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From the Lorentz Transformation Group

in Pseudo-Euclidean Spaces

to Bi-Gyrogroups

Abraham A. Ungar?

Abstract

The Lorentz transformation of order (m = 1, n), n ∈ N, is the well-known
Lorentz transformation of special relativity theory. It is a transformation of
time-space coordinates of the pseudo-Euclidean space Rm=1,n of one time di-
mension and n space dimensions (n = 3 in physical applications). A Lorentz
transformation without rotations is called a boost. Commonly, the special
relativistic boost is parametrized by a relativistically admissible velocity pa-
rameter v, v ∈ Rn

c , whose domain is the c-ball Rn
c of all relativistically

admissible velocities, Rn
c = {v ∈ Rn : ‖v‖ < c}, where the ambient space

Rn is the Euclidean n-space, and c > 0 is an arbitrarily fixed positive con-
stant that represents the vacuum speed of light. The study of the Lorentz
transformation composition law in terms of parameter composition reveals
that the group structure of the Lorentz transformation of order (m = 1, n)
induces a gyrogroup and a gyrovector space structure that regulate the pa-
rameter space Rn

c . The gyrogroup and gyrovector space structure of the ball
Rn

c , in turn, form the algebraic setting for the Beltrami-Klein ball model of
hyperbolic geometry, which underlies the ball Rn

c . The aim of this article
is to extend the study of the Lorentz transformation of order (m,n) from
m = 1 and n ≥ 1 to all m,n ∈ N, obtaining algebraic structures called
a bi-gyrogroup and a bi-gyrovector space. A bi-gyrogroup is a gyrogroup
each gyration of which is a pair of a left gyration and a right gyration. A
bi-gyrovector space is constructed from a bi-gyrocommutative bi-gyrogroup
that admits a scalar multiplication.
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1. Introduction

Following the parametric realization of the Lorentz transformation group in pseudo-
Euclidean spaces [46], the aim of this article is to study Lorentz transformations in
pseudo-Euclidean spaces, where each of the resulting generalized Lorentz transfor-
mation group is parametrized by a generalized relativistically admissible velocity.
A generalized relativistically admissible velocity, in turn, is an element of the
eigenball Rn×mc of the ambient space Rn×m of all real n × m matrices, just as
a relativistically admissible velocity in special relativity is an element of the ball
Rnc = {V ∈ Rn : ‖V ‖ < c} of the ambient Euclidean n-space Rn. Here c > 0 is
an arbitrarily fixed positive constant, analogous to the vacuum speed of light in
special relativity.

A pseudo-Euclidean space Rm,n of signature (m,n), m,n ∈ N, is an (m + n)-
dimensional space with the pseudo-Euclidean inner product of signature (m,n).
A Lorentz transformation of order (m,n) is a special linear transformation Λ ∈
SO(m,n) of Rm,n that leaves the pseudo-Euclidean inner product invariant. It
is special in the sense that the determinant of the (m + n) × (m + n) matrix
representation of Λ is 1, and the determinant of its first m rows and columns is
positive [21, p. 478]. The group SO(m,n) of all Lorentz transformations of order
(m,n) is also known as the special pseudo-orthogonal group [21, p. 478], or the
group of pseudo-rotations [7]. A Lorentz transformation without rotations is called
a boost when m = 1 and a bi-boost when m > 1. Bi-boosts are studied in [46].

In [46], the bi-boost B(P ) in a pseudo-Euclidean space Rm,n is parametrized
by P ∈ Rn×m, Rn×m being the space of all real rectangular matrices of order
n ×m. In the special case when m = 1, the parameter P is a column vector in
Rn that represents a proper velocity. In physical applications n = 3, and a proper
velocity in R3 is a velocity measured by proper (or, traveler’s) time rather than
observer’s time, as explained in [37,40].

In Sects. 2-5 we review part of the study in [46] of the bi-boost B(P ) in order
to reach the position enabling us to change the parameter P ∈ Rn×m to a new
parameter V ∈ Rn×mc in Sect. 6. Here, the space Rn×mc of the new parameter V
is the c-eigenball of the ambient space Rn×m, given by

Rn×mc = {V ∈ Rn×m : Each eigenvalue λ of V V t satisfies 0 ≤ λ < c2}
= {V ∈ Rn×m : Each eigenvalue λ of V tV satisfies 0 ≤ λ < c2}

where c > 0 is an arbitrarily fixed positive constant, said to be the eigenradius of
the eigenball.

In the special case when m = 1, the space Rn×m specializes to the Euclidean
n-space Rn×1 = Rn of n-dimensional column vectors. Accordingly, as shown in
Example 8.2 (for c normalized to c = 1), the eigenball Rn×1c = Rnc specializes to
the c-ball of the ambient space Rn, given by Rn×1c = Rnc = {V ∈ Rn : ‖V ‖ < c}.
Thus, when m = 1, the concepts of the c-eigenball and the c-ball coincide, and the
Lorentz transformation of order (m,n) specializes to the Lorentz transformation
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of special relativity theory in one time dimension and n space dimensions (n = 3
in physical applications).

Eigenballs Rn×mc are studied in Sect. 7, and in Sect. 8 any eigenball Rn×mc

forms the parameter space of a Lorentz transformation Λ of order (m,n). It is then
shown in Sects. 9-10 that the resulting bi-boosts Bc(V ), V ∈ Rn×mc , and Bc(P ),
P ∈ Rn×m, leave invariant the inner product of signature (m,n), as expected.

The crucial step of this article is performed in Sects. 11-12, where the compo-
sition law of two successive Lorentz transformations of order (m,n) is expressed
in terms of a resulting parameter composition law, V1⊕V2, in the parameter space
Rn×mc . The parameter composition law, in turn, gives rise in Sects. 13-16 to the
novel bi-gyrogroup and bi-gyrovector space structure of the eigenball Rn×mc . These
novel algebraic structures, finally, pave in Sect. 17 the road leading to the novel
non-Euclidean geometry of the eigenball Rn×mc , m,n ∈ N.

The algebraic and geometric structure of the parameter space Rn×mc is of in-
terest in nonassociative algebra, non-Euclidean geometry, and relativity physics.
In the special case when m = 1, it gives rise to

1. the group-like structure called a gyrogroup; to

2. the vector space-like structure called a gyrovector space; to

3. improved understanding of the hyperbolic geometry of Lobachevsky and
Bolyai in terms of novel analogies with Euclidean geometry; and to

4. improved understanding of the way hyperbolic geometry regulates Einstein’s
special theory of relativity.

These structures and their use in hyperbolic geometry and in special relativity,
along with other applications, are studied in many papers as, for instance, [2–5,29],
[9–13], [31–34], [8, 22–24, 26–28, 47], [25, 38, 44, 46], and in seven books [36, 37, 40–
43, 45]. Hence, the extension of these structures from m = 1 and all n ∈ N to all
m,n ∈ N is a most promising step towards revealing the non-Euclidean geometry
that underlies the eigenball Rn×mc , m,n ∈ N. Accordingly, along with [46], this
article initiates the extension of the exploration of the algebraic and geometric
structure of the eigenball Rn×mc from m = 1 to m ≥ 1, for all n ≥ 1, and the
related extension from gyrogroups and gyrovector spaces to bi-gyrogroups and
bi-gyrovector spaces.

2. On the Generalized Lorentz Transformation
The (generalized) Lorentz transformation group SO(m,n), m,n ∈ N, is a group of
special linear transformations in a pseudo-Euclidean space Rm,n of signature (m,n)
that leave the pseudo-Euclidean inner product invariant. A Lorentz transformation
Λ of order (m,n), Λ = SO(m,n), is special in the sense that the determinant of
the (m+ n)× (m+ n) matrix representation of Λ is 1, and the determinant of its
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first m rows and columns is positive [21, p. 478]. In the first part of this paper we
present results from [46], where the set SO(m,n) is described in detail.

Let Rn×m be the set of all n × m real matrices, let SO(n) be the special
orthogonal group of order n, let In be the n× n identity matrix, and let 0m,n be
the m× n zero matrix.

Theorem 2.1 below realizes the Lorentz transformations Λ ∈ SO(m,n) para-
metrically, with the three matrix parameters P ∈ Rn×m, Om ∈ SO(m) and
On ∈ SO(n).

Embedding each matrix parameter in an (m+ n)× (m+ n) matrix, we define
(i) bi-boosts; (ii) right rotations; and (iii) left rotations as follows:

Bi-Boosts: A bi-boost is an (m+n)× (m+n) matrix B(P ) parametrized by
P ∈ Rn×m,

B(P ) :=

(√
Im + P tP P t

P
√
In + PP t

)
∈ R(m+n)×(m+n) , (1)

where P t is the transpose of P .
Right Rotations: A right rotation is an (m+ n)× (m+ n) block orthogonal

matrix ρ(Om) parametrized by Om ∈ SO(m),

ρ(Om) :=

(
Om 0m,n
0n,m In

)
∈ R(m+n)×(m+n) . (2)

Left Rotations: A left rotation is an (m + n) × (m + n) block orthogonal
matrix λ(On) parametrized by On ∈ SO(n),

λ(On) :=

(
Im 0m,n

0n,m On

)
∈ R(m+n)×(m+n) . (3)

Theorem 2.1. (Lorentz Transformation Bi-Gyration Decomposition, P )
( [46, Theorem 8]). A matrix Λ ∈ R(m+n)×(m+n) is a Lorentz transformation of
order (m,n), Λ ∈ SO(m,n), m,n ∈ N, if and only if it is given uniquely by the
bi-gyration decomposition

Λ =

(
Om 0m,n

0n,m In

)(√
Im + P tP P t

P
√
In + PP t

)(
Im 0m,n

0n,m On

)
(4)

or, prarmetrically in short,

Λ = Λ(Om, P,On) = ρ(Om)B(P )λ(On) =

 P
On
Om

 . (5)

Results (4) – (5) of Theorem 2.1 indicate the notations we use with the generic
Lorentz transformation Λ of order (m,n).
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We now take the results in ( [46, Theorem 13]) as definitions in Def. 2.2 below,
giving rise to a binary operation, ⊕, in Rn×m along with two families of automor-
phisms of Rn×m, called bi-gyrations, which are the left gyrations lgyr[·, ·] and the
right gyrations lgyr[·, ·].
Definition 2.2. (Bi-gyroaddition and Bi-gyration). The bi-gyroaddition ⊕
and bi-gyration (lgyr, rgyr) in the parameter bi-gyrogroupoid (Rn×m,⊕) are given
by the equations

P1⊕P2 = P1

√
Im + P t2P2 +

√
In + P1P t1P2 ∈ Rn×m

lgyr[P1, P2] =

√
In + (P1⊕P2)(P1⊕P2)t

−1
{
P1P

t
2 +

√
In + P1P t1

√
In + P2P t2

}
∈ SO(n)

rgyr[P1, P2] ={
P t1P2 +

√
Im + P t1P1

√
Im + P t2P2

}√
Im + (P1⊕P2)t(P1⊕P2)

−1
∈ SO(m)

(6)

for all P1, P2 ∈ Rn×m.

