ,⊗M ). Actually we extend the gyrovector space (D,⊕M ,⊗M ) to the
whole gyrovector space (C,⊕,⊗) as follows. Let for a ∈ D,

|a|2 = aā, γa :=
1√

1− |a|2
, βa =

1√
1 + |a|2

Define φ : D −→ C by a 7→ aγa. Therefore φ−1 : C→ D is given by a 7→ aβa. Now
we extend the Möbius addition ⊕M to ⊕ on C by the bijection map φ as follows:

∀a, b ∈ C, a⊕ b := φ(φ−1(a)⊕M φ−1(b))

Therefore we have

a⊕ b = λa,b
aβa + bβb
1 + ābβaβb

= λa,b(aβa ⊕M bβb)

where λa,b =
√

1
β2
aβ

2
b

+ 2<a,b>
βaβb

+ |a|2|b|2, or equivalently

a⊕ b =
1 + ab̄βaβb
|1 + ab̄βaβb|

(
a

βb
+

b

βa
)

It is not difficult to show that (C,⊕) is a gyrocommutative gyrogroup with identity
0 and

gyr[a, b] =
1 + ab̄βaβb
1 + ābβaβb

We only prove G5. Firstly, note that βa⊕b = βaβb
|1+ābβaβb| = βb⊕a. Therefore

gyr[a, b⊕ a] =
1 + a(b⊕ a)βaβb⊕a
1 + ā(b⊕ a)βaβb⊕a

=
1 + a 1+ab̄βaβb

|1+abβaβb| (
ā
βb

+ b̄
βa

)βaβb⊕a

1 + ā 1+ābβaβb
|1+abβaβb| (

a
βb

+ b
βa

)βaβb⊕a

=
1 + a

ā
βb

+ b̄
βa

1+ābβaβb
βaβaβb

1 + ā
a
βb

+ b
βa

1+ab̄βaβb
βaβaβb

=
1 + ābβaβb + aāβ2

a + ab̄βaβb
1 + ābβaβb + aāβ2

a + ab̄βaβb
× 1 + ab̄βaβb

1 + ābβaβb

= gyr[a, b]



192 M. Rostamzadeh and S. -Gh. Taherian

The addition ⊕ for parallel velocities reduces to

a⊕ b =
a

βb
+

b

βa

Now we define the scalar multiplication as follows:

r ⊗ v := φ(r ⊗M φ−1(v))

So we have
r ⊗ v = sinh(r sinh−1(|v|)) v

|v|
or equivalently,

r ⊗ v =
1

2
{(
√

1 + |v|2 + |v|)r − (
√

1 + |v|2 − |v|)r} v
|v|

if v 6= 0 and r ⊗ 0 := 0. In particular,

a′ :=
1

2
⊗ a =

√
βa√

1 + |a|βa +
√

1− |a|βa
· a and 2⊗ a =

2a

βa
.

(C,⊕,⊗) inherits its inner product from C such that its gyroautomorphism pre-
serves the inner product < ·, · >, hence

< gyr[a, b]u, gyr[a, b]v >=
1

2
(gyr[a, b]u · gyr[a, b]v + gyr[a, b]u · gyr[a, b]v)

Since gyr[a, b]gyr[a,b] = 1+ab̄βaβb
1+ābβaβb

1+ābβaβb
1+ab̄βaβb

= 1, so we have

< gyr[a, b]u, gyr[a, b]v >=
1

2
(uv̄ + ūv) =< u, v > .

V1 is trivial.
Let r1, r2 ∈ R and a ∈ C. Since βri⊗a = 1

cosh(ri sinh−1(|a|)) so

λr1⊗a,r2⊗a = cosh((r1 + r2) sinh−1(|a|)).

Therefore we have

r1 ⊗a⊕ r2 ⊗ a

= λr1⊗a,r2⊗a
tanh(r1 sinh−1(|a|)) + tanh(r2 sinh−1(|a|))

1 + tanh(r1 sinh−1(|a|)) tanh(r2 sinh−1(|a|))
a

|a|

= cosh((r1 + r2) sinh−1(|a|)) tanh((r1 + r2) sinh−1(|a|)) a
|a|

= sinh((r1 + r2) sinh−1(|a|)) a
|a|

= (r1 + r2)⊗ a



An Extension of Poincaré Model with Gyrovector Space Approach 193

Thus V2 is valid.

