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The Principle of Relativity:

From Ungar’s Gyrolanguage for Physics

to Weaving Computation in Mathematics

Françoise Chatelin⋆

Abstract

This paper extends the scope of algebraic computation based on a non
standard × to the more basic case of a non standard +, where standard
means associative and commutative. Two physically meaningful examples
of a non standard + are provided by the observation of motion in Special
Relativity, from either outside (3D) or inside (2D or more), We revisit the
“gyro”-theory of Ungar to present the multifaceted information processing
which is created by a metric cloth W , a relating computational construct
framed in a normed vector space V , and based on a non standard addition
denoted ◦+ whose commutativity and associativity are ruled (woven) by a
relator, that is a map which assigns to each pair of admissible vectors in V

an automorphism in Aut W . Special attention is given to the case where the
relator is directional.
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1. About Relating Computation

1.1 Introduction

Hypercomputation, that is nonlinear computation in real multiplicative Dickson
algebras Ak

∼= R2
k

, is developed in (Chatelin 2012 a). For k ≥ 2 (resp. k ≥
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3) multiplication is not commutative (resp. not associative). However addition
remains both associative and commutative.

The situation changes in an essential way when computation is merely additive
and there exists a relator which rules the way any two multidimensional numbers
in Rn (i.e vectors) are to be added. This kind of relating computation will be
defined in precise terms in Section 2. It includes the special case of an explicit
metric reference consisting of a positive finite number λ, 0 < λ < ∞. The classi-
cal structure of an abelian additive group is weakened by considering an addition
whose commutativity and associativity are controlled by the relator. A physically
meaningful example was provided a century ago by 3D-Special Relativity (Ein-
stein) where the role of λ as a metric reference is played by c, the speed of light
in vacuum, and the relator is a plane rotation.

1.2 Special Relativity in the Early Days

It was soon recognised that hyperbolic geometry underlies Einstein’s law of addi-
tion for admissible velocities (Varičak 1910, Borel 1914) creating the relativistic
effect known today as Thomas precession (Silberstein 1914, Thomas 1926). But,
despite Maxwell’s valiant efforts (Maxwell 1871), Hamilton’s noncommutative × of
4-vectors was still unacceptable for most scientists at the dawn of the 20th century.
Therefore Einstein’s noncommutative + of 3-vectors (representing relativistically
admissible velocities) was fully inconceivable: Einstein’s geometric vision was far
too much ahead of its time! An analytic version of Special Relativity with more
appeal to physicists was conceived by Minkowski in 1907, by dressing up as physi-
cal concepts the Lorentz transformations which had been introduced by (Poincaré
1905) as the correction of Lorentz preliminary version (1904), see (Walter 1999,
Auffray 2005, Damour 2008). This version was quickly grasped by leading physic-
its (Von Laue, Sommerfeld); it is the version adopted until today in most physics
textbooks for students, which carefully avoids any reference to the underlying non
commutative quaternionic field H invented by Hamilton (1843).

1.3 A Mathematical Revival in 1988

Einstein’s intuition was left dormant for some 80 years until it was brought back
to a new mathematical life in the seminal paper (Ungar 1988). During almost
30 years, Ungar has crafted an algebraic language for hyperbolic geometry lucidly
presented in (Ungar, 2008). The book sheds a natural light on the physical the-
ories of Special Relativity and Quantum Computation. It dissipates some of the
mystery that has shrouded earlier expositions. At the same time, it provides new
insight on hyperbolic geometry. Ungar’s geometry, which is expressed in “gyrolan-
guage”, is based on the key concepts of gyrator and gyrovector space. They are
mathematical concepts abstracted from Thomas precession, a kinematic effect in
3D-special relativity. The physical effect was anticipated in (Borel 1913, 1914).
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As we shall see, these concepts find an equally natural use beyond physics, in the
realm of computation ruled by a relator.

1.4 Geometric Information Processing in Relating Compu-

tation

The gyrolanguage is geared towards Hyperbolic Geometry and Physics. In this
paper, we export some of Ungar’s tools developed for mathematical physics into
mathematical computation in a relating context (Definition 2.1 below). The re-
ward of the shift of focus from physics to computation is to gain insight about the
geometric ways by which information can be organically processed in the mind of
a computing agent when relation prevails. This processing exemplifies the com-
putational thesis posited in (Chatelin 2012 a,b) by revealing geometric aspects of
organic intelligence.

The change of focus entails some necessary changes in the vocabulary which
are signalled by a reference to the original gyroterm defined in (Ungar 2008). The
reader can find all the necessary theoretical background for the presentation to
follow in Ungar’s work, conveniently put together in his 2008 book which is an
algebraic goldmine. Unless otherwise stated, all cited gyroresults are taken from
this book.

1.5 Organisation of the Paper

Sections 2 to 6 export parts of Ungar’s gyrotheory for physics into relating com-
putation: an organ is a gyrocommutative gyrogroup (Section 2), a metric cloth is
a gyrovector space (Section 3). The associated cloth geometry is studied by means
of three basic organic lines, the first two corresponding to gyrolines and cogyrolines
(Sections 4 to 6)). The rest of the paper (Sections 7 to 9) is original. In Section
7 we restrict our attention to those relators which are directional because they
do not depend on the norm of the vectors. This restriction enables us to show
that the third organic line enjoys a twofold interpretation in terms of each of two
geodesics (Section 7). Section 8 develops the consequences for Weaving Informa-
tion Processing based on cloth geometry. Finally, epistemological considerations
are presented in Section 9.

2. Additive Relating Computation

2.1 Preliminaries

A groupoid (S, ◦+) is a set S of elements on which a binary operation called addition
and denoted ◦+ is defined : (a, b) ∈ S × S 7→ a ◦+ b ∈ S. An element 0 such that
0 ◦+a = a (resp. a ◦+0 = a) is called a left (resp. right) neutral. An automorphism
for (S, ◦+) is a bijective endomorphism ϕ which preserves ◦+ : ϕ(a ◦+ b) = ϕ(a) ◦+ϕ(b)
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for all a, b ∈ S. The set of automorphisms forms a group (relative to ◦+ ) denoted
Aut (S, ◦+) with the identity map I as unit element. The subtraction is denoted
◦− : a ◦− b = a ◦+( ◦− b). In particular ◦− a, the left opposite of a, satisfies ◦− a ◦+a = 0.

2.2 Relators

We suppose that we are given a map:

rel : S × S → Aut (S, ◦+)
(a, b) 7→ rel(a, b)

such that rel(a ◦+ b, b) = rel(a, b). (A1)

A map rel satisfying the reduction axiom (A1) is called a relator. We set R =
rel(S, S) for the range of the relator in Aut (S, ◦+).

2.3 Organs underlie Additive Relating Computation

We suppose that ◦+ satisfies the additional axioms:
a ◦+ b = rel(a, b)(b ◦+a), (A2)

a ◦+(b ◦+ c) = (a ◦+ b) ◦+ rel(a, b)c, (A3)
which express by means of rel(a, b) a weak form of commutativity (A2) and asso-
ciativity (A3). Then (a ◦+ b) ◦+ c = a ◦+(b ◦+ rel(b, a)c) by Theorem 2.35.
The algebraic structure (G, rel) consisting of the additive groupoid G = (S, ◦+)
and the relator rel is called an organ.

Definition 2.1 An additive relating computation refers to any algebraic compu-

tation taking place in an organ defined by the data { ◦+ , rel} satisfying the three
axioms (A1), (A2), (A3).

Remark 1. In (Definition 2.7, Ungar 2008), the relator is called gyrator with
(A1)⇐⇒ (G5) (=left loop property in multiplicative algebra vocabulary). Next
(A3)⇐⇒ (G3) is gyroassociativity and (A2)⇐⇒ (G6) is gyrocommutativity which
is optional in a gyrogroup. An organ is a gyrocommutative gyrogroup (Definition
2.8). And ◦+ is denoted either + or ⊕ therein.