Def. 2.2 proves useful in Theorem 2.3 below, which presents the Lorentz trans-
formation composition law in terms of parameter composition.

Theorem 2.3. (Lorentz Transformation Product Law) ( [46, Theorem 21])
The product of two generic Lorentz transformations

Λ1 = (P1, On,1, Om,1)t

Λ2 = (P2, On,2, Om,2)t
(7)

of order (m,n), m,n ∈ N, is given by

Λ1Λ2 =

 P1

On,1

Om,1


 P2

On,2

Om,2

 =

 P1Om,2⊕On,1P2

lgyr[P1Om,2, On,1P2]On,1On,2

Om,1Om,2rgyr[P1Om,2, On,1P2]

 . (8)

where ⊕, lgyr and rgyr are given by (6) in terms of the parameters P1, P2 ∈ Rn×m.

Illustrative examples follow.

Example 2.4. In the special case when P1 = P2 = 0n,m and Om,1 = Om,2 = Im,
the parameter composition law (8) yields the equation

λ(On,1)λ(On,2) =

0n,m

On,1

Im


0n,m

On,2

Im

 =

 0n,m

On,1On,2

Im

 = λ(On,1On,2) (9)
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demonstrating that under the parameter composition law (8) the parameter On
forms the special orthogonal group SO(n).

Example 2.5. In the special case when P1 = P2 = 0n,m and On,1 = On,2 = In,
the parameter composition law (8) yields the equation

ρ(Om,1)ρ(Om,2) =

0n,m

In

Om,1


0n,m

In

Om,2

 =

 0n,m

In

Om,1Om,2

 = ρ(Om,1Om,2) (10)

demonstrating that under the parameter composition law (8) the parameter Om
forms the special orthogonal group SO(m).

Example 2.6. In the special case when On,1 = On,2 = In and Om,1 = Om,2 = Im
the parameter composition law (8) yields the equation

B(P1)B(P2) =

P1

In

Im


P2

In

Im

 =

 P1⊕P2

lgyr[P1, P2]

rgyr[P1, P2]

 . (11)

Clearly, under the parameter composition law (8) the parameter P ∈ Rn×m does
not form a group, owing to the presence of bi-gyrations. Indeed, (11) demonstrates
that, in general, the composition of two bi-boosts is not a bi-boost but, rather, a
bi-boost associated with a bi-gyration.

In the special case when P1 = P and P2 = 	P , (11) gives

B(P )B(	P ) =

 P

In

Im


	PIn
Im

 =

 P	P
lgyr[P,	P ]

rgyr[P,	P ]

 =

0n,m

In

Im

 , (12)

so that the inverse of B(P ) is B(	P ) = B(−P ). In (12) we use the results
lgyr[P,	P ] = In and rgyr[P,	P ] = Im, which are verified in ( [46, Eq. (114)]).

The product rule (8) is neither commutative nor associative. However, it pos-
sesses a rich algebraic structure. Thus, in particular, it obeys a commutative-like
and an associative-like laws, called the bi-gyrocommutative and the bi-gyroassociative
law of the bi-gyrogroupoid (Rn×m,⊕).

Theorem 2.7. (Bi-gyrocommutative Law in (Rn×m,⊕)) ( [46, Theorem 25]).
The binary operation ⊕ in Rn×m possesses the bi-gyrocommutative law

P1⊕P2 = lgyr[P1, P2](P2⊕P1)rgyr[P1, P2] (13)

for all P1, P2 ∈ Rn×m.
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In Theorem 2.7 the bi-gyration (lgyr[P1, P2], rgyr[P1, P2]) takes P2⊕P1 into
P1⊕P2. It rotates the n×m matrix P2⊕P1 ∈ Rn×m from the left by the orthog-
onal matrix lgyr[P1, P2] ∈ SO(n), and from the right by the orthogonal matrix
rgyr[P1, P2] ∈ SO(m).

Theorem 2.8. (Bi-gyroassociative Law in (Rn×m,⊕)) ( [46, Theorem 27]).
The binary operation ⊕ in Rn×m possesses the bi-gyroassociative law

(P1⊕P2)⊕lgyr[P1, P2]P3 = P1rgyr[P2, P3]⊕(P2⊕P3) (14)

for all P1, P2 ∈ Rn×m.

Note that P1 and P2 are grouped together on the left side of (14), while P2

and P3 are grouped together on the right side of (14).

3. Bi-Gyrogroups
It proves useful in [46] to replace the binary operation ⊕ in Rn×m by a new binary
operation, ⊕′, according to the following definition.

Definition 3.1. (Bi-gyrogroup Operation, Bi-gyrogroups) ( [46, Definition
35]). Let (Rn×m,⊕) be a bi-gyrogroupoid. A new bi-gyrogroup binary operation
⊕′ in Rn×m is given by

P1⊕′P2 = (P1⊕P2)rgyr[P2, P1] (15)

for all P1, P2 ∈ Rn×m. The resulting groupoid (Rn×m,⊕′) is called a bi-gyrogroup.

The bi-gyrogroup (Rn×m,⊕′) is defined in Def. 3.1 in terms of the bi-gyrogroupoid
(Rn×m,⊕).

It is shown in [46] that (15) implies the following four identities that exhibit
an interesting symmetry between the binary operations ⊕ and ⊕′ in Rn×m.

P1⊕′P2 = (P1⊕P2)rgyr[P2, P1]

P1⊕P2 = (P1⊕′P2)rgyr[P1, P2]

P1⊕′P2 = lgyr[P1, P2](P2⊕P1)

P1⊕P2 = lgyr[P1, P2](P2⊕′P1)

(16)

for all P1, P2 ∈ Rn×m.

Theorem 3.2. (Bi-gyrocommutative Law in (Rn×m,⊕′)) ( [46, Theorem 42]).
The binary operation ⊕′ in Rn×m possesses the bi-gyrocommutative law

P1⊕′P2 = lgyr[P1, P2](P2⊕′P1)rgyr[P2, P1] (17)

for all P1, P2 ∈ Rn×m.
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It follows from (13) and (17) that the binary operations ⊕ and ⊕′ possess
the same bi-gyrocommutative law. This is, however, not the case with the bi-
gyroassociative law, as shown in Theorem 3.3.

Theorem 3.3. (Bi-gyrogroup Left and Right Bi-gyroassociative Law)
( [46, Theorem 41]). The binary operation ⊕′ in Rn×m possesses the left bi-
gyroassociative law

P1⊕′(P2⊕′X) = (P1⊕′P2)⊕′lgyr[P1, P2]Xrgyr[P2, P1] (18)

and the right bi-gyroassociative law

(P1⊕′P2)⊕′X = P1⊕′(P2⊕′lgyr[P2, P1]Xrgyr[P1, P2]) (19)

for all P1, P2, X ∈ Rn×m.

4. Gyrogroup Gyrations
The bi-gyroassociative laws (18) – (19) and the bi-gyrocommutative law (17) sug-
gest the following definition of gyrations in terms of left and right gyrations.

Definition 4.1. (Gyrogroup Gyrations) ( [46, Definition 43]). The gyrator

gyr : Rn×m × Rn×m → Aut(Rn×m,⊕′)

generates automorphisms called gyrations, gyr[P1, P2] ∈ Aut(Rn×m,⊕′), given by
the equation

gyr[P1, P2]X = lgyr[P1, P2]Xrgyr[P2, P1] (20)

for all P1, P2, X ∈ Rn×m, where left gyrations, lgyr[P1, P2], and right gyrations,
rgyr[P2, P1], are given in (6), p. 233. The gyration gyr[P1, P2] is said to be the
gyration generated by P1, P2 ∈ Rn×m. Being automorphisms of (Rn×m,⊕′), gy-
rations are also called gyroautomorphisms.

Def. 4.1 will turn out rewarding, leading to the elegant result that any bi-
gyrogroup (Rn×m,⊕′) is a gyrocommutative gyrogroup.

Theorem 4.2. (Gyrogroup Gyroassociative and gyrocommutative Laws)
( [46, Theorem 44]). The binary operation ⊕′ in Rn×m obeys the left and the right
gyroassociative law

P1⊕′(P2⊕′X) = (P1⊕′P2)⊕′gyr[P1, P2]X (21)

and
(P1⊕′P2)⊕′X = P1⊕′(P2⊕′gyr[P2, P1]X) (22)

and the gyrocommutative law

P1⊕′P2 = gyr[P1, P2](P2⊕′P1) . (23)



Lorentz Group in Pseudo-Euclidean Spaces 237

Proof. Identities (21) – (22) follow immediately from Def. 4.1 and the left and right
bi-gyroassociative law (18) – (19). Similarly, (23) follow immediately from Def. 4.1
and the bi-gyrocommutative law (17).