For r1, r2 ∈ R and a ∈ C we have:

r1 ⊗(r2 ⊗ a) = r1 ⊗ (sinh(r2 sinh−1(|a|)) a
|a|

)

= sinh(r1 sinh−1(| sinh(r2 sinh−1(|a|)) a
|a|

)|) r2 ⊗ a
|r2 ⊗ a|

= sinh(r1 sinh−1(| sinh(r2 sinh−1(|a|)))|) a
|a|

= sinh((r1r2) sinh−1(|a|)) a
|a|

= (r1r2)⊗ a

Therefore V3 is also valid.
V4 comes from definition.
Now since | gyr[a, b]| = 1, then for r ∈ R and a, b, u ∈ C we have:

r ⊗ gyr[a, b]u = sinh(r sinh−1(| gyr[a, b]u|)) gyr[a, b]u

| gyr[a, b]u|

= gyr[a, b] sinh(r sinh−1(|u|)) u
|u|

= gyr[a, b](r ⊗ u)

Hence V5 holds. Straightforward computations shows that V6 and V7 are valid.
Since ⊕M satisfies in triangle inequality, we can write

|a⊕ b| = |λa,b(aβa ⊕M βbb)|
= λa,b|(aβa ⊕M bβb)| ≤ λa,b(|aβa| ⊕M |bβb|) = |a| ⊕ |b|

So ⊕ satisfies in V8. Thus we have proved that (C,⊕,⊗) is a gyrovector space.

In the following, we show that (C,⊕,⊗) and (D,⊕M ,⊗M ) are gyroisomorphic.
Consider the map φ : (D,⊕M ,⊗M ) −→ (C,⊕,⊗) given by a 7→ aγa.

(i) For a, b ∈ D, φ(a⊕M b) = φ( a+b
1+āb ) = a+b

1+ābγaγb|1 + āb|.
On the other hand, since βaγa = 1

γa
and λaγa,bγb = γaγb|1 + āb|,

φ(a)⊕ φ(b) = aγa ⊕ aγb = λaγa,bγb
aγaβaγa + bγbβbγb
1 + aγaβaγabγbβbγb

= γaγb|1 + āb| a+ b

1 + āb

Hence φ(a⊕M b) = φ(a)⊕ φ(b).
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(ii) φ(r ⊗M a) = r ⊗M aγr⊗Ma = sinh(r tanh−1(|a|)) a
|a| , on the other hand,

r ⊗ φ(a) = r ⊗ aγa = sinh(r ln(
|a|√

1− |a|2
+

1√
1− |a|2

))
a

|a|

= sinh(r tanh−1(|a|)) a
|a|

So φ(r ⊗M a) = r ⊗ φ(a).

(iii) <
φ(a)

|φ(a)|
,
φ(b)

|φ(b)|
>=<

aγa
|a|γa

,
bγb
|b|γb

>=<
a

|a|
,
b

|b|
> .

From (i),(ii) and (iii) we conclude that φ is a gyrovector space isomorphism.
Thus we have proved the following theorem:

Theorem 3.1. (C,⊕,⊗) is a gyrovector space isomorphic to the Möbius gyrovector
space (D,⊕M ,⊗M ).

Note that by example 2.7, (C,⊕,⊗) is isomorphic to the Einstein’s gyrovector
space (D,⊕E ,⊗E) and Ungar gyrovector space (R2

c ,⊕U ,⊗U ) described in [1]. Also
note that (C,⊕,⊗) is exactly the Chen gyrovector space introduced in [1] by
specifying the function f : R+ → R+ given by f(r) = sinh( r2 ) in definition of
general addition of the group SL(2,C).

3.3 Extension of Poincaré Model of Hyperbolic Geometry
Since (D,⊕M ,⊗M ) provides the algebraic setting for the Poincaré model of hyper-
bolic geometry, and the gyrovector space (C,⊕,⊗) is an extension of it to C, so
(C,⊕,⊗) provides the algebraic settings for a new model of hyperbolic geometry
just as vector spaces provide the algebraic setting for Euclidean geometry. Also
our model is an extension of the hyperbolic geometry of the Poincaré model to the
whole plane C in which the unique geodesic through two given points a and b in the
gyrovector space (C,⊕,⊗) is given by a⊕(	a⊕b)⊗t with 0 ≤ t ≤ 1. This geodesic
(or, gyroline), its segment from a to b, and the midpoint mab = a⊕ (	a⊕ b)⊗ 1

2 ,
of the segment are shown in Fig. 1. These are Euclidean semi-hyperbolas with
asymptotes which intersect at the origin.

a

b

m
o

Figure 1. gyroline passing through two points a and b and their midpoint m.
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3.4 Trigonometry
One can employ the gyrogroup operation and its gyrovector space to describe the
trigonometry of hyperbolic geometry which is called now gyrotrigonometry (e. g.
see [6,11]). In the following by using the gyrovector space (C,⊕,⊗) we verify and
obtain some trigonometry relations of our model.
Let a, b ∈ C and a ⊥ b. Then

β(a⊕b)
√

2 = βa
√

2βb
√

2 (∗)

(i) By using (∗), β(a⊕b)
√

2|a⊕ b|2 = βa
√

2βb
√

2( |a|
2

β2
b

+ |b|2
β2
a

).