2.4 Some Properties of the Relator

The neutral 0 and the opposite ◦−a are unique: (left=right), and a ◦−a = ◦+ a ◦−a =
0.
The relator satisfies:
• ◦− (a ◦+ b) = rel(a, b)( ◦− b ◦−a), (Theorem 2.11)

= ◦− a ◦− b (Theorem 3.2)
• rel−1(a, b) = rel( ◦− b, ◦− a) (Theorem 2.32)
• rel(b, a) = rel−1(a, b) (Theorem 2.34)

= rel(a, ◦− rel(a, b)b) (Lemma 2.33)
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More identities are found in Table 2.2 (Ungar 2008, p.50). In particular:

rel( ◦− a, a) = rel(a, ◦− a) = rel(0, a) = rel(a, 0) = rel(0, 0) = I (2.1)

The identities in (2.1) follow from the reduction axiom (A1). Because ◦−a ◦+ a =
0 ◦+0 = 0, rel( ◦− a, a) and rel(0, 0) could be arbitrarily chosen in Aut (S, ◦+). In
full generality, 0 is a singularity with an indeterminate character for the relator.
The indeterminacy disappears under the reduction axiom (A1).
The following additional hypotheses are useful:

• g ◦+ g = 0 =⇒ g = 0 holds for any g ∈ G (H1)

• for any 0 6= g ∈ G, there exists at least one half-vector h
such that h ◦+h = g. (H2)

(H1) is satisfied in the Examples 2.1 to 2.3 that will be given in Section 2.6. It
is the additive analogue of the multiplicative notion of 2-torsion free algebra, see
Definition 3.32 on p. 72.
Under the 2 assumptions (H1) and (H2) for ◦+ , the following statements hold:

• the half-vector h is unique (Theorem 3.34),

• rel(a, b) 6= ◦− I (Theorem 3.36), that is anticommutativity is ruled out:
a ◦+ b 6= ◦− (b ◦+a),

• rel(a, b)b = ◦+ b =⇒ b = 0 (Theorem 3.37).

2.5 The Two Basic Equations Associated with ◦+ and rel

Because ◦+ is not commutative we are led to consider L = {La = a ◦+ ·; a ∈ G} and
R = {Ra = · ◦+ a; a ∈ G} Left– (resp. right–) addition ◦+ is abbreviated L ◦+ (resp.
R ◦+ ). We consider the left and right linear equations associated with a, b in G.

Lax = a ◦+x = b, (2.2)

Ray = y ◦+ a = b, (2.3)

Each of them has the unique solution

x = ◦−a ◦+ b, by Eq.(2.30), (2.4)

y = b ◦− rel(b, a)a. by Eq.(2.32), (2.5)

The equality (2.5) suggests to consider the composite map ◦+ rel(·, ◦− ·) as an in-
duced addition +̂ defined by

(a, b) ∈ G×G 7→ a +̂ b = a ◦+ rel(a, ◦− b)b (Theorem 2.14). (2.6)

The corresponding subtraction, denoted −̂ , is such that (2.5) can be rewritten as
y = b −̂ a (Theorem 2.22). Definition (2.6) is equivalent to a ◦+ b = a+̂rel(a, b)b.

Three properties about ◦+ and +̂, are noteworthy:
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• Aut (S, ◦+) = Aut (S, +̂ ) (Theorem 2.28),

• +̂ is classically commutative (Theorems 2.38 and 3.4).

• ◦− a = −̂ a (Theorem 2.21).

The concept of an organ is determined by two data: the addition ◦+ and the associ-
ated relator (as a map into the automorphisms for ◦+ ). In the relating perspective,
the source notion is the pair ( ◦+ , rel) where the relator rules its associated addition
◦+ . This addition precedes the secondary addition +̂ , which is induced by R ◦+ and
the relator combined together. This novel concept reduces to the classical concept
of an abelian additive group when the primitive operation is associative and com-
mutative (hence ◦+ = +̂ ), that is when the range R reduces to {I}. By expanding
its range to the larger subset R ⊂ Aut (S, ◦+), the relator controls the weak (or
relative) commutativity and associativity of ◦+ , thus introducing anisotropy in the
organic structure. This has the additional benefit to induce the existence of +̂ ,
another addition which is classically commutative.

In other words, the expansion {I} → R loosens the rigid structure of an abelian
group and provides the more flexible, relating, structure of an organ which lies at
the foundation of relating computation.

When the range R is a proper subset of Aut (S, ◦+), its role is to reduce the
variety of possible automorphisms. The standard group structure appears as a
limit case corresponding to the ultimate reduction R = {I}.
Remark 2. The group structure which underlies classical computation guarantees
the invariance of its logic. From their logical vantage point, many logicians view
the whole mathematical enterprise as a mere giant tautology. It is clear that the
reduction of mathematics to a formal axiomatic system does not do justice to
the creative power of non linear computation which may lead to a non standard
addition ruled by a relator (see Example 2.2 below). We believe that the concept
of an organ is better suited than that of a group to describe some of the organic
logics which are at work in life’s computation and are evolutive by essence

Organic Information Processing (IP) is a dynamical process which reflects the
variability of the relator. Its operations in G consist of ◦+ , +̂ and their auto-
morphisms. One can view an organ as a new algebraic species, some kind of a
“fieldoid”, based on the groupoid, in which +̂ plays the role attributed to × in
an ordinary field (group-based) structure. The main difference with a field is that
the neutral 0 (identical for ◦+ and +̂ ) replaces the unit 1 6= 0. The analogy is
commented next.

Remark 3. The induction {R ◦+ , rel} → +̂ is analogous to the creation of the
product n× a by n repeated additions of the real number a. In this most familiar
case, the multiplication stems from an iterated addition.
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2.6 Three Basic Examples

The following Examples are found in Sections 3.4, 3.8 and 3.10 respectively of
(Ungar 2008) The explicit formula for x ◦+ y entails the determination of rel(x, y).

Example 2.1 The subgroup of all Möbius transformations of the complex open unit disk

D = {z ∈ C; |z| < 1} into itself is defined by : (a, z) 7→ eiθ a+z
1+āz

for a, z ∈ D and θ ∈ R. If we

set a ◦+ z = a+z
1+āz

, then z ◦+ a = a+ z
1 + z̄a . The relator is defined by rel(a, z) = 1+az̄

1+āz
∈ Aut (D, ◦+).

Hence clearly a ◦+ z = rel(a, z)(z ◦+ a). Endowed with ◦+ the unit disk becomes an organ. Observe
that ◦+ is expressed by means of the 3 operations +,×, conjugacy defined on C. It is known
in mathematics as a hyperbolic translation in the plane R2. The relator is a rotation since its

modulus is 1. The pseudo-hyperbolic distance in D̄ from a to b is d(a, b) =
∣

∣

∣

a− b
1− āb

∣

∣

∣
= |b ◦− a|.

The metric used by Poincaré(1882) in his disc-model for hyperbolic geometry in R2 is

tanh−1 d(a, b) =
1

2
ln

1 + d(a, b)

1− d(a, b)
,

cf. Ungar, Section 6.17, p. 216-217. There exists a real version of this addition defined in the
open unit disk B1 = {x ∈ R2, ‖x‖ < 1} which reads:

x ◦+ y =
(1 + 2 < x, y > +‖y‖2)x+ (1− ‖x‖2)y

1 + 2 < x, y > +‖x‖2‖y‖2
,

cf.(3.127) in Ungar.
Setting X = ‖x‖‖y‖ ≥ 0, θ = ∡(x, y) the denominator X2 + 2X cos θ + 1 has no real roots

unless cos θ = −1, then X = ‖x‖‖y‖ = 1 is a double root. The condition that x, y ∈ B̄1 entails

‖x‖ = ‖y‖ = 1, x = −y. We observe then that x ◦+(−x) = x− x
1 − 1 = 0

0 is an indeterminate form

for x ∈ ∂B1.
When x and y are linearly dependent, y = rx, r ∈ R (say) then the addition becomes

associative and commutative for x, y inside B1 (so that 1 + r‖x‖2 = 1+ < x, y > 6= 0)

x ◦+ y =
1

1+ < x, y >
(x+ y)

Example 2.2 Let c be the vacuum speed of light. We set Bc = {x ∈ R3; ‖x‖ < c} to represent

the ball of relativistically admissible velocities.
Einstein’s law of addition of velocities x, y ∈ Bc is

x ◦+ y =
1

1 + <x,y>
c2

[

x+ y +
1

c2
γx

1 + γx
x ∧ (x ∧ y)

]

where γx =
(

1− 1

c2
‖x‖2

)

−1/2
is the inverse of Lorentz contraction

√

1−

(

‖x‖
c

)2

.

Using Grassmann identity in R3:

x ∧ (y ∧ z) =< x, z > y− < x, y > z,

(Lamotke 1998, Chapter 7, p. 207), one can also write

x ◦+ y =
1

1 + <x,y>
c2

[

x+
1

γx
y +

1

c2
γx

1 + γx
< x, y > x

]

a formula well defined, unless 1 +
‖x‖‖y‖

c2
cos θ = 0, where θ = ∡(x, y). The relation cos θ =

− c2

‖x‖‖y‖
for x, y ∈ B̄c entails that x, y ∈ ∂Bc and cos θ = −1. Therefore x = −y, and

x ◦+(−x) = 0
0 is an indeterminate form.
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The two velocity components, parallel and orthogonal to the relative velocity between inertial
systems, were given by Einstein in his 1905-epoch-making paper. The above formula is valid for
n ≥ 2.