Lemma 4.3. ( [46, Lemma 45]). The relation (20) between gyrations gyr[P1, P2]
and corresponding bi-gyrations (lgyr[P1, P2], rgyr[P2, P1]), P1, P2 ∈ (Rn×m,⊕′), is
bijective.

It is obvious from (20) that a gyration gyr[P1, P2] is determined uniquely by
the bi-gyration (lgyr[P1, P2], rgyr[P1, P2]). It follows from Lemma 4.3 that also
the converse is true, that is, a bi-gyration (lgyr[P1, P2], rgyr[P1, P2]) is determined
uniquely by the gyration gyr[P1, P2].

It is anticipated in Def. 4.1 that gyrations are automorphisms. The following
theorem asserts that this is indeed the case.

Theorem 4.4. (Gyroautomorphism) ( [46, Theorem 46]). Gyrations gyr[P1, P2]
of a bi-gyrogroup (Rn×m,⊕′) are automorphisms of the bi-gyrogroup.

Theorem 4.5. (Left Gyration Reduction Properties) ( [46, Theorem 47]).
Left gyrations of a bi-gyrogroup (Rn×m,⊕′) possess the left gyration left reduction
property

lgyr[P1, P2] = lgyr[P1⊕′P2, P2] (24)

and the left gyration right reduction property

lgyr[P1, P2] = lgyr[P1, P2⊕′P1] . (25)

Theorem 4.6. (Right Gyration Reduction Properties) ( [46, Theorem 48]).
Right gyrations of a bi-gyrogroup (Rn×m,⊕′) possess the right gyration left reduc-
tion property

rgyr[P1, P2] = rgyr[P1⊕′P2, P2] (26)

and the right gyration right reduction property

rgyr[P1, P2] = rgyr[P1, P2⊕′P1] . (27)

Theorem 4.7. (Gyration Reduction Properties) ( [46, Theorem 49]). The
gyrations of any bi-gyrogroup (Rn×m,⊕′), m,n ∈ N, possess the left and right
reduction property

gyr[P1, P2] = gyr[P1⊕′P2, P2] (28)

and
gyr[P1, P2] = gyr[P1, P2⊕′P1] . (29)

Proof. Identities (28) and (29) follow from Def. 4.1 of gyr in terms of lgyr and
rgyr, and from Theorems 4.5 and 4.6.
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5. Gyrogroups and Bi-Gyrogroups

We are now in a position to present the definition of the abstract (gyrocommu-
tative) gyrogroup, and note the proof in [46, Theorem 52] that any bi-gyrogroup
(Rn×m,⊕′), m,n ∈ N, is a gyrocommutative gyrogroup.

Forming a natural generalization of groups, gyrogroups emerged in the 1988
study of the parametrization of the Lorentz group of Einstein’s special relativity
theory [35, 36]. Einstein velocity addition, thus, provides a concrete example of a
gyrocommutative gyrogroup operation in the ball of all relativistically admissible
velocities.

Definition 5.1. (Gyrogroups) ( [46, Definition 50]). A groupoid (G,⊕) is a
gyrogroup if its binary operation satisfies the following axioms (G1) – (G5). In G
there is at least one element, 0, called a left identity, satisfying
(G1) 0⊕a = a
for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for each
a ∈ G there is an element 	a ∈ G, called a left inverse of a, satisfying
(G2) 	a⊕a = 0 .
Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that
the binary operation obeys the left gyroassociative law
(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .
The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism of the
groupoid (G,⊕), that is,
(G4) gyr[a, b] ∈ Aut(G,⊕) ,
and the automorphism gyr[a, b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is
called the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generated by any
a, b ∈ G possesses the left reduction property
(G5) gyr[a, b] = gyr[a⊕b, b] ,
called the reduction axiom.

The gyrogroup axioms (G1) – (G5) in Definition 5.1 are classified into three
classes:

1. The first pair of axioms, (G1) and (G2), is a reminiscent of the group axioms.

2. The last pair of axioms, (G4) and (G5), presents the gyrator axioms.

3. The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms
in (1) and (2).

As in group theory, we use the notation a	b = a⊕(	b) in gyrogroup theory as
well.

In full analogy with groups, gyrogroups are classified into gyrocommutative
and non-gyrocommutative gyrogroups.
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Definition 5.2. (Gyrocommutative Gyrogroups) ( [46, Definition 51]). A
gyrogroup (G,⊕) is gyrocommutative if its binary operation obeys the gyrocommu-
tative law
(G6) a⊕ b = gyr[a, b](b⊕ a)

for all a, b ∈ G.

Theorem 5.3. (Gyrocommutative Gyrogroup) ( [46, Theorem 52]).
Any bi-gyrogroup (Rn×m,⊕′), n,m ∈ N, is a gyrocommutative gyrogroup.

Following the definition of the abstract (gyrocommutative) gyrogroup, we are
now in the position to present the definition of the abstract (bi-gyrocommutative)
bi-gyrogroup.

Definition 5.4. (Bi-gyrogroups) ( [46, Definition 53]). A (gyrocommutative)
gyrogroup whose gyrations are bi-gyrations is said to be a (bi-gyrocommutative)
bi-gyrogroup.

A detailed study of the abstract bi-gyrogroup is presented in [32].
A concrete example of a nontrivial bi-gyrogroup is provided by the Einstein bi-

gyrogroup (Rn×m,⊕′) that stems in Sect. 2 from the (generalized) Lorentz trans-
formation of order (m,n), m,n ∈ N. In the special case when m = 1 we have
Rn×m = Rn, and the Einstein bi-gyrogroup (Rn×m,⊕′) specializes to the Einstein
gyrogroup (Rn,⊕′). It turns out that (Rn,⊕′)=(Rn,⊕U), (Rn,⊕U) being the Ein-
stein proper velocity gyrogroup associated with the Einstein addition law of proper
(traveler’s) velocities rather than the common observer’s velocities. Einstein PV
(proper velocity) gyrogroups, in turn, stem from the proper velocity Lorentz group
studied, for instance, in [38, 40] and [1]. We, therefore, call (Rn×m,⊕′) a PV-bi-
gyrogroup.

As a goal of this paper, we now face the task of changing the parameter
P ∈ Rn×m, which represents generalized proper (traveler’s) relativistic velocities,
to a new parameter, V , which represents generalized relativistically admissible
(observer’s) velocities. Achieving the goal, we will obtain Einstein bi-gyrogroups
associated with generalized observer’s, rather than traveler’s, velocities.

6. Bi-Boost Parameter Change, P → V

It is now useful to introduce a positive parameter c > 0 into the bi-boost B(P ) in
(1), obtaining the bi-boost Bc(P ),

Bc(P ) =

(√
Im + c−2P tP 1

c2P
t

P
√
In + c−2PP t

)
, (30)

so that B(P ) = Bc=1(P ) is a normalized form of Bc(P ).
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Definition 6.1. For any m,n ∈ N let φ : Rn×m → Rn×m be the map given by

φ : P 7→ V =
√
In + c−2PP t

−1
P (31)

where c > 0 is an arbitrarily fixed positive constant.
The image

Bn×m := φ(Rn×m) ⊂ Rn×m (32)

of φ in Rn×m is called the (open) c-eigenball of Rn×m.

The term “eigenball” will be justified in Theorem 7.2 following the observation
that Bn×m ⊂ Rn×m is the set Rn×mc of all V ∈ Rn×m such that each eigenvalue λ of
the Gramian matrices V V t and V tV is nonnegative and smaller than c, 0 ≤ λ < c.
We will see in Example 8.2 that in the special case when m = 1, the c-eigenball
Rn×mc of Rn×1 specializes to the c-ball Rnc of Rn, that is, Rn×1c = Rnc .

Lemma 6.2. The map φ in Def. 6.1 can be written equivalently as

φ : P 7→ V = P
√
Im + c−2P tP

−1
. (33)

Proof. The proof follows immediately from (31) and from the commuting relation

P
√
Im + c−2P tP =

√
In + c−2PP tP (34)

for all P ∈ Rn×m, proved in [46, Eq. (53)] for c = 1. The passage from c = 1 to
c > 0 is immediate in this case.

Theorem 6.3. For any P ∈ Rn×m,

V =
√
In + c−2PP t

−1
P = P

√
Im + c−2P tP

−1
(35)

if and only if

P =
√
In − c−2V V t

−1
V = V

√
Im − c−2V tV

−1
. (36)

Proof. The proof is divided into four parts. In Parts IA and IB we prove that (35)
implies (36), and in Parts IIA and IIB we prove that (36) implies (35).
Part IA: Assuming (35), we have

P =
√
In + c−2PP tV (37)

and the commuting relation

P t
√
In + c−2PP t

−1
=
√
Im + c−2P tP

−1
P t (38)

so that by (38) and (35)

PP t
√
In + c−2PP t

−1
= P

√
Im + c−2P tP

−1
P t =

√
In + c−2PP t

−1
PP t .

(39)
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Then, by (35) and (39),

V V t =
√
In + c−2PP t

−1
PP t

√
In + c−2PP t

−1

= PP t(In + c−2PP t)−1

= (In + c−2PP t)−1PP t .