(ii) βa
√

2|a|2 ⊕ βb√2|b|2 =
βa
√

2|a|
2

ββ
b
√

2
|b|2

+
βb
√

2|b|
2

ββ
b
√

2
|a|2

. (∗∗)

But ββa√2|a|2 = 1√
1+

|a|4
1+2|a|2

=
β2
a

βa
√

2
, so (∗∗) is equal to βa√2βb

√
2( |a|

2

β2
b

+ |b|2
β2
a

).

From (i) and (ii) we get the hyperbolic Pythagorean theorem

β(a⊕b)
√

2|a⊕ b|
2 = βa

√
2|a|

2 ⊕ βb√2|b|
2

Thus we have proved the following theorem:

Theorem 3.2. Let a, b ∈ C and a ⊥ b. Then the hyperbolic Pythagorean theorem
in (C,⊕,⊗) is of the form

βc
√

2|c|
2 = βa

√
2|a|

2 ⊕ βb√2|b|
2.

Note that in general, for any a, b ∈ C we have the following relations:

β2
aβ

2
b |a⊕ b|2 = β2

a|a|2 + β2
b |b|2 + 2βaβb < a, b >,

βa⊕b =
βaβb

|1 + ābβaβb|
.

Hyperbolic Distance. Define d : C × C → R≥0; (a, b) 7→ |a 	 b|. Equivalently
we can write

d(a, b) = | a
βb
− b

βa
|.

It is easy to show that d is a metric on C which is the hyperbolic distance of any
two points a and b in our model.

3.4.1 Hyperbolic Angle

For three points a, b and c in gyrovector space (C,⊕,⊗) the cosine of the hyperbolic
angle α between two geodesic rays a⊕(	a⊕b)⊗t and a⊕(	a⊕c)⊗t with common
point a and respectively containing b and c is given by the equation

cosα =
	a⊕ b
| 	 a⊕ b|

· 	a⊕ c
| 	 a⊕ c|
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This hyperbolic angle α is independent of the choice of the points b and c on the
geodesic rays, and it remains invariant under left gyrotranslations and rotations.

Theorem 3.3. Let 4(a, b, c) be any triangle in hyperbolic plane C with angles
α, β and γ in a, b and c respectively and denote the opposite sides of a, b and c
respectively with a, b and c. Then

(i) If γ = π
2 then

cos(α) =
|b|βb(2− β2

c )

|c|βc(2− β2
b )

=
|b|
|c|
β2
b
√

2
βc

β2
c
√

2
βb

and

sin(α) =
|a|βc
|c|βa

(ii) cos(γ) =
β2
a
√

2
β2
b
√

2
−β2

c
√

2

4|a|b| βaβb

(iii)
sin(α)βa
|a|

=
sin(β)βb
|b|

=
sin(γ)βc
|c|

(iv) β2
c
√

2
= cos(α) cos(β)+cos(γ)

sin(α) sin(β) or equivalently,

|c|2 =
cos(α+ β) + cos(γ)

2 sin(α) sin(β)

3.5 Defect and Area

Let 4(a, b, c) be a triangle in (C,⊕), without loss of generality we can assume
that c = o. It is shown in Proposition 3.3 of [3] that the defect of 4(o, a, b),
hence δ, is the measure of gyr[a,−b]. Since gyr[a,−b] = 1−ab̄βaβb

1−ābβaβb and cos(δ) =
1
2 ( gyr[a,−b] + gyr[a,−b]), so we obtain

cos(δ) =
1− 2 < a, b > βaβb + [(ab̄)2 + (āb)2]β2

aβ
2
b

1− 2 < a, b > βaβb + |a|2|b|2β2
aβ

2
b

Thus if we set b⊥ := ib where i =
√
−1, we have

tan(
δ

2
) =

< a, b⊥ > βaβb
1− 2 < a, b > βaβb

In particular if a ⊥ b, then

tan(
δ

2
) = |a||b|βaβb



An Extension of Poincaré Model with Gyrovector Space Approach 197

We define area equal to defect, so the area of 4(a, b, c) with defect δ is

S := 2 tan−1(
< a, b⊥ > βaβb

1− 2 < a, b > βaβb
)

By similar arguments described in [5] we have the following result about circles
in this model:

Theorem 3.4. Let Cr be any circle of radius r in hyperbolic plane C with cir-
cumference P and area S. Then

P =
4πr

βr
, S = 4πr2

Theorem 3.5. Let 4(A,B,C) be any triangle and Cr be its circumscribed circle
with radius r in hyperbolic plane C. If δ be its defect then

sin(
δ

2
) =
|a||b||c|
2rβr

βaβbβc(2− β2
r ).
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