Einstein’s addition is ruled by a relator which is the rotation: y ◦+ x 7→ x ◦+ y in the plane
spanned by x and y (when independent) with axis parallel to x ∧ y through the angle ε, 0 ≤
|ε| < π (Borel 1913, Silberstein 1914). The angle ε is related non linearly to θ = ∡(x, y) and to
1
c ‖x‖,

1
c ‖y‖ in the following way (Ungar 1988,1991): ε = 0 for |θ| ∈ {0, π} and for |θ| ∈]0, π[ x

and y are independent, yielding:

cos ε =
(ρ + cos θ)2 − sin2 θ

(ρ + cos θ)2 + sin2 θ
,

sin ε = −2
(ρ + cos θ) sin θ

(ρ + cos θ)2 + sin2 θ
,

with ρ2 = γx+1

γx−1

γy+1

γy−1
, ρ > 1, and |ε| < |θ|.

When ‖x‖ and ‖y‖ tend to c−, γx and γy tend to ∞ and ρ → 1+. Then cos ε → cos θ and
sin ε→ − sin θ, that is ε → −θ.

We recall that for x, y in ℑH ∼= R3, x × y = − < x, y > +x ∧ y ∈ H ∼= R4, where x ∧ y =
1
2 [x, y] = 1

2 [x × y − y × x] ∈ ℑH. Therefore Einstein’s addition wraps up the two distinct
operations + and × in ℑH into a single synthetic addition denoted ◦+ . The synthesis is realised
on independent vectors at the expense of classical commutativity and associativity.

Example 2.3 V = Rn, n ≥ 2 is the euclidean linear vector space with scalar product < ·, · >.

Let be given λ, 0 < λ < ∞, and define vλ = 1

λ
v for v ∈ V , βv =

(

1 + ‖vλ‖
2
)

−1/2
, 0 < βv ≤ 1.

We consider

u ◦+ v =

(

1

βv
+

βu

1 + βu
< uλ, vλ >

)

u+ v

defined for u, v ∈ V . For n = 3 and λ = c, this additive law governs the relativistic addition
of proper velocities expressed in traveller’s time. The relator is again a rotation. If u and v are

dependent, u ◦+ v = 1
βv
u+ 1

βu
v (Eq. (3.214) on p. 96).

The reader can check that in each example above x ◦+ y is symmetric in x and
y iff x and y are dependent.

2.7 Liaison Λ between rel, ◦+ and +̂

To the linear equations (2.2), (2.3) for ◦+ , we add the third equation for +̂

a +̂ x̂ = x̂ +̂ a = b (2.7)

which admits the unique solution

x̂ = ◦− ( ◦− b ◦+a) = b ◦−a. (2.8)

Observe that x = rel( ◦−a, b)x̂ by (A2)⇐⇒ x̂ = rel(b, ◦−a)x.

Each of the solutions x, y and x̂ is obtained by a respective call to the three
following cancellation laws for ◦+ and +̂ :

• left cancellation for ◦+ : a ◦+( ◦− a ◦+ b) = b (2.9)
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• right cancellation for ◦+ : (b −̂ a) ◦+ a = b (2.10)

• cancellation for +̂ : (b ◦−a) +̂ a = a +̂ (b ◦− a) = b (2.11)

Identities (2.10) and (2.11) express a link by means of the relator between R ◦+
and +̂ which is not present in (2.9) concerning L ◦+ . If one uses x = ◦−a ◦+ b,y =
b ◦− rel(a, b)a = b−̂a and x̂ = b ◦− a, the three identities become respectively

a ◦+x = b (2.12)

y ◦+ a = b (2.13)

x̂ +̂ a = a +̂ x̂ = b (2.14)

This rewriting separates R ◦+ and +̂ in the identities (2.10), (2.11) which ap-
pear now as (2.13) = right cancellation for ◦+ , (2.14)=cancellation for +̂ .

None of the two writings is a faithful description of the complete computational
reality which is, by essence, connected. Whichever writing is chosen, the reader
should keep in mind that a liaison based on rel(a, ·) exists between · ◦+ a and
·+̂a = a+̂ · for rel(a, ·) 6= I when the additive cancellation laws are at work. This
liaison reflects the existence of the relator which regulates any relating computation
performed in its organ. The liaison concerns L ◦+ as well. Indeed, the equality (2.8)
x̂ = b ◦−a suggests to consider the equation involving Lb:

Lbx̃ = b ◦+ x̃ = a

whose solution is x̃ = ◦− b ◦+a = ◦− (b ◦−a) = ◦− x̂.

Definition 2.2 We call liaison Λ(rel, ◦+ , +̂ ) the computational consequences of

the three fundamental cancellation laws (2.9), (2.10) and (2.11).
The computational dynamics of organic IP results from the shifts L ◦+ , R ◦+

and the automorphisms of G. Given a and b, we shall be concerned in Sections 4
and 7 with the evolution of x̂ = b ◦−a (resp. y = b −̂a) when a left (resp. right)
shift by an arbitrary g ∈ G is realised simultaneously on a and b.

Regarding left shift g ◦+ and ◦− , we have:

(g ◦+ b) ◦− (g ◦+ a) = rel(g, b)(b ◦−a) (Theorem 3.13). (2.15)

For future reference we mention the following result with right shift:

a −̂ b = (a ◦+ k) −̂ (b ◦+ g) with k = rel(a, b)g (Theorem 2.23). (2.16)
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3. Metric Cloths

3.1 The Normed Vector Space Frame

Let V be a linear vector space over R with finite dimension n ≥ 2, endowed with
a scalar product < a, b > for a, b ∈ V and derived norm ‖a‖ =

√
< a, a >.

The addition + and scalar multiplication are standard operations in V ∼= Rn.
Let λ be given, 0 < λ < ∞ and set Bλ = {x ∈ V ; ‖x‖ < λ}. We suppose that
the ball Bλ, or V itself, are endowed with the organic structure G = (S, ◦+) with
relator rel, where S represents Bλ or V as the case may be. The neutral 0 for G
is identified with 0 ∈ V .

The linear vector space V is the frame of the organ G iff the relator preserves the
scalar product: < rel(u, v)x, rel(u, v)y >=< x, y > for any quadruple (u, v, x, y) ∈
G4. It follows that ‖rel(x, y)‖ = 1 for x, y ∈ G, and G inherits from V its scalar
product < ·, · > and norm ‖ · ‖ which are invariant under R ⊂ Aut G.

We assume moreover that, if x and y are linearly dependent in G, then for
x = ry, r ∈ R (say), (ry) ◦+ y = y ◦+(ry). Hence rel(ry, y) = rel(x, y) = I (=⇒
x ◦+ y = x +̂ y). The formula for ◦+ becomes symmetric in x and y when x and y
are colinear. The property is satisfied for the 3 Examples given in Section 2.6.

3.2 The Scalar Multiplication ◦×
We suppose that G admits a scalar multiplication ◦× : (R×G or G×R → G) such
that

• r ◦×a = a ◦× r, r ∈ R, a ∈ G,

• 1 ◦×a = a,

• (r1 + r2) ◦× a = (r1 ◦×a) ◦+(r2 ◦×a),

• (r1r2) ◦× a = r1 ◦× (r2 ◦× a), a ∈ G, r1, r2 ∈ R,

• for r and a 6= 0 |r| ◦× a

‖r ◦× a‖
= a

‖a‖ ,

• rel(u, v)(r ◦× a) = r ◦× (rel(u, v)a) for u, v, a ∈ G, r ∈ R,

• rel(r1 ◦×u, r2 ◦×u) = I, u ∈ G, r1, r2 ∈ R.

• ‖r ◦× a‖ = |r| ◦× ‖a‖, r ∈ R, a ∈ G.

Even though ◦× does not distribute with ◦+ in general, the following special
identity holds:

2 ◦× (a ◦+ b) = a ◦+(2 ◦× b ◦+a) = a+̂(a ◦+2 ◦× b)

for any a, b ∈ W (Theorem 6.7).
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3.3 n = 1: the Measuring Rod M = {±‖a‖, a ∈ G}
All elements in M are colinear, hence the relator image reduces to {I1 = 1}, and
◦+ = +̂ on M . M is a 1D-linear vector line equipped with ◦+ , ◦× and ‖ ·‖ deriving
from G and V . These 3 operations usually differ from the standard operations
+, ·, | · | defined on R.

3.4 n ≥ 2: the V -Framed Metric Cloth W

We suppose that ‖a ◦+ b‖ ≤ ‖a‖ ◦+ ‖b‖, a, b ∈ G. This ends the list of axioms satisfied
by Ungar’s gyrovector space in the carrier V (Definition 6.2, Ungar 2008).