(40)

Hence,
PP t = (In + c−2PP t)V V t (41)

and
PP t = V V t(In + c−2PP t) . (42)

A rearrangement of (41) yields

V V t = PP t(In − c−2V V t) (43)

implying
PP t = V V t(In − c−2V V t)−1 . (44)

Similarly, a rearrangement of (42) yields

V V t = (In − c−2V V t)PP t (45)

implying
PP t = (In − c−2V V t)−1V V t . (46)

Following (44) we have

In + c−2PP t = In + c−2V V t(In − c−2V V t)−1

= (In − c−2V V t)(In − c−2V V t)−1 + c−2V V t(In − c−2V V t)−1

= (In − c−2V V t + c−2V V t)(In − c−2V V t)−1

= (In − c−2V V t)−1

(47)

so that √
In + c−2PP t =

√
In − c−2V V t

−1
. (48)

Hence, by (37) and (48),

P =
√
In + c−2PP tV =

√
In − c−2V V t

−1
V (49)

thus validating the first equation in (36), In Part IB of the proof we validate the
second equation in (36),
Part IB: Assuming (35), we have

P = V
√
Im + c−2P tP (50)
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and the commuting relation, as in (38),

P t
√
In + c−2PP t

−1
=
√
Im + c−2P tP

−1
P t (51)

so that by (35) and (51),

P tP
√
Im + c−2P tP

−1
= P t

√
In + c−2PP t

−1
P =

√
Im + c−2P tP

−1
P tP .

(52)
Then, by (35) and (52),

V tV =
√
Im + c−2P tP

−1
P tP

√
Im + c−2P tP

−1

= P tP (Im + c−2P tP )−1

= (Im + c−2P tP )−1P tP .

(53)

Hence,
P tP = (Im + c−2P tP )V tV (54)

and
P tP = V tV (Im + c−2P tP ) (55)

A rearrangement of (54) yields

V tV = P tP (Im − c−2V tV ) (56)

implying
P tP = V tV (Im − c−2V tV )−1 . (57)

Similarly, a rearrangement of (55) yields

V tV = (Im − c−2V tV )P tP (58)

implying
P tP = (Im − c−2V tV )−1V tV . (59)

Following (57) we have

Im + c−2P tP = Im + c−2V tV (Im − c−2V tV )−1

= (Im − c−2V tV )(Im − c−2V tV )−1 + c−2V tV (Im − c−2V tV )−1

= (Im − c−2V tV + c−2V tV )(Im − c−2V tV )−1

= (Im − c−2V tV )−1

(60)

so that √
Im + c−2P tP =

√
Im − c−2V tV

−1
. (61)
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Hence, by (50) and (61),

P = V
√
Im + c−2P tP = V

√
Im − c−2V tV

−1
. (62)

Equations (49) and (62) validate the two equations in (36).
Conversely, in Parts IIA and IIB we show that (36) implies (35).

Part IIA: Assuming (36), we have

V =
√
In − c−2V V tP (63)

and the commuting relation

V t
√
In − c−2V V t

−1
=
√
Im − c−2V tV

−1
V t (64)

so that, by (64) and (36)

V V t
√
In − c−2V V t

−1
= V

√
Im − c−2V tV

−1
V t

=
√
In − c−2V V t

−1
V V t .

(65)

Then, by (36) and (65),

PP t =
√
In − c−2V V t

−1
V V t

√
In − c−2V V t

−1

= V V t(In − c−2V V t)−1

= (In − c−2V V t)−1V V t .

(66)

Hence,
V V t = (In − c−2V V t)PP t (67)

and
V V t = PP t(In − c−2V V t) . (68)

A rearrangement of (67) yields

PP t = V V t(In + c−2PP t) (69)

implying
V V t = PP t(In + c−2PP t)−1 (70)

Similarly, a rearrangement of (68) yields

PP t = (In + c−2PP t)V V t (71)

implying
V V t = (In + c−2PP t)−1PP t . (72)



244 A. A. Ungar

Following (70) we have

In − c−2V V t = In − c−2PP t(In + c−2PP t)−1

= (In + c−2PP t)(In + c−2PP t)−1 − c−2PP t(In + c−2PP t)−1

= (In + c−2PP t − c−2PP t)(In + c−2PP t)−1

= (In + c−2PP t)−1

(73)

so that √
In − c−2V V t =

√
In + c−2PP t

−1
. (74)

Hence, by (63) and (74),

V =
√
In − c−2V V tP =

√
In + c−2PP t

−1
P (75)

thus validating the first equation in (35). In Part IIB of the proof we validate the
second equation in (35).
Part IIB: Assuming (36), we have

V = P
√
Im − c−2V tV (76)

and the commuting relation, as in (64),

V t
√
In − c−2V V t

−1
=
√
Im − c−2V tV

−1
V t (77)

so that by (36) and (77),

V tV
√
Im − c−2V tV

−1
= V t

√
In − c−2V V t

−1
V =

√
Im − c−2V tV

−1
V tV .

(78)
Then, by (36) and (78),

P tP =
√
Im − c−2V tV

−1
V tV

√
Im − c−2V tV

−1

= V tV (Im − c−2V tV )−1

= (Im − c−2V tV )−1V tV .

(79)

Hence,
V tV = (Im − c−2V tV )P tP (80)

and
V tV = P tP (Im − c−2V tV ) . (81)

A rearrangement of (80) yields

P tP = V tV (Im + c−2P tP ) (82)



Lorentz Group in Pseudo-Euclidean Spaces 245

implying
V tV = P tP (Im + c−2P tP )−1 . (83)

Similarly, a rearrangement of (81) yields

P tP = (Im + c−2P tP )V tV (84)

implying
V tV = (Im + c−2P tP )−1P tP . (85)

Following (83) we have

Im − c−2V tV = Im − c−2P tP (Im + c−2P tP )−1

= (Im + c−2P tP )(Im + c−2P tP )−1 − c−2P tP (Im + c−2P tP )−1

= (Im + c−2P tP − c−2P tP )(Im + c−2P tP )−1

= (Im + c−2P tP )−1

(86)

so that √
Im − c−2V tV =

√
Im + c−2P tP

−1
. (87)

Hence, by (76) and (87),

V = P
√
Im − c−2V tV = P

√
Im + c−2P tP

−1
. (88)

Equations (75) and (88) validate the two equations in (35), and the proof is
complete.

Theorem 6.4. Let φ : Rn×m → Bn×m, m,n ∈ N, be the map given by each of
the two mutually equivalent equations

φ : P 7→ V =
√
In + c−2PP t

−1
P

φ : P 7→ V = P
√
Im + c−2P tP

−1 (89)

where Bn×m = φ(Rn×m) is the image of Rn×m under φ.
Then, φ is bijective, and the inverse φ−1 : Bn×m → Rn×m of φ is given by each

of the two mutually equivalent equations

φ−1 : V 7→ P =
√
In − c−2V V t

−1
V

φ−1 : V 7→ P = V
√
Im − c−2V tV

−1
.

(90)

Proof. The proof follows immediately from Theorem 6.3.
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7. Eigenballs
In order to characterize the image Bn×m = φ(Rn×m) of Rn×m under φ in terms
of eigenvalues, we present the following well-known theorem.

Theorem 7.1. ( [6, p. 56]). If a square matrix A has the eigenvalue λ and
the corresponding eigenvector x, then any rational function R(A) of A has the
eigenvalue R(λ) and the eigenvector x.

Theorem 7.1 enables us to prove the following theorem, which characterizes
Bn×m in terms of eigenvalues.

Theorem 7.2. Let
Bn×m = φ(Rn×m) (91)

and

Rn×mc = {V ∈ Rn×m : Each eigenvalue λ of V V t satisfies 0 ≤ λ < c2}. (92)

Then,
Bn×m = Rn×mc . (93)

Proof. Let V ∈ Bn×m = φ(Rn×m). Then there exists P ∈ Rn×m such that

V = φ(P ) =
√
In + c−2PP t

−1
P (94)

and, hence, by (72),
V V t = (In + c−2PP t)−1PP t . (95)

Let λi, i = 1, . . . , n, be the eigenvalues of PP t. Then λi ≥ 0 and, by (95) and
Theorem 7.1, the eigenvalues µi of V V t are

µi =
λi

1 + λi/c2
(96)

so that 0 ≤ µi < c2. Hence V ∈ Rn×mc , implying the inclusion Bn×m ⊆ Rn×mc .
To prove the reverse inclusion, let V ∈ Rn×mc and let µi, i = 1, . . . , n be the

eigenvalues of V V t. Then 0 ≤ µi < c2, so that we can define P ∈ Rn×m by the
equation

P =
√
In − c−2V V t

−1
V . (97)

By means of Theorem 6.3, (97) implies

V =
√
In + c−2PP t

−1
P (98)

so that V = φ(P ) ∈ Bn×m, implying the reverse inclusion Rn×mc ⊆ Bn×m. Hence,
Bn×m = Rn×mc , as desired.
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For any V ∈ Rn×m the set of nonzero eigenvalues of V V t equals the set of
nonzero eigenvalues of V tV . Hence, following (92) we have

Rn×mc = {V ∈ Rn×m : Each eigenvalue λ of V V t satisfies 0 ≤ λ < c2}
= {V ∈ Rn×m : Each eigenvalue λ of V tV satisfies 0 ≤ λ < c2}

(99)

Result (93) of Theorem 7.2 suggests calling Bn×m = Rn×mc the eigenball of
Rn×m of eigenradius c, or the c-eigenball in short.

8. Reparametrizing the Bi-Boost

We now wish to change the bi-boost parameter P ∈ Rn×m, the domain of which
is the set Rn×m of all n × m real matrices, to the new parameter V ∈ Rn×mc ,
the domain of which is the eigenball Rn×mc of Rn×m. We, therefore, recall the
following equations, which are taken from (36), (61) and (48).

P =
√
In − c−2V V t

−1
V = V

√
Im − c−2V tV

−1√
Im + c−2P tP =

√
Im − c−2V tV

−1√
In + c−2PP t =

√
In − c−2V V t

−1
.

(100)

A generic parameter V ∈ Rn×mc in the eigenball Rn×mc is constructed by con-
structing a generic parameter P ∈ Rn×m and employing (35).