To this list, we add that, when a and b are dependent and nonzero: b = ra,
r 6= 0, there exists l ∈ R\{0} such that b = l ◦× a with 1 · a = 1 ◦×a = a for r = 1.
If r = 0, 0 · a = 0 = 0 ◦×a = 0. In other words, r · (·) = r(·) = l ◦× (·): the
map l 7→ r = µ(l), µ(0) = 0, µ(1) = 1, is a change of scale on the axis spanned
by a 6= 0, induced by the change of context from the linear vector space V (+, ·)
to the additive cloth W ( ◦+ , ◦× ). As a consequence rel(a, b) = I and the vectors
a ◦+ b = a+̂b = (1 + l) ◦×a are colinear with a+ b = (1 + r)a.

The structure W = (S, ◦+ , ◦× ) = (G, ◦× ) obeying the assumptions above is
a metric cloth in the normed vector frame V . The cloth W is organically and
metrically woven by { ◦+ , relator, ◦× , ‖ · ‖}. It satisfies the

Proposition 3.1. The addition ◦+ in the metric cloth W satisfies (H1) and (H2).

Proof. 1) (H1): observe that g ◦+ g = 2 ◦× g. Hence if 2 ◦× g = 0, ‖2 ◦×g‖ = 2 ◦×‖g‖ = 0
and ‖g‖ = 0 in ⇐⇒ g = 0.

2) (H2): g = 1
2 ◦× (2 ◦× g) = 1

2(g ◦+ g). Now Ungar’s Theorem 6.4 tells us that ◦×
distributes axially along the axis spanned by any g 6= 0 in G:

r ◦× (r1 ◦× g ◦+ r2 ◦× g) = r ◦× (r1 ◦× g) ◦+ r ◦× (r2 ◦× g) =

(rr1) ◦× g ◦+(rr2) ◦× g = (r(r1 + r2)) ◦× g.

Setting r = 1/2 and r1 = r2 = 1 we get 1
2 ◦× (g ◦+ g) = 1

2 ◦× g ◦+ 1
2 ◦× g. Therefore

the half-vector h for g exists and is uniquely defined by 1
2 ◦× g.

Because ◦× distributes axially in W , it follows readily that anticommutativty
is ruled out for ◦+
Example 3.1 The scalar multiplication for the organ Bc in Example 2.2 is such that r ◦× 0 = 0,

r ◦× x = µ(r)x for 0 6= x ∈ Bc. We set xc = 1

c
x, then Definition 6.86 on p. 218 gives

µ(r) =
1

‖xc‖
tanh(r tanh−1 ‖xc‖), r ∈ R, (3.1)

with µ(0) = 0, µ(1) = 1. Then Bc becomes the R3-framed cloth WE (based on Einstein’s
addition) which is an alternative framework for Special Relativity in Physics, classically presented
by means of Lorentz transformations, hence implicitly on the field of quaternions H.
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Let q = (cα,X) be given in H, with real part cα, α ∈ R and imaginary part X in R3. Then
q2 = c2α2 − ‖X‖2 + 2cαX. A Lorentz transformation in H leaves invariant the quantity

ℜq2 = c2α2 − ‖X‖2 = f constant for all q ∈ H

(Poincaré 1905). Observe that ‖X‖2 = c2α2 − f and ‖ℑq2‖2 = 4c2α2(c2α2 − f) are nonnegative
iff c2α2 ≥ f which is always satisfied when f ≤ 0.

By (11.2) in (Ungar 2008), the Lorentz transformation without rotation is a boost L(u) for
u ∈ Bc such that, for uc = 1

c
u, qc = 1

c
q = (α,Xc)

L(u)qc = (γu[α+ < uc, Xc >], γuu[α+
γu

1 + γu
< uc, Xc >]).

Then by (11.10) for u, v ∈ Bc we get the composition law:

L(u)L(v) = L(u ◦+ v)rel(u, v) = rel(u, v)L(v ◦+u).

The general case (transformations with rotations in SO(3) is given in (11.15), (11.20).
These formulae shed an interesting light about the connection between hypercomputation in

H based on × and computation in the cloth WE based on Einstein addition ◦+E . The connection
is developed in the references (Chatelin 2011, 2012b).

Example 3.2 For a given λ, 0 < λ < ∞, we set xλ = 1
λ
x for x ∈ Rn, and consider the organ

Bλ = {x ∈ Rn; ‖x‖ < λ} where the addition is the Poincaré addition

x ◦+
P
y =

(

1 + 2 < xλ, yλ > +‖yλ‖
2
)

x+
(

1− ‖xλ‖
2
)

y

1 + 2 < xλ, yλ > +‖xλ‖
2‖yλ‖

2

which is not well-defined when y = −x on the sphere ∂Bλ. The scalar multiplication r ∈ R 7→
r ◦× x = {0 for x = 0, µ(r)x for 0 6= x ∈ Bλ} is defined by (3.1) where c is replaced by λ
(Definition 6.83 where Möbius stands for Poincaré).

Using a common reference λ, 0 < λ < ∞, we obtain two metric cloths WE and WP framed
in Rn. Remarkably, these two cloths are isomorphic in the following sense. The bijective map

ψ : WE →WP defined by x 7→ x′ = ψ(x) = 1
2 ◦× x preserves ◦+ and ◦× . See Table 6.1 on p. 226

for more, see also (Ungar 2012). The commutator [x, y] = (x ◦+ y)− (y ◦+ x) is studied for ◦+
E

and
◦+

P
in (Chatelin, 2012c).

Example 3.3 Let ◦+PV represent the relativistic addition of velocities in the traveller’s time

defined in Example 2.3. The underscript PV for proper velocity used by Ungar indicates that
time refers to the traveller, i.e. the moving observer (standing inside the phenomenon) rather
than to an outside observer. Definitions 6.87 on p.223 gives

µPV (r) =
1

‖xλ‖
sinh(r sinh−1 ‖xλ‖), r ∈ R,

which is a modification of (3.1): λ replaces c and sinh replaces tanh. Then (V ◦+PV , ◦× ) is the
metric cloth WPV .

Because a − a = 0 in V , −a = (−1) × a = ◦− a in W . In general r ◦× (a ◦+ b) 6=
(r ◦×a) ◦+(r ◦× b), unless a and b are dependent. Scalar multiplication distributes
axially (Theorem 6.4). The automorphisms of W form the group Aut (W ): they
consist of automorphisms of G which preserve also the scalar multiplication ◦× and
the scalar product < ·, · > (Definition 6.5).

The identification −a = ◦−a = −̂ a which holds in W provides more insight on
the induced addition +̂ by considering the mirror equation for (2.2) where a and
b are exchanged:

b ◦+ x̃ = a. (3.2)



Weaving Computation 211

Lemma 3.2.

x̃ = −x̂ (3.3)

Proof. (3.1) yields x̃ = −b ◦+a by (2.4) and x̂ = b ◦−a by (2.8). Now x̂ = −(−b ◦+a) =
−x̃.

In the larger context of a cloth, the liaison Λ includes +, as illustrated by the
identification x̂ = −x̃.

Definition 3.1 An additive weaving computation refers to any algebraic compu-

tation taking place in a metric cloth W = {S, ◦+ , ◦×}.
The set of operations that we shall consider in Weaving Information Processing

(WIP) is restricted to Op(W ) = L ∪R ∪ Aut (W ).

Definition 3.2 The Weaving Information Processing (WIP) in a metric cloth W

is realised in W by means of Op(W ).
We shall study by geometric means the results of WIP. The metric cloth W

inherits from its euclidean frame not only a scalar product/norm, but also its affine
essence with respect to a real parameter. Therefore the geometry derived from a
cloth is based on lines (as affine functions of a real parameter) and in particular on
geodesics (for which the triangle inequality becomes an equality). In what follows,
we build on Ungar’s mathematical vision based on physical insight. We develop
some aspects of the role of geometry in WIP. The existence of the three additions
◦+ , +̂ ,+ endows cloth geometry with several ways to carry information, shedding
a new light on the role of non euclidean geometry in Information Processing (IP).

4. The Metrics Associated with ◦+ and +̂

4.1 Definition

We revisit the three linear equations (2.2), (2.3) (2.7) and their three solutions
x (2.4), y (2.5), x̂ (2.7). A simplification occurs because ‖rel(a, b)‖ = 1 for x =
rel(−a, b)x̂, hence ‖x‖ = ‖x̂‖ = 6= ‖y‖. Thus one can associate two metrics d in W
with the three cancellation laws. They are given by

d̊(a, b) = ‖ − a ◦+ b‖ = ‖b ◦−a‖, (4.1)

d̂(a, b) = ‖b −̂a‖ = ‖b ◦− rel(b, a)a‖. (4.2)

where the upperscripts˚andˆ for d refer to the respective additions ◦+ and +̂.
The values are identical when a and b are dependent.
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Ungar’s inequality (6.14) (resp. (6.18)) expresses the following triangle (resp
relating-triangle) inequality (4.3) (resp. (4.4)):

d̊(a, c) ≤ d̊(a, b) ◦+ d̊(b, c), (4.3)

d̂(a, rel(a−̂b, b−̂c)c) ≤ d̂(a, b) +̂ d̂(b, c). (4.4)

It is clear that d̊ defines a distance, whereas d̂ does not (pp. 158 and 159).
Curves for which (4.3) is an equality are the geodesics of ◦+ associated with the
distance d̊.

4.2 Invariance Properties

The two metrics are invariant under Aut (W ). Metric invariance under left shift
in L holds for d̊ by (2.15): ‖ − a ◦+ b‖ = ‖b ◦−a‖ = ‖(g ◦+ b) ◦− (g ◦+ a)‖ for any g ∈ G
(Theorem 6.12).

Regarding R-invariance for +̂ (based on ◦+ g), if rel(a, b) = I, then: a −̂ b =
(a ◦+ g) −̂ (b ◦+ g) implies R-invariance for +̂ . This is always true when a and b are
dependent. In general (2.16) above holds with k = rel(a, b)g, ‖k‖ = ‖g‖. The
topic will be developed further in Section 8.1.

Remark 4. On the notational dilemma

It is important to keep in mind that, in the connecting context of weaving
computation, the notation itself is, by force, ambiguous. For example the notation
d̊ and d̂ was suggested by the definitions (4.1), (4.2). But, of course, the notation d̊
measures in an equal fashion both x = ◦− a ◦+ b associated with L ◦+ and x̂ = b ◦−a =
rel(a, b)x associated with +̂. And d̂ reflects the unique aspect R ◦+ converted into
+̂ . In the difficult task to capture as best as possible the subtle relational interplay
between ◦+ and +̂ , cloth geometry will prove to be a precious ally.

5. About the Organic Lines Passing through 2 Distinct

Points in Cloth Geometry

5.1 Introduction

Let be given a 6= b in Rn. In euclidean geometry there exists a unique straight
line passing through a and b, which can be represented by the affine function:
t ∈ R 7→ a + (b − a)t ∈ Rn: the point a (resp. b) corresponds to t = 0 (resp.
1). The straight line is the geodesic of the euclidean metric. The segment [a, b] is
defined by 0 ≤ t ≤ 1. It has a unique midpoint mab = a+ 1

2
(b−a) = 1

2
(b+a) = mba.

This simple euclidean picture will be modified in cloth geometry since there exist
more than one affine curve passing through two points due to the existence of more
than one cancellation law.
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In what follows we restrict our attention to the three fundamental (cancellation)
laws (2.9), (2.10), (2.11) that we put at the foundations of our geometric study.
The three laws are ordered respectively as first, second and third. They define
three types of affine functions defining organic lines Li numbered by i ∈ {1, 2, 3}.
It is important to distinguish whether a and b are dependent or not.

5.2 Three Fundamental Organic Lines through a and b In-

dependent

To each fundamental law we can associate a unique fundamental (organic) line
passing through a for t = 0 and b for t = 1. The non commutative addition ◦+
provides the left-(resp. right-) line L − Lab (resp. R − Lab). The commutative
addition +̂ provides the unique line-L̂ab. These lines are given by the table below

symbol definition representation, t ∈ R

L1 = L-Lab left-line for L ◦+ a ◦+((−a ◦+ b) ◦× t) (5.1)

L2 = R-Lab right-line for R ◦+ ((b −̂ a) ◦× t) ◦+ a (5.2)

L3 = L̂ab line for +̂ ((b ◦− a) ◦× t) +̂ a = a +̂ ((b ◦−a) ◦× t) (5.3)

We call a the origin of the 3 lines (t = 0). The three solutions x, y, x̂ are the
respective coefficients of t for the lines; they are distinct iff a and b are independent.
The 3 representations can be rewritten respectively under the form: a ◦+x ◦× t,
y ◦× t ◦+ a, x̂ ◦× t +̂ a = a +̂ x̂ ◦× t.

Lemma 5.1. If a and b are dependent, non zero and distinct, y = b−̂a = b ◦− a =
x̂ = −a ◦+ b = x is a real multiple of a.

Proof. Use rel(a, b) = I to show that x = y = x̂. If b = l ◦× a, l 6= 1, x = −b ◦+a =
(1− l) ◦×a = µ(1− l)a, where µ(1 − l) 6= 0 for l 6= 1.

5.3 L1 and L2 are Geodesics for d̊ and d̂

The lines L1 and L2 define 2 notions of collinearity between a, b and a third point
c which are distinct when a and b are independent.

By Definition 6.22 (resp. 6.55) the 3 points a, b, c are L1- (resp. L2-) collinear
iff there exists t ∈ R such that c satisfies (5.1) (resp. (5.2)). The points c defined
for 0 < t < 1 are between a and b on L1 (resp. L2). They define the open organic
arc L1 − (a, b) (resp. L2 − (a, b)).

In view of (4.3), it is not surprising that L1 is a geodesic for d̊ (Theorem 6.48,
Remark 6.49). The less obvious Lemma 6.61 tells us that rel(a−̂c, c−̂b) = I when
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a, b, c are L2-collinear. It follows that L2 is a geodesic for d̂ (Theorem 6.77, Remark
6.79).

We observe that the noncommutativity of ◦+ (L ◦+ 6= R ◦+) which is controlled
by the relator entails the existence of two distinct geodesics related to the metrics
(4.1) and (4.2) when a and b are independent, rel(a, b) 6= I.

Corollary 5.2. When a 6= 0 and b = l ◦×a, l 6= 1, the 3 lines Li, i = 1, 2, 3,
coalesce into the geodesic for d̊ = d̂ which is the euclidean straight line spanned by
a.

Proof. Apply Lemma 5.1. The common geometric image is a euclidean straight
line, more precisely the linear axis spanned by a 6= 0.

If l = 1, the lines degenerate into the point a 6= 0. Observe that it is the linear
independence of a and b which forces the organic lines to bend, indicating a non
linearity in disguise.

6. About Midpoints on Organic Arcs

There are 3 types of fundamental organic arc (a, b) to consider which are denoted
Li − (a, b). We first assume that a and b are independent.

6.1 Midpoints on L1 and L2 for ◦+
In Chapter 6, Ungar shows that a unique midpoint on L1 − (a, b) exists for (5.1)
by Theorems 6.53, 6.34 and on L2 − (a, b) for (5.2) by Theorem 6.74:

• mL

ab
= a ◦+(x ◦× 1

2
) = 1

2
◦× (a +̂ b) = b ◦−

(

x ◦× 1

2

)

= mL

ba
,

‖a ◦−mL

ba
‖ = ‖b ◦−mL

ba
‖ = ‖x‖ ◦× 1

2
,

(6.1)

• mR

ab
=

(

y ◦× 1

2

)

◦+ a = b ◦−
(

y ◦× 1

2

)

= mR

ba
, with ‖y‖ 6= ‖x‖,

‖a−̂mR

ab
‖ = ‖b−̂mR

ab
‖ = ‖y‖ ◦× 1

2 .

(6.2)

The equality mL

ab
= mL

ba
= 1

2
◦× (a +̂ b), suggests that a and b could play a more

symmetric role in the definition of the left line L1 for ◦+ under an appropriate
change of parameter.

Lemma 6.1. The line L1 = L-Lab can be represented in the four equivalent forms:
a ◦+x ◦× t = a ◦× (1 − t) ◦+ b ◦× t, x = −a ◦+ b, and b ◦+ x̃ ◦× t′ = b ◦× (1 − t′) ◦+ ◦× t′,

x̃ = −b ◦+ a, with t+ t′ = 1.

Proof. a ◦+(−a ◦× t ◦+ b ◦× t) = a ◦× (1 − t) ◦+ b ◦× t since rel(a, a) = I.
When t′ replaces t, a and b are exchanged.
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Letting t = t′ = 1

2
yields mL

ab
which admits the fully symmetric representation

1

2
◦× (a +̂ b). This reflects an essential property of the scalar multiplication ◦× by 2

(Theorem 6.7, Ungar 2008).

2 ◦× (a ◦+ b) = a ◦+(2 ◦× b ◦+a) = a+̂(a ◦+(2 ◦× b)) (6.3)

for any a, b ∈ W . In (6.3), 2 ◦×a is split so that a occurs in two places in the rhs of
2 ◦× (a ◦+ b), yielding three terms.