The equations in (100) along with analogies with the gamma factor of special
relativity theory suggest the definition of a left gamma factor ΓLn,V and a right
gamma factor ΓRm,V by the following equations.

ΓLn,V :=
√
In − c−2V V t

−1
∈ Rn×n

ΓRm,V :=
√
Im − c−2V tV

−1
∈ Rm×m .

(101)

Naturally, the pair (ΓLn,V , ΓRm,V ) of a left and a right gamma factor is called a
bi-gamma factor. Practically, it is sometimes convenient to use the short notation

γm,V := ΓRm,V , γn,V := ΓLn,V (102)

in which a left (right) gamma factor is implicitly indicated by the subscript n
(m). It proves useful to use interchangeably the short notation with γ and the
full notation with Γ in (102). We will use the short notation mainly in lengthy
intermediate results as, for instance, in (146), p. 255.

Following (36), the left and right gamma factors are related by the first com-
muting relation in (103) below. The remaining commuting relations in (103) follow
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immediately from the first one, noting that left and right gamma factors are sym-
metric matrices.

ΓLn,V V = V ΓRm,V

ΓRm,V V
t = V tΓLn,V

ΓLn,V V V
t = V V tΓLn,V

ΓRm,V V
tV = V tV ΓRm,V .

(103)

Moreover, by Theorem 6.3 with P replaced by E,

E = ΓLn,V V = V ΓRm,V ⇐⇒ V =
√
In + c−2EEt

−1
E

= E
√
Im + c−2EtE

−1
.

(104)

The result in (104) will prove useful in (163), p. 259.
In the bi-gamma notation (101), the equations in (100) take the form

P = ΓLn,V V = V ΓRm,V ∈ Rn×m√
In + c−2PP t = ΓLn,V ∈ Rn×n√
Im + c−2P tP = ΓRm,V ∈ Rm×m .

(105)

Introducing the arbitrarily fixed positive constant c > 0 into the bi-boost
B(P ) in (1) we obtain the bi-boost Bc(P ), shown in (106) below, parametrized by
P ∈ Rn×m. The bi-boost Bc(P ) leaves invariant the inner product of signature
(m,n), m,n ∈ N, shown in (138), p. 254, as we will prove straightforwardly in
Theorem 10.1, p. 256.

The bi-boost Bc(P ) can be written as a bi-boost B̄c(V ) parametrized by the
new parameter V ∈ Rn×mc . Abusing notation, instead of B̄c(V ) we write Bc(V )
since no confusion may arise. Thus, following the change of parameter from Bc(P )
with parameter P ∈ Rn×m to Bc(V ) with parameter V ∈ Rn×mc we have by means
of (30) and (105),

Bc(P ) =

(√
Im + c−2P tP 1

c2P
t

P
√
In + c−2PP t

)

=

(
ΓRm,V

1
c2 ΓRm,V V

t = 1
c2V

tΓLn,V

ΓLn,V V = V ΓRm,V ΓLn,V

)
=: Bc(V ) .

(106)

It can be shown that whenm = 1 the bi-boost Bc(V ) specializes to the standard
Lorentz boost in one time dimension and n space dimensions, studied in [35]. It,
therefore, proves useful to replace the bi-boost Bc(P ) parametrized by P ∈ Rn×m
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by the equivalent bi-boost Bc(V ) parametrized by V ∈ Rn×mc , obtaining

Bc(V ) =

(
ΓRm,V

1
c2 ΓRm,V V

t

ΓLn,V V ΓLn,V

)
(107)

as we see from (106).
Accordingly, the generic Lorentz transformation Λ(P,On, Om) of order (m,n),

m,n ∈ N, in (4) becomes Λ = Λ(V,On, Om) given by the unique bi-gyration
decomposition in theorem 8.1 below.

Owing to the bijective correspondence between the old parameter P ∈ Rn×m
and the new parameter V ∈ Rn×mc , Theorem 2.1 can be translated into the fol-
lowing theorem.

Theorem 8.1. (Lorentz Transformation Bi-gyration Decomposition, V ),
A matrix Λ ∈ R(m+n)×(m+n) is the matrix representation of a Lorentz transfor-
mation of order (m,n), Λ ∈ SO(m,n), if and only if it is given uniquely by the
bi-gyration decomposition

Λ =

(
Om 0m,n

0n,m In

)(
ΓRm,V

1
c2 ΓRm,V V

t

ΓLn,V V ΓLn,V

)(
Im 0m,n

0n,m On

)
(108)

or, prarmetrically in short,

Λ = Λ(Om, V,On) = ρ(Om)B(V )λ(On) =

 V
On
Om

 (109)

for any V ∈ Rn×mc , Om ∈ SO(m) and On ∈ SO(n).

Example 8.2. In this example we show that in the special case when m = 1 the
eigenball Rn×1c specializes to the open c-ball Rnc of Rn×1 = Rn.

For m = 1, V ∈ Rn×m = Rn is a column vector in the Euclidean n-space Rn,
and V tV = ‖V ‖2 is a 1 × 1 matrix the eigenvalue of which is λ = ‖V ‖2. Hence,
following (99) and Theorem 7.2 we have V ∈ Rn×mc and

Rn×1c = {V ∈ Rn : The eigenvalue ‖V‖2 of VtV satisfies 0 ≤ ‖V ‖2 < c2}
= {V ∈ Rn : 0 ≤ ‖V ‖ < c}
=: Rnc .

(110)

Indeed, in special relativity, the relativistically admissible velocities are elements
of the c-ball R3

c , where c represents the vacuum speed of light.

Example 8.3. In this example we show that when m = 1 the right gamma factor
equals the gamma factor of special relativity theory.
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When m = 1, P ∈ Rn×1 = Rn is a column vector so that P tP = ‖P‖2. Then,
by (35),

V = φ(P ) = P
√
Im + c−2P tP

−1
=

P√
1 + c−2‖P‖2

(111)

so that V ∈ Rn is a column vector and

‖V ‖2 = V tV =
‖P‖2

1 + c−2‖P‖2
. (112)

Hence, 0 ≤ ‖V ‖ < c and, by (101),

ΓRm=1,V =
1√

1− c−2‖V ‖2
=: γV (113)

for all V ∈ Bn×1 = φ(Rn×1). Here γV is the gamma factor that plays an important
role in special relativity and in its underlying hyperbolic geometry [36, 37, 40, 42,
43,45].

Example 8.4. Extending (113) to m ≥ 1, it can be shown that the left and right
gamma factors,

ΓLn,V :=
√
In − c−2V V t

−1
=
√
In + c−2PP t (114)

and
ΓRm,V :=

√
Im − c−2V tV

−1
=
√
Im + c−2P tP , (115)

are related by the equation

−In + ΓLn,V =
1

c2
P (Im + ΓRm,V )−1P t (116)

where P and V are related by Theorem 6.3. Note that by means of (114) – (115),
(116) is equivalent to the elegant matrix identity (117), which we prove in the
following lemma.

Lemma 8.5. The matrix identities

−In +
√
In + c−2PP t =

1

c2
P
(
Im +

√
Im + c−2P tP

)−1
P t (117)

and

−Im +
√
Im + c−2P tP =

1

c2
P t
(
In +

√
In + c−2PP t

)−1
P (118)

hold for all P ∈ Rn×m, m,n ∈ N.
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Proof. Clearly,(
Im +

√
Im + c−2P tP

)2
= 2

(
Im +

√
Im + c−2P tP

)
+ c−2P tP . (119)

Let
R :=

(
Im +

√
Im + c−2P tP

)−1
(120)

so that (119) can be written as

2R−1 + c−2P tP − (R−1)2 = 0m,m . (121)

Left multiplying and right multiplying (121) by R yields

2R+ c−2RP tPR− Im = 0m,m . (122)

Left multiplying by P and right multiplying by P t, (122) yields

P (2R+ c−2RP tPR− Im)P t = 0m,m (123)

so that
2PRP t + c−2PRP tPRP t = PP t (124)

and hence,

In + c−2(2PRP t + c−2PRP tPRP t) = In + c−2PP t . (125)

Identity (125) can be written as

(In + c−2PRP t)2 = In + c−2PP t (126)

implying
In + c−2PRP t =

√
In + c−2PP t . (127)

Finally, by means of (120), (127) yields (117), as desired.
The proof of (118) is similar to that of (117).

Example 8.6. In the special case when m = 1, P ∈ Rn×1 = Rn is a column
vector, P tP = ‖P‖2, and PP t is an n× n matrix, so that (117) specializes to√

In + c−2PP t = In +
1

c2
1

1 +
√

1 + c−2‖P‖2
PP t . (128)

We now manipulate (128) in the following chain of equations, which are num-
bered for subsequent explanation. For all V ∈ Rn×1c = Rnc ,√

In − c−2V V t
−1

(1)︷︸︸︷
=== In +

1

c2
1

1 + 1√
1−c−2‖V ‖2

(
ΓLn,V

)2
V V t

(2)︷︸︸︷
=== In +

1

c2
1

1 + γV
V
(
ΓRm,V

)2
V t

(3)︷︸︸︷
=== In +

1

c2
γ2V

1 + γV
V V t .

(129)
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Derivation of the numbered equalities in (129) follows:

1. This equation is equivalent to (128) since (i) the left sides of the two equations
are equal by (48); and (ii) their right sides are equal by (61) with m = 1,
and by (66) along with (101).

2. Follows from Item (1) by (113) and by the first commuting relation in (103).

3. Follows from Item (2) by (113), noting that m = 1.

Noting (101), the chain of equation (129) yields the important equation

ΓLn,V = In +
1

c2
γ2V

1 + γV
V V t , (m = 1) , (130)

which holds for m = 1 and all n ∈ N.
The importance of (130) is revealed in Example 8.7 below, enabling us to show

straightforwardly that the bi-boost Bc(V ), V ∈ Rn×mc , m,n ∈ N, specializes to
the Lorentz boost Bc(V ), V ∈ Rn×1c = Rnc , of special relativity in the special case
when m = 1.