This yields the remarkable

Theorem 6.2. For any two independent points a 6= b the three additions L ◦+ ,
R ◦+ and +̂ provide the same arithmetic mean on the geodesic L1 = L-Lab:

mL

ab
=

1

2
◦× (a ◦+ b) =

1

2
◦× (b ◦+ a) =

1

2
◦× (a +̂ b).

Proof. This is Theorems 6.33 and 6.34. Observe that, in addition to the above

coincidences, and to (6.1), we also have mL

ab
= b ◦+

(

x̃ ◦× 1

2

)

= a ◦−
(

x̃ ◦× 1

2

)

.

No such remarkable property holds for mR

ab
on L2 = R-Lab. The identities

about mR

ab
and mR

ba
given in (6.2) cannot be further rewritten in general.

6.2 On the Line L̂ for +̂

The third type of organic arc (a, b) on L̂ defined by (5.3) above has two pseudo-

means: m̂ab =
(

x̂ ◦× 1

2

)

+̂ a differs from m̂ba = b −̂ x̂ ◦× 1

2
(Section 6.13 in Un-

gar). However, ‖x‖ = ‖x̂‖ guarantees the equality of the respective distances
‖a −̂ m̂ab‖ = ‖b −̂ m̂ba‖ = ‖x̂‖ ◦× 1

2
and of their counterparts on L-Lab.

Lemma 6.3. The two pseudo-means m̂ab and m̂ba on L̂ab are such that

‖x‖ ◦× 1

2
= d̊(a,mL

ab
) = d̊(a, m̂ab) = d̊(b, m̂ba).

Proof. Clear by (6.1).

When a and b are independent, the two midpoints: mL on L-Lab, mR on R-Lab,
enable dichotomy inside the two arcs L1 − (a, b), L2 − (a, b). The existence of two
pseudo-means m̂ab and m̂ba on L̂ab forbids any appeal to a dichotomy argument
on an L3-arc. For this reason, the general study of L3 = L̂ab is stopped at this
point by Ungar, see. p. 205.
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Lemma 6.4. If a 6= 0, b = ra, for r ∈ R, the four means (or midpoints) coalesce
into the single point m = 1

2
◦× (a +̂ b) on the unique line Lab.

Proof. When a and b are dependent, ◦+ = +̂, hence x = y = x̂. Then, by
Corollary 5.2, the three organic lines L1, L2 and L3 coalesce into a unique one
which is the geodesic for d̊ = d̂ through a and b. Clearly mL = mR, and m̂ba =

(b ◦−a) ◦+ a ◦− (x̂ ◦× 1
2) = (x̂ ◦× 1

2) ◦+ a = m̂ab = mR = mL.

7. Directional Relators

7.1 Definition

In this Section, the admissible relators belong to the subset Q of automorphisms
in Aut W which satisfy (H3):

rel(a, b) = rel( a
‖a‖ ,

b
‖b‖) (H3)

for any pair (a, b) of nonzero vectors in V .
In other words, the map rel is specified by the unit vectors 1a = a

‖a‖ and

1b = b
‖b‖ defining linear directions spanned by a and b. Any relator satisfying

(H3) is called directional. It follows that

rel(a, b) = rel(a, b ◦× t) = rel(a ◦× t, b) for any 0 6= t ∈ R.

Example 7.1 Let x, y ∈ V = Rn be independent, then θ = (x, y) /∈ {0, π}. Let R(θ) denote the

plane rotation x 7→ y. We define x ◦+ y = x+R(θ)y, hence y ◦+ x = y+R(−θ)x = R(−θ)(x ◦+ y) for
independent x and y. Otherwise ◦+ = +. The range Q of the relator is the set of plane rotations
SO(2) except the symmetry −I2.

7.2 A Twofold Interpretation of L3 under (H3)

We use the generic notation Lab = L(a, x) where x is the coefficient of the param-
eter t in the equation for the associated line passing through the origin a(t = 0)
and b(t = 1). For example, L̂ab = L3 = L(a, x̂), x̂ = b ◦−a. The line L̂ab can be
interpreted equally as a version of (i), L1 or (ii), L2.

Lemma 7.1. (i) a +̂ x̂ ◦× t = a ◦+x ◦× t with rel(a,−b)x̂ = x.
(ii) x̂ ◦× t +̂ a = x̂ ◦× t ◦+ a2 with a2 = rel(b,−a)a.
(iii) Moreover ‖x̂‖ = ‖x‖, ‖a‖ = ‖a2‖: x̂ and a2 are rotated about O from x

and a through the same angle.

Proof. (i) a +̂ x̂ ◦× t = a ◦+(rel(a,−x̂)x̂) ◦× t by (2.6) and (H3) with rel(a,−b ◦+a) =
rel−1(−b ◦+a, a) = rel−1(−b, a) = rel(a,−b) by (A1). And rel(−a, b)x̂ = x.

(ii) x̂ ◦× t +̂ a = (b ◦−a) ◦× t ◦+ rel(x̂,−a)a by (2.6) and (H3) again, and rel(b ◦−a,−a)
= rel(b ◦+(−a),−a) = rel(b,−a).

(iii) Clear when we observe that rel−1(a,−b) = rel(b,−a).
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LL̂

a

b

L̂

O

x

x̂

x̃

ε

a2

a

RL̂

Figure 1: L̂ = L̂ab and its left and right interpretations/images:
LL̂ = L-Lab and RL̂ = R-L(a2, x̂).

Proposition 7.2. When the relator is directional, the following two interpreta-
tions hold for L̂ab:

(i) L̂ab = L-L(a, x) = L-Lab with x = rel(a,−b)x̂, b = a ◦+x = a+̂x̂.
(ii) L̂ab = R-L(a2, x̂) = R-La2b2 with a2 = rel(b,−a)a, b2 = x̂ ◦+ a2.

Proof. Apply Lemma 7.1. For t = 1, (i) a ◦+x = b = a+̂x̂, (ii) x̂ ◦+ a2 = b2 ⇐⇒
x̂ = b2 −̂ a2 = b ◦−a.

The line L̂ab = L(a, x̂) can be interpreted at the same time as the left or
right image of two distinct sources. In the left (resp. right) image, the origin
a is preserved (resp. moved to a2) and the coefficient x̂ is moved back to x
(resp. preserved). Therefore the line L̂ = L̂ab is a composite construction resulting
from ◦+ and rel(b,−a) with a dual character: it can be interpreted either leftwise
or rightwise. Quite remarkably, the left interpretation LL̂ is L-Lab = L1 itself.
The right interpretation RL̂ = R − La2b2 can be characterised by the rotation
x 7→ x̂ = rel(b,−a)x about O through the angle ε. Then a is rotated into a2
through ε. See Figure 1.

There are altogether four lines of interest associated with a pair (a, b): the
three fundamental lines Li, i = 1, 2, 3 through a, b plus the right interpretation or
image RL̂ through a2, b2.

7.3 a and b are Dependent

When a and b are dependent and distinct, nonzero, the 3 points O, a, b are collinear.
As we know an essential simplification takes place: the three organic lines above
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coalesce geometrically into one. When the relator is directional, more can be said
about the right image R− La2b2 for L̂.

Lemma 7.3. If a 6= b are dependent, then rel(a, b) = I, a2 = a, b2 = b and
RL̂ ≡ Li, i = 1, 2, 3. If a = b, x = 0 and the line reduces to the point a.

Proof. By assumption rel(a, b) = I then a ◦+ b = a +̂ b, hence x = y = x̂ = b ◦−a.
The 3 lines L1, L2, L3 coalesce into a unique line a ◦+x ◦× t = x ◦× t ◦+ a = x ◦× t+̂a, if
x 6= 0 ⇐⇒ b 6= a (Corollary5.2). If b = a, x = 0, the lines reduce to the unique
point a = b 6= O.

For the right image RL̂ a2 = a and b2 = b, yielding the identification RL̂ ≡
Li

When a and b are dependent and distinct, a unification takes place. Not only
the organic lines coalesce into the geodesic L1, but also does, when the relator is
directional, the right image RL̂.

8. Weaving Information Processing (WIP)

8.1 Organic Lines

Among the three fundamental lines passing through a and b independent, the first
two are geodesics (expressing two different views on the non commutativity of
◦+ (Section 5.3)). Remarkably, the third organic line L3 offers, under (H3) two
geodesic images of itself, either LL̂ = L1 as its left image, or RL̂ = R − La2b2 as
its right image.

This Section develops some consequences of these geometric properties on in-
formation processing in weaving computation.

Proposition 8.1. The two additions ◦+ and +̂ coalesce on the geodesic L1 =
L-Lab.

Proof. By successive dichotomy arguments based on Theorem 6.2 above: x ◦+ y =
x +̂ y for any x, y between a and b on L-Lab.

Proposition 8.1 indicates that a sort of “differential” commutativity holds for
x ◦+ y when x and y vary on L1. Given a and b linearly independent the geodesic
for d̊ through a, b describes the unique locus of points for which ◦+ is commutative,
hence ◦+ = +̂ locally (on L1). This mechanism underlies the emergence of the
axiomatic role of commutativity for addition in classical mathematics.

Let us turn to L2 which is a geodesic for d̂; it plays a very different connecting
role in IP that is discovered by revisiting (2.16) above:
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a

s
b

O

R-Lab

Figure 2: a, b, s ∈ R-Lab = L2.

Proposition 8.2. The line L2 = R-Lab is such that for any w ∈ W and s ∈
R-Lab, then

b −̂ a = (b ◦+ rel(b, s)w) −̂ (a ◦+ rel(a, s)w) (8.1)

Proof. See Theorem 6.76 in (Ungar 2008) and Figure 2.

The identity (8.1) is one possible form of the kind of right shift-invariance
enjoyed by +̂ when a and b are independent, which generalises (2.16). Indeed,
if s = a, (8.1) yields b−̂a = (b ◦+ rel(a, b)w)−̂(a ◦+w) which becomes (2.16) after
exchanging a and b, and setting w = g. The coefficient y = b −̂ a is invariant
when the same right shift, chosen in {· ◦+ rel(·, s)w, w ∈ W , s ∈ R-Lab}, is equally
applied to a and b, see Figure 2 . This exact, albeit special, kind of R-invariance
for +̂ under right shift should be contrasted with the metric L-invariance for ◦+
(which hides the rotation rel(g, b) present in (2.15)).

Definition 8.1 Given a 6= b, the property (8.1) for w ∈ W , s ∈ L2 = R-Lab

defines the L2- link between a and b assumed to be independent.
Any s on R-Lab is uniquely defined by t ∈ R through (5.2) which defines the

map:

t ∈ R 7→ y(t) =
(

y ◦× t
)

◦+ a, t ∈ R, y = b −̂ a.

At any (t, w) ∈ R×W we consider in W

za(t) = rel(a, y(t))w, zb(t) = rel(b, y(t))w,

with za(0) = zb(1) = w. By (8.1), b −̂ a = (b ◦+ zb(t)) −̂ (a ◦+ za(t)) for all t ∈ R,
with ‖za(t)‖ = ‖zb(t)‖ = ‖w‖ for any w ∈ W .
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The L2- link between a and b is ruled by the two values rel(a, y) and rel(b, y)
for the relator. Indeed, rel(a, (b −̂ a) ◦× t ◦+ a)rel(b −̂ a, a) = I by (2.16) in Ungar
(2008), and rel−1(b −̂ a, a) = rel(−a, a −̂ b) (Section 2.4 in Ungar).

Proposition 8.3. When w varies on the sphere Sr = {w, ‖w‖ = r} for 0 < r < λ,
the L2- link between a and b maintains za(t) and zb(t) on Sr for all t ∈ R. In
particular za(0) = zb(1) = w.

Proof.
Clear from the above discussion.

When w is arbitrary in W , the double equality ‖w‖ = ‖za(t)‖ = ‖zb(t)‖ holds
for any t, and hides the actual source of the L2- link (8.1) between a and b which
resides in the relator at the pairs (a, b −̂ a) and (b, b −̂ a).

As for the third line, Section 7 has told us that, when the relator is directional,
the line L̂ = L3 is a shape-shifter: it can be interpreted as LL̂ ≡ L1 and equally
as RL̂ = R− La2b2 which differ when rel(a, b) 6= I.

8.2 Weaving Computation and Broadcasting Information

The broadcasting of information from a to b uses the real parameter t in R to
channel through the three lines Li with distinct features.

1) For the geodesic L1, ‖b ◦−a‖ is invariant under left shift. We say that L1

radiates metric information. In other words, L1 is a channel which is blind to
rotations performed on the results produced by WIP: it is a normative channel.
Because the two additions ◦+ and +̂ yield identical results for any pair of points
picked on itself, L1 draws the commutative path from a to b: addition ◦+ is locally
commutative on L1.

2) By comparison, the geodesic L2 through a and b (when independent) is a
channel which selects, from the whole of WIP results, only the ones which enjoy
the L2-link (according to Definition 8.1). We say that L2 emanates selected exact
information. It is a discriminative or filtering channel.

The lines L1 and L2 are the two channels associated with L ◦+ and R ◦+ respec-
tively: they differ geometrically when a and b are independent.

3) As we have already noticed, the third line L3 = L̂ is a computational con-
struct which can be interpreted by means of any of the channels L1 and L2 when
the relator is directional. The two interpretations differ markedly from L̂ and
between themselves.

The left image L1 generally differs from L̂ab for t 6= 0 and 1. The right image is
RL̂ = R-La2b2 which passes through a2 6= a (t = 0) and b2 6= b (t = 1) in general.
This computational property lends weight to the notion of “action at a distance”
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for information, a possibility which is most often ruled out a priori in empirical
science.

By contrast, if a and b are dependent, a 6= b, there exists a unique channel
because all Li coalesce into the axis spanned by a 6= 0. When the relator is
directional, the right geometric image for L̂ is L̂ itself.

It appears that there are several distinct ways by which information can be
broadcast from a to b:

(i) If a and b are independent, there exist two distinct channels of information
based on L ◦+ and R ◦+ : the left one is a geodesic for d̊ which is normative and
the right one is a filtering geodesic for d̂. Provided that the relator be directional,
these channels enable the computing agent to get a left and right interpretations
for the construct L3 = L̂. It is remarkable that the right interpretation sustains
the ill-received concept of “action at a distance” for information.

(ii) If a and b are dependent, and if the relator is directional, the two channels
L1 and L2 coalesce with the organic line L3 and with its two images.

9. An Epistemological Appraisal

The fact that hyperbolic geometry underlies Special Relativity was quickly realised
by a handful of physicists and geometers (Ungar, 2008, Section 3.8); Ungar (2012).
But the scope of hyperbolic geometry reaches much further.

9.1 Hyperbolic Geometry in Nature

A number of natural shapes exhibit, at least locally, a hyperbolic character in
their geometry. The most famous example is a horse saddle or a mountain pass.
Among other natural hyperbolic surfaces, one can cite lettuce leaves, coral reef
or some species of marine flatworms with hyperbolic ruffles. According to W.
Thurston, if one moves away from a point in hyperbolic plane, the space around
the point expands exponentially. The idea was implemented in crochet in 1997
by D. Taimina by ceaselessly increasing the number of stitches in each row of
her crochet model (Henderson and Taimina 2001). Experiments have shown that
the visual information seen through the eyes and processed by our brain is better
explained by hyperbolic geometry (Luneburg 1950). This explains the popularity
of hyperbolic browsers among information professionals (Lamping et al. 1995,
Allen 2002). Einstein gyrovector spaces are used in (Urribarri et al. 2013) to
program an efficient tree layout, with varying levels of detail for data enclosed in
a 3D-volume.
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9.2 Axiomatic vs. Cloth Geometries

The classical concept of a group underlies the three geometries which can be ax-
iomatically derived from three versions of the parallel postulate: by a point not
on a given line in a plane, one can draw a number p of parallels to the line with
p ∈ {0, 1,∞}. The best-known case p = 1 corresponds to a linear vector space
endowed with a scalar product and derived norm. The cases p = 0 (elliptic)
and p = ∞ (hyperbolic) are modifications of the euclidean case, each with many
equivalent models.

By comparison, cloth geometry is derived from a metric cloth framed in a linear
normed space with dimension n ≥ 2, and based on an organ G( ◦+ ,relator). It is
not axiomatically defined, but is a computational construct based on ◦+ and on the
corresponding choice of automorphisms in the relator’s range R. The computation
results in a trimorphic geometry in which the relator for ◦+ , by inducing a sec-
ondary addition +̂, blurs the clear-cut distinctions created by axiomatisation based
on an abelian group. For example, it can be proved that p = ∞ and p = 1 are
co-existing properties (Fig. 8.50 on p. 370). Depending on the choice R of isome-
tries, the computed geometry will exhibit, in addition to the euclidean structure
of the frame V , new non-euclidean features, among which some are considered as
characteristic of either hyperbolic or elliptic geometries defined axiomatically. To
witness, Chapter 7 in (Ungar 2008) ends on p. 259 with the following statement:

“In modern physics, hyperbolic geometry is the study of manifolds with Rie-
mannian metrics with contant negative curvature. However, we can see from Table
7.1 that in classical hyperbolic geometry, that is, the hyperbolic geometry of Bolyai
and Lobacheivsky, constant negative curvatures and variable positive ones are in-
separable.”