Example 8.7. When m = 1 the bi-boost Bc(V ) in (107) can be manipulated by
means of (103) and by means of (113) and (130), obtaining the following chain of
equations.

Bc(V ) =

(
ΓRm=1,V

1
c2 ΓRm=1,V V

t

ΓLn,V V ΓLn,V

)

=

(
ΓRm=1,V

1
c2 ΓRm=1,V V

t

V ΓRm=1,V ΓLn,V

)

=

 γV
1
c2 γV V

t

γV V In + 1
c2

γ2
V

1+γV
V V t

 , (m = 1),

(131)

where V ∈ Rn×1c ⊂ Rn×1 = Rn is a column vector in the ball Rn×1c = Rnc of Rn,

Rnc = {V ∈ Rn : ‖V ‖ < c} . (132)

The extreme right side of (131) turns out to be the standard special relativistic
(n+1)× (n+1) matrix representation of the Lorentz group in one time dimension
and n space dimensions [35] [36, p. 254] [40, p. 447]. Accordingly, it follows from
(131) that in the special case when m = 1 the Lorentz group of order (m,n)
specializes to the Lorentz group of special relativity theory.
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Example 8.8. In the special case when m = 1, P ∈ Rn×1 = Rn is a column
vector so that P tP = ‖P‖2. Accordingly, when m = 1 Identity (117) specializes
to Identity (128),

√
In + c−2PP t = In +

1

c2
PP t

1 +
√

1 + c−2‖P‖2
. (133)

Hence, when m = 1, the boost Bc(P ) in (106) specializes to the proper velocity
(PV) bi-boost

Bc(P ) =

√1 + c−2‖P‖2 1
c2P

t

P In + 1
c2

PP t

1+
√

1+c−2‖P‖2

 (134)

in one proper-time dimension and n space dimensions, where P ∈ Rn is the proper
velocity of special relativity (in physical applications n = 3).

The PV-bi-boost (134) leaves invariant the relativistic inner product in (138)
below.

The PV-bi-boost Bc(P ) involves the proper-velocity parameter P ∈ Rn, which
is measured by means of proper-time. The need for a search for a proper-time
boost, like the one in (134), arises in several papers as, for instance, [14–20] and
[37–39,46].

The application Bc(P )(t,x)t of the PV-bi-boost Bc(P ) to time space coordi-
nates (t,x)t is linear, and it keeps the relativistic norm

τ =
√
t2 − x2/c2 (135)

invariant.
Similarly, the application Bc(P )(

√
τ2 + x2/c2,x)t of the PV-bi-boost Bc(P )

to proper-time space coordinates (τ,x)t is nonlinear, and it keeps the proper-time
τ invariant.

9. The Bi-Boost Bc(V )

We know by construction that the bi-boost Bc(V ), V ∈ Rn×mc , of order (m,n),
m,n ∈ N, preserves the inner product of signature (m,n) in the pseudo-Euclidean
space Rm,n. However, solely owing to the commuting relations in (103), a direct
proof is straightforward, simple and, hence, instructive. Accordingly, the aim of
this section is to prove directly that the bi-boost Bc(V ) in (139) below preserves
the pseudo-Euclidean inner product of signature (m,n), m,n ∈ N, in (138) below.

Let

t =

 t1
...
tm

 ∈ Rm, x =

x1...
xn

 ∈ Rn, (136)
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so that (
t
x

)
= (t1, . . . , tm, x1, . . . , xn)t ∈ Rm,n (137)

is a generic point of the pseudo-Euclidean space Rm,n. The inner product of
signature (m,n) in Rm,n involves the constant c > 0 according to the equation(

t1
x1

)
·
(
t2
x2

)
:=

(
t1
x1

)t(
Im 0m,n

0n,m −c−2In

)(
t2
x2

)
= t1·t2 − c−2x1·x2 (138)

for all (t1,x1)t, (t2,x2)t ∈ Rm,n, where t1·t2 = tt1t2 and x1·x2 = xt1x2 are the
standard inner product in Rm and Rn, respectively.

The bi-boost Bc(V ) is given by its (m + n)×)(m + n) matrix representation
(107),

Bc(V ) =

(
ΓRm,V c−2ΓRm,V V

t

ΓLn,V V ΓLn,V

)
(139)

m,n ∈ N, where the left and right gamma factors are given by (101),

ΓLn,V =
√
In − c−2V V t

−1
∈ Rn×n

ΓRm,V =
√
Im − c−2V tV

−1
∈ Rm×m .

(140)

The space of the parameter V in (139) – (140) is the c-eigenball Rn×mc ⊂ Rn×m
which is given by

Rn×mc = {V ∈ Rn×m : Each eigenvalue λ of V V t satisfies 0 ≤ λ < c2}
= {V ∈ Rn×m : Each eigenvalue λ of V tV satisfies 0 ≤ λ < c2} .

(141)

The generic parameter V ∈ Rn×mc in the c-eigenball Rn×mc of Rn×m is con-
structed by constructing a generic parameter P ∈ Rn×m and employing (35),

V =
√
In + c−2PP t

−1
P = P

√
Im + c−2P tP

−1
. (142)

Theorem 9.1. The bi-boost

Bc(V ) =

(
ΓRm,V c−2ΓRm,V V

t

ΓLn,V V ΓLn,V

)
(143)

V ∈ Rn×mc , m,n ∈ N, leaves the pseudo-Euclidean inner product (138) invariant,
that is

Bc(V )

(
t1
x1

)
·Bc(V )

(
t2
x2

)
=

(
t1
x1

)
·
(
t2
x2

)
(144)

for any t1, t2 ∈ Rm and x1,x2 ∈ Rn.
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Proof. For convenient, we use in the proof the short notation in (102).

Bc(V )

(
t
x

)
=

(
γm,V c−2γm,V V

t

γn,V V γn,V

)(
t
x

)
=

(
γm,V t + c−2γm,V V

tx

γn,V V t + γn,V x

)
. (145)

Hence, by (136) – (138), (103) and (105), we have the following chain of equations.

Bc(V )

(
t1
x1

)
·Bc(V )

(
t2
x2

)

=

(
γm,V t1 + c−2γm,V V

tx1

γn,V V t1 + c−2γn,V x1

)t(
Im 0m,n

0n,m −c−2In

)(γm,V t2 + c−2γm,V V
tx2

γn,V V t2 + γn,V x2

)

= (tt1γm,V + c−2xt1V γm,V , − c−2tt1V tγn,V − c−2xt1γn,V )

×

(
γm,V t2 + c−2γm,V V

tx2

γn,V V t2 + γn,V x2

)

= tt1γ
2
m,V t2 + c−2tt1γ

2
m,V V

tx2 + c−2xt1V γ
2
m,V t2 + c−4xt1V γ

2
m,V V

tx2

− c−2(tt1V
tγ2n,V V t2 + tt1V

tγ2n,V x2 + xt1γ
2
n,V V t2 + xt1γ

2
n,V x2)

= tt1γ
2
m,V t2 + c−2tt1γ

2
m,V V

tx2 + c−2xt1V γ
2
m,V t2 + c−4xt1γ

2
n,V V V

tx2

− (c−2tt1V
tV γ2m,V t2 + c−2tt1γ

2
m,V V

tx2 + c−2xt1V γ
2
m,V t2 + c−2xt1γ

2
n,V x2)

= tt1(Im − c−2V tV )γ2m,V t2 − c−2xt1γ2n,V (In − c−2V V t)x2

= tt1t2 − c−2xt1x2

= t1·t2 − c−2x1·x2

=

(
t1
x1

)
·
(
t2
x2

)
,

(146)

as desired.

Example 9.2. Following (140) we have the obvious limits of large c,

lim
c→∞

ΓRm,V = Im

lim
c→∞

ΓLn,V = In .
(147)

Hence, in that limit we have

B∞(V ) := lim
c→∞

Bc(V ) =

(
Im 0m,n
V In

)
(148)
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so that the limit of (145) as c approaches infinity yields an obvious generalization
of the familiar Galilei transformation in a pseudo-Euclidean space of signature
(m,n),

B∞(V )

(
t
x

)
=

(
Im 0m,n
V In

)(
t
x

)
=

(
t

x + V t

)
. (149)

10. The Bi-Boost Bc(P )

We know by its construction in [46] that the bi-boost Bc=1(P ), P ∈ Rn×m, of
order (m,n), m,n ∈ N, preserves the inner product (138) of signature (m,n) in the
pseudo-Euclidean space Rm,n. However, solely owing to the commuting relations
in (154) below, a direct proof is straightforward, simple and, hence, instructive.
Accordingly, the aim of this section is to prove directly that the bi-boost Bc(P )
preserves the inner product (138) for an arbitrarily fixed positive constant c.

Theorem 10.1. The bi-boost

Bc(P ) =

(√
Im + c−2P tP 1

c2P
t

P
√
In + c−2PP t

)
(150)

P ∈ Rn×m, m,n ∈ N, leaves the pseudo-Euclidean inner product (138) invariant,
that is

Bc(P )

(
t1
x1

)
·Bc(P )

(
t2
x2

)
=

(
t1
x1

)
·
(
t2
x2

)
(151)

for any t1, t2 ∈ Rm and x1,x2 ∈ Rn.

Proof. It is convenient to use in the proof the short notation

bm :=
√
Im + c−2P tP

bn :=
√
In + c−2PP t

(152)

so that, by (150),

Bc(P ) =

(
bm

1
c2P

t

P bn

)
(153)

and, by (34), we have the commuting relations

Pbm = bnP

P tbn = bmP
t .

(154)

The application of the bi-boost Bc(P ) to (t,x)t ∈ Rm,n is given by

Bc(P )

(
t

x

)
=

(
bm

1
c2P

t

P bn

)(
t

x

)
=

(
bmt + c−2P tx

P t + bnx

)
. (155)
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Hence, by (136) – (138), (154) and (155) we have the following chain of equations.

Bc(P )

(
t1
x1

)
·Bc(P )

(
t2
x2

)

=

(
bmt1 + c−2P tx1

P t1 + bnx1

)t(
Im 0m,n

0n,m −c−2In

)(
bmt2 + c−2P tx2

P t2 + bnx2

)

= (tt1bm + c−2xt1P, − c−2(tt1P
t + xt1bn))

(
bmt2 + c−2P tx2

P t2 + bnx2

)
= tt1b

2
mt2 + c−2tt1bmP

tx2 + c−2xt1Pbmt2 + c−4xt1PP
tx2

− c−2(tt1P
tP t2 + tt1P

tbnx2 + xt1bnP t2 + xt1b
2
nx2)

= tt1(Im + c−2P tP )t2 + c−2tt1bmP
tx2 + c−2xt1Pbmt2 + c−4xt1PP

tx2

− c−2(tt1P
tP t2 + tt1P

tbnx2 + xt1bnP t2 + xt1(In + c−2PP t)x2)

= tt1(Im + c−2P tP )t2 + c−2tt1bmP
tx2 + c−2xt1Pbmt2

− c−2(tt1P
tP t2 + tt1bmP

tx2 + xt1Pbmt2 + xt1x2)

= tt1t2 − c−2xt1x2

=

(
t1
x1

)
·
(
t2
x2

)
.

(156)

as desired.

11. Bi-Boost Product with the Parameter V

The Lorentz transformation product law, expressed in terms of the old parameter
P ∈ Rn×m in Theorem 2.3, was derived in [46, Theorem 21]. Accordingly, an
important objective of the present article is to derive the Lorentz transformation
product law expressed in terms of the new parameter V ∈ Rn×mc .

Let Bc(Vk), k = 1, 2, be two bi-boosts parametrized by Vk ∈ Rn×mc ,

Bc(Vk) =

(
γm,Vk

1
c2 γm,Vk

V tk

γn,Vk
Vk γn,Vk

)
(157)

where we use the short notation in (102), p. 247.
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By matrix multiplication and the commuting relations (103),

Bc(V1)Bc(V2) =

(
γm,V1

1
c2 γm,V1

V t1

γn,V1
V1 γn,V1

)(
γm,V2

1
c2 γm,V2

V t2

γn,V2
V2 γn,V2

)

=

(
γm,V1

γm,V2
+ 1

c2 γm,V1
V t1 γn,V2

V2
1
c2 (γm,V1

γm,V2
V t2 + γm,V1

V t1 γn,V2
)

γn,V1
V1γm,V2

+ γn,V1
γn,V2

V2
1
c2 γn,V1

V1γm,V2
V t2 + γn,V1

γn,V2

)

=

(
γm,V1

(Im + 1
c2V

t
1 V2)γm,V2

1
c2 γm,V1

(V1 + V2)tγn,V2

γn,V1
(V1 + V2)γm,V2

γn,V1
(In + 1

c2V1V
t
2 )γn,V2

)
=:

(
E11

1
c2E12

E21 E22

)
.

(158)

As we see from (158), the product of two bi-boosts need not be a bi-boost.
However, it is a Lorentz transformation and, as such, it uniquely possesses the
bi-gyration decomposition (108). Hence, by (108), we can express the bi-boost
product Bc(V1)Bc(V2) as follows,

Bc(V1)Bc(V2) =

=

(
rgyr[V1, V2] 0m,n

0n,m In

)(
ΓRm,V12

1
c2 ΓRm,V12

V t12

ΓLn,V12
V12 ΓLn,V12

)(
Im 0m,n

0n,m lgyr[V1, V2]

)

=

(
rgyr[V1, V2]ΓRm,V12

1
c2 rgyr[V1, V2]ΓRm,V12

V t12lgyr[V1, V2]

ΓLn,V12
V12 ΓLn,V12

lgyr[V1, V2]

)

=

(
E11

1
c2E12

E21 E22

)
(159)

where the composite parameter V12 ∈ Rn×mc ,

V12 =: V1⊕V2 (160)

and the bi-gyration (lgyr[V1, V2], rgyr[V1, V2]) ∈ SO(n) × SO(m) are to be deter-
mined in terms of V1 and V2.

The uniqueness of the Lorentz transformation bi-gyration decomposition, in-
sured by the Bi-gyration Decomposition Theorem 8.1, implies that the matrix
entries Eij , i, j = 1, 2, defined in (158), and the matrix entries Eij defined in (159)
are identically equal.

Hence, the expressions

V12 =: V1⊕V2 ∈ Bn×m

lgyr[V1, V2] ∈ SO(n)

rgyr[V1, V2] ∈ SO(m)

(161)
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that appear in (159) are uniquely determined by the Bi-gyration Decomposition
Theorem 8.1. Employing (158) – (159), in the following Subsections – we determine
each of the expressions in (161) in terms of V1 and V2.

11.1. E21

In this subsection we study the consequences of the equality between E21 in (158)
and E21 in (159).

With V12 = V1⊕V2, we see from (159) that

E21 = ΓLn,V1⊕V2
(V1⊕V2) . (162)

Hence, by (104), the binary operation ⊕ in Rn×mc is given by

V1⊕V2 =
√
In + c−2E21Et21

−1
E21 = E21

√
Im + c−2Et21E21

−1
, (163)

where, by (158),
E21 = ΓLn,V1

(V1 + V2)ΓRm,V2
, (164)

V1, V2 ∈ Rn×mc .
Thus, the bi-gyrosum V1⊕V2 is expressed in (163) – (164) in terms of V1 and

V2.
It is interesting to note that following (141), (163) – (164) and (147), we have

the limits

lim
c→∞

Rn×mc = Rn×m

lim
c→∞

(V1⊕V2) = V1 + V2 .
(165)

Thus, as expected, in the limit of large c, the binary operation ⊕ in the eigenball
Rn×mc tends to the common matrix addition, +, in the ambient space Rn×m.

In the special case when m = 1, the binary operation ⊕ in the eigenball Rn×mc

specializes to Einstein velocity addition of special relativity in the ball Rnc , as
indicated in Example 8.7. Einstein velocity addition in the ball Rnc is studied, for
instance, in [36,40].

Additionally, the equality between E21 in (159) and in (158), along with the
first commuting relation in (103), yields the elegant equations

ΓLn,V1⊕V2
(V1⊕V2) = ΓLn,V1

(V1 + V2)ΓRm,V2

(V1⊕V2)ΓRm,V1⊕V2
= ΓLn,V1

(V1 + V2)ΓRm,V2

(166)

which show how closely the binary operations ⊕ and + are related to each other.
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Lemma 11.1. The expression E21 in (162) possesses the commuting relations

E21E
t
21

√
In + c−2E21Et21

−1
=
√
In + c−2E21Et21

−1
E21E

t
21

Et21E21

√
Im + c−2Et21E21

−1
=
√
Im + c−2Et21E21

−1
Et21E21

(167)

and the identities

ΓLn,V1⊕V2
:=
√
In − c−2(V1⊕V2)(V1⊕V2)t

−1
=
√
In + c−2E21Et21

ΓRm,V1⊕V2
:=
√
Im − c−2(V1⊕V2)t(V1⊕V2)

−1
=
√
Im + c−2Et21E21 .

(168)

Proof. The commuting relations in (167) follow immediately from the commuting
relation in (163).

By (163) and (167) we have

(V1⊕V2)(V1⊕V2)t =
√
In + c−2E21Et21

−1
E21E

t
21

√
In + c−2E21Et21

−1

= (In + c−2E21E
t
21)−1E21E

t
21 .

(169)

Hence,

In − c−2(V1⊕V2)(V1⊕V2)t = In − c−2(In + c−2E21E
t
21)−1E21E

t
21

= (In + c−2E21E
t
21)−1(In + c−2E21E

t
21)− c−2(In + c−2E21E

t
21)−1E21E

t
21

= (In + c−2E21E
t
21)−1(In + c−2E21E

t
21 − c−2E21E

t
21)

= (In + c−2E21E
t
21)−1

(170)

thus proving the first identity in (168). The proof of the second identity in (168)
is similar.

11.2. E11 and E22

In this subsection we study the consequences of the equality between E11 (E22) in
(158) and E11 (E22) in (159).

With V12 = V1⊕V2, we see from (159) that

E11 = rgyr[V1, V2]ΓRm,V1⊕V2

E22 = ΓLn,V1⊕V2
lgyr[V1, V2] ,

(171)



Lorentz Group in Pseudo-Euclidean Spaces 261

so that for all V1, V2 ∈ Rn×mc ,

lgyr[V1, V2] = (ΓLn,V1⊕V2
)−1E22

rgyr[V1, V2] = E11(ΓRm,V1⊕V2
)−1 ,

(172)

where, by (158),

E11 = ΓRm,V1
(Im +

1

c2
V t1 V2)ΓRm,V2

E22 = ΓLn,V1
(In +

1

c2
V1V

t
2 )ΓLn,V2

(173)

and where, by (101) and Lemma 11.1,

ΓLn,V1⊕V2
=

√
In −

1

c2
(V1⊕V2)(V1⊕V2)t

−1

=

√
In +

1

c2
E21Et21

ΓRm,V1⊕V2
=

√
Im −

1

c2
(V1⊕V2)t(V1⊕V2)

−1

=

√
Im +

1

c2
Et21E21 .

(174)

Following (172) - (174) we have

lgyr[V1, V2] =√
In +

1

c2
E21Et21

−1√
In −

1

c2
V1V t1

−1

(In +
1

c2
V1V

t
2 )

√
In −

1

c2
V2V t2

−1

rgyr[V1, V2] =√
Im −

1

c2
V t1 V1

−1

(Im +
1

c2
V t1 V2)

√
Im −

1

c2
V t2 V2

−1√
Im +

1

c2
Et21E21

−1

.

(175)

Equations (171) and (173) yield the bi-gamma identities

rgyr[V1, V2]ΓRm,V1⊕V2
= ΓRm,V1

(Im +
1

c2
V t1 V2)ΓRm,V2

ΓLn,V1⊕V2
lgyr[V1, V2] = ΓLn,V1

(In +
1

c2
V1V

t
2 )ΓLn,V2

.

(176)

For V ∈ Rn×m, the left (right) gamma factor ΓLn,V (ΓRm,V ) is real if and only if
V ∈ Rn×mc , as we see from (99) and (101), p. 247. Hence, each of the two equations
in (176) yields the following implication: V1, V2 ∈ Rn×mc ⇒ V1⊕V2 ∈ Rn×mc , so
that ⊕ is a binary operation in Rn×mc as expected.

Example 11.2. In the special case when m = 1, rgyr[V1, V2] ∈ SO(1) = {1}, so
that rgyr[V1, V2] = 1. Hence, the first identity in (176) specializes to the gamma
identity,

γV1⊕V2
= γV1

γV2
(1 +

1

c2
V1·V2), (m = 1) , (177)
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which plays an important role in special relativity and its underlying hyperbolic
geometry [36,40,43].

In fact, The gamma identity (177) signaled the emergence of hyperbolic ge-
ometry in special relativity when it was first studied by Sommerfeld [30] and
Varičak [48,49] in terms of rapidities [40, p. 90].

11.3. E12

In this subsection we study the consequences of the equality between E12 in (158)
and E12 in (159).

The equality between E12 in (159) and in (158) yields the equation

rgyr[V1, V2]ΓRm,V1⊕V2
(V1⊕V2)tlgyr[V1, V2] = ΓRm,V1

(V1 + V2)tΓLn,V2
(178)

for all V1, V2 ∈ Rn×mc , m,n ∈ N. Transposing (178), noting that

(lgyr[V1, V2])t = (lgyr[V1, V2])−1 = lgyr[V2, V1]

(rgyr[V1, V2])t = (rgyr[V1, V2])−1 = rgyr[V2, V1]
(179)

we obtain the equation

lgyr[V2, V1](V1⊕V2)ΓRm,V1⊕V2
rgyr[V2, V1] = ΓLn,V2

(V1 + V2)ΓRm,V1
. (180)

Manipulating the left side of (180) by means of the first commuting relation in
(103), and manipulating the right side of (180) by means of (166) we obtain the
equation

lgyr[V2, V1]ΓLn,V1⊕V2
(V1⊕V2)rgyr[V2, V1] = ΓLn,V2⊕V1

(V2⊕V1) (181)

for all V1, V2 ∈ Rn×mc . The resulting elegant equation demonstrates that the
application of the bi-gyration (lgyr[V2, V1], rgyr[V2, V1]) takes ΓLn,V1⊕V2

(V1⊕V2) into
ΓLn,V2⊕V1

(V2⊕V1). Equation (181) thus gives rise to a nice bi-gyrocommutative-like
law.

12. Product of Lorentz Transformations, V
Techniques have been developed in [46] enabling the product of Lorentz trans-
formations in the parameter P to be determined by Theorem 2.3, p. 233. By
similar techniques one can determine the product of Lorentz transformations in
the parameter V as well, obtaining the following theorem.

Theorem 12.1. (Lorentz Transformation Product Law, V) The product of
two generic Lorentz transformations

Λ1 = (V1, On,1, Om,1)t

Λ2 = (V2, On,2, Om,2)t
(182)
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of order (m,n), m,n ∈ N, in terms of parameter composition is given by

Λ1Λ2 =

 V1

On,1

Om,1


 V2

On,2

Om,2

 =

 V1Om,2⊕On,1V2
lgyr[V1Om,2, On,1V2]On,1On,2

Om,1Om,2rgyr[V1Om,2, On,1V2]

 , (183)

where ⊕, lgyr and rgyr are given by (163) – (164) and (175) in terms of the pa-
rameters V1, V2 ∈ Rn×mc .

Interestingly, the Lorentz transformation product laws in (183) and (8) of The-
orem 12.1 and of Theorem 2.3, p. 233, respectively, have the same form when we
interchange Vi and Pi, i = 1, 2. Note, however, that the definitions of ⊕, lgyr and
rgyr in Theorems 12.1 and 2.3 do not share the same form.

Similarly, as one can check, the gyrogroupoid (Rn×mc ,⊕) possesses the same bi-
gyrocommutative law as that of the gyrogroupoid (Rn×m,⊕), with the parameter
P ∈ Rn×m replaced by the parameter V ∈ Rn×mc . We thus obtain the following
Theorem 12.2 from its P -counterpart Theorem 2.7, p. 234, by replacing (P1, P2)
by (V1, V2).

Theorem 12.2. (Bi-gyrocommutative Law in (Rn×mc ,⊕)). The binary oper-
ation ⊕ in Rn×m possesses the bi-gyrocommutative law

V1⊕V2 = lgyr[V1, V2](V2⊕V1)rgyr[V1, V2] (184)

for all V1, V2 ∈ Rn×mc .

Similarly, as one can check, the gyrogroupoid (Rn×mc ,⊕) possesses the same
bi-gyroassociative law as that of the gyrogroupoid (Rn×m,⊕), with the parameter
P ∈ Rn×m replaced by the parameter V ∈ Rn×mc . We thus obtain the following
Theorem 12.3 from its P -counterpart Theorem 2.8, p. 235, by replacing (P1, P2)
by (V1, V2).

Theorem 12.3. (Bi-gyroassociative Law in (Rn×mc ,⊕)). The binary opera-
tion ⊕ in Rn×mc possesses the bi-gyroassociative law

(V1⊕V2)⊕lgyr[V1, V2]V3 = V1rgyr[V2, V3]⊕(V2⊕V3) (185)

for all V1, V2 ∈ Rn×mc .

13. Bi-Gyrogroups

As in Sect. 3 with the parameter P ∈ Rn×m, it proves useful with the parameter
V ∈ Rn×mc , as well, to replace the binary operation ⊕ in Rn×mc by a new binary
operation, ⊕′, according to the following definition.
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Definition 13.1. (Bi-gyrogroup Operation, Bi-gyrogroups). Let (Rn×mc ,⊕)
be a bi-gyrogroupoid. A new bi-gyrogroup binary operation ⊕′ in Rn×mc is given
by

V1⊕′V2 = (V1⊕V2)rgyr[V2, V1] (186)

for all V1, V2 ∈ Rn×mc . The resulting groupoid (Rn×mc ,⊕′) is called a bi-gyrogroup.

Having the form of Def. 3.1, Def. 13.1 defines the bi-gyrogroup (Rn×mc ,⊕′) in
terms of the bi-gyrogroupoid (Rn×mc ,⊕).

Remark 1. In the special case when m = 1, the binary operations ⊕′ and ⊕
coincide since rgyr[V2, V2] = 1, as noted in Example 11.2. Accordingly, when
m = 1, the two binary operations ⊕′ and ⊕ in Rn×1c = Rnc coincide with Einstein
velocity addition of special relativity.

It is shown in [46] that (186) implies the following four identities that exhibit
an interesting symmetry between the binary operations ⊕ and ⊕′ in Rn×mc .

V1⊕′V2 = (V1⊕V2)rgyr[V2, V1]

V1⊕V2 = (V1⊕′V2)rgyr[V1, V2]

V1⊕′V2 = lgyr[V1, V2](V2⊕V1)

V1⊕V2 = lgyr[V1, V2](V2⊕′V1)

(187)

for all V1, V2 ∈ Rn×mc .
Bi-gyrogroups (Rn×mc ,⊕′) possess a commutative-like and an associative-like

law. Indeed, by [46, Theorems 42, 41] with P replaced by V we have the following
two theorems.

Theorem 13.2. (Bi-gyrocommutative Law in (Rn×mc ,⊕′)). The binary op-
eration ⊕′ in Rn×mc possesses the bi-gyrocommutative law

V1⊕′V2 = lgyr[V1, V2](V2⊕′V1)rgyr[V2, V1] (188)

for all V1, V2 ∈ Rn×mc .

Theorem 13.3. (Bi-gyrogroup Left and Right Bi-gyroassociative Law of
⊕′). The binary operation ⊕′ in Rn×mc possesses the left bi-gyroassociative law

V1⊕′(V2⊕′X) = (V1⊕′V2)⊕′lgyr[V1, V2]Xrgyr[V2, V1] (189)

and the right bi-gyroassociative law

(V1⊕′V2)⊕′X = V1⊕′(V2⊕′lgyr[V2, V1]Xrgyr[V1, V2]) (190)

for all V1, V2, X ∈ Rn×mc .
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14. Gyrogroup Gyrations

The bi-gyroassociative laws (189) – (190) and the bi-gyrocommutative law (188)
suggest the following definition of gyrations in terms of left and right gyrations.

Definition 14.1. (Gyrogroup Gyrations) ( [46, Definition 43]). The gyrator
gyr,

gyr : Rn×mc × Rn×mc → Aut(Rn×mc ,⊕′) (191)

generates automorphisms called gyrations, gyr[V1, V2] ∈ Aut(Rn×mc ,⊕′), given by
the equation

gyr[V1, V2]X = lgyr[V1, V2]Xrgyr[V2, V1] (192)

for all V1, V2, X ∈ Rn×mc , where left gyrations, lgyr[V1, V2], and right gyrations,
rgyr[V2, V1], are given in (175). The gyration gyr[V1, V2] is said to be the gyration
generated by V1, V2 ∈ Rn×mc . Being automorphisms of (Rn×mc ,⊕′), gyrations