The clear-cut distinction between the three aspects of geometry is relative
rather than absolute: it can be by-passed by weaving computation.

9.3 Cloth Geometry in the Mind

In (Calude and Chatelin 2010,Chatelin 2012 a,b,d,2015) we have argued that hy-
percomputation in multiplicative Dickson algebras is part of the algorithmic toolkit
for the human mind. Experimental evidence provided by Special Relativity indi-
cates that the mental reconstruction of the observed outside 3D-reality is controlled
by cloth geometry based on Einstein addition of 3D-velocities. This may offer a
possible clue to what is perceived by some physicists as a pre-established har-
mony between mathematics and physics (Minkowski 1908,Wigner 1960, Pyenson
1982, Ungar 2003). The paper (Ungar 2003) analyses the twofold harmony which
takes place in Special Relativity. Two complementary aspects of equal importance
are useful to understand SR: either physics and geometry in 3D (Einstein 1905)
or analysis in 4D (Poincaré 1905, Minkowski 1908). These complementary as-
pects are but the two sides of the same coin: mathematical computations in the
mind.Both aspects have not been equally understandable in the beginnings. There-
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fore Minkowskian relativity prevailed for a long time, leaving certain theoretical
gaps which can be filled elegantly with an appeal to the original idea of Einstein in
its geometrically more mature form developed later by Ungar, see (Ungar 2003).

Going back to the human intellectual reconstruction of relativity, we posit

that, more generally, there exists a commonly shared set of relators for mind
computation. This would explain why most people agree on the general appearance
of the external landscape, if not on all the details. Two eye-witnesses never agree
on the minute details about the scene they both observed at the same place and
time. The existence of a common cloth geometry in 3D could be the reason why
we, human beings, have the feeling that we share more or less the same external
reality, our habitat called Nature.

As for the inner world inside each of us, it differs widely from one individual to
the next. Why? Because the number n of dimensions for the frame is not bound
to be 3 anymore, but may vary arbitrarily at will, n ≥ 2.

Cloth geometry provides a plausible mechanism for outer action and inner
understanding after observation. In WIP perspective, both processes result from
a drive in the mind toward explanation. The observer is free to choose to relate
a and b by outer or inner observation. However the reader should remember that
the physical reference λ = c for the speed of light is imposed by physical reality
and defines the limit of observable velocities. No such constraint exists for inner
observation; in other words the inner reference λ is self-imposed (or chosen).

9.4 On the Poincaré vs. Einstein debate about Relativity

and Geometry

During the first two decades of the 20th century the intellectual debate about the
“true” nature of physical space was structured around Poincaré (and his legacy after
1912) and Einstein, see (Paty 1992). These giants stood at the two endpoints of
a continuum of ideas running from Mathematics to Physics. The issues at stakes
have been heatedly debated, including a priority dispute which appears rather
futile in view of Ungar’s isomorphism between WE and WP .

On the one hand Poincaré had an axiomatic vision of Geometry based on
groups which led him to anticipate the “law of relativity” (Poincaré 1902). In
special relativity he proved the dynamical invariance of physical laws for Mechan-
ics and Electromagnetism (slightly ahead of Einstein). The relativistic dynamics
presented in (Poincaré 1905) bears on group theory and (implicitly) on the field
H of quaternions, two advanced mathematical notions which are now common in
theoretical physics. His work wraps up more than 250 years of discoveries about
the baffling behaviour of light (Auffray 2005). Poincaré is often criticised because
– as Lorentz, Maxwell and Fresnel did before him – he occasionally mentions ether,
a notion which is considered unnecessary in current physics. We remark that in
the cognitive perspective of information processing in the mind, a background ref-
erence is required for weaving computation, whatever name is given to it, ether,
or cloth geometry, or even riemannian geometry for General Relativity.



224 F. Chatelin

On the other hand, it is clear that Einstein did not at first feel the need for
a non-euclidean geometry, because he only slowly became aware of the physical
consequences of his non symmetric composition law. Together with Ehrenfest, Max
Born and others, he realised that an accelerated motion would not permit exact
rigidity for the moving body, but would imply elastic deformations and possible
explosion. In order to save the relativity principle (by showing that it can apply to
all kinds of motions including accelerations) Einstein had to modify the geometry,
thus uncovering the full breadth of the 1905 paper.

Following (Paty 1992 ), we may say that: “Poincaré thought Physics with his
geometric mind, as much as Einstein viewed Geometry through his physicist’s
eyes”.

The principle of relativity has been observed in light phenomena since the 17th
Century. In this intellectual odyssey, history has chosen to emphasise the year
1905 and the sole contribution of the physicist Einstein, This is an ironical twist of
fate since the version of Special Relativity which survives today in textbooks rests
upon the group structure of Lorentz transformations due to the mathematician
Poincaré, while it overlooks the information role played implicitly by Einstein’s
non commutative addition of 3-vectors for the construction of the human image
of the world.

In retrospect, one realises that special relativity in physics has two intricate
aspects based on two algebraic structures: the metric cloth WE (based on ◦+E)
envisioned by Einstein and the noncommutative field H (based on ×) implicit in
Poincaré. A thorough comparison between the distinct computational roles played
by these two structures is given in (Chatelin 2011).

9.5 Einstein’s Vision of Relativity

In 10 years (1905-1915) Einstein’s vision evolved from the commonly shared eu-
clidean view to a highly personal one. By transmuting ideas borrowed from Rie-
mann and Poincaré he was led to General Relativity in 1916. This larger vision he
would maintain and refine for the rest of his life (Einstein 1921). Hence his work
presents a remarkable continuity of thought since the day he planted the seed of
Relativity by positing that admissible velocities do not add in a symmetric fashion.
The simplicity of this idea – so daring at the time – should strike a chord in any
mathematically inclined mind! Simplicity is not triviality ...; it means depth and
beauty, conferring a flavour of eternity to Einstein’s revolutionary idea. The new
idea ran against a couple of centuries of scientific development for physics, which
had climaxed in the 19th century with a commutative addition for 2- or 3-vectors
in classical Mechanics, symbolised by the parallelogram law. It is fair to say that
there exists a world of difference between the two physics papers authored by Ein-
stein and Ungar which are 83 years apart (1905-1988): the difference illustrates
the progress of algebraic knowledge in the 20th century. More than a century
had to elapse to allow the slow coming of age of the idea of relativity: from its
birthplace in experimental physics to its original habitat in the human mind which
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can add vectors in a noncommutative way. This evolution would not surprise the
perceptive Mach who wrote in Die Mechanik (1883): “We should not consider as
foundations for the real universe the auxiliary intellectual means that we use for
the representation of the world on the stage of thought.” (italics in original).

The relativistic formula is routinely put to good use by engineers in telecommu-
nications, geolocalisation and space industries. But is it really understood? A look
at textbooks for physics undergraduates casts some doubts. The pristine clarity of
Einstein’s addition is obscured behind the cloud of Lorentz transformation and its
inherent technicalities. The essence is lost in the mist of Minkowski’s 4D-spacetime
as this is recalled in (Ungar, 2003). It is not uncommon to find only the symmetric
formula (valid for parallel velocities) as any quick websurf will confirm. It is no
surprise that history has chosen to tout the (physically more difficult) equation
E = mc2, which is but one of the many consequences of Einstein’s seminal law of
noncommutative addition. Why is the analytic Poincaré/Minkowski version still
prefered? Because it was the first to be accepted in Physics and it offers a sat-
isfactory answer to most questions which have been raised to-date (Ungar 2003).
The gaps uncovered in Theoretical Physics have not yet reach the critical mass
which would force the physics community to fully endorse the geometric version
of Einstein on an equal footing. Hence Ungar is still a lone pioneer.

The result of this unsatisfactory -but all too human- state of affairs is that
relativity is not yet fully embraced: it is, at best, interpreted as an exotic law
of Nature, with no deeper consequences on everyday life than the use of cellular
phones and GPS devices. Relativity is not perceived as giving us a clue about
the ways by which the human mind builds its “imago mundi”, its image of the
world (Chatelin 2012a,b,d). The role of relativity in western science is mostly
confined to physics research (nanoscale or high energy) in order to develop ever
more sophisticated technologies. More than one century after Einstein’s ground
breaking invention, relativity has not yet been taken seriously by social scientists.
They do not venture beyond the overly simplified version that is called relativism, a
mental construct which does not do justice to the philosophical depth of relativity.

Information Processing is of paramount importance for human affairs. Informa-
tion-based activities such as education, medicine, economy and ecology, could
benefit greatly from a new relativity-based scientific approach to cognition.

Acknowledgement. This paper on relating computation owes its existence to
the deep theory of gyrovector spaces developed by Prof. Ungar since 1988.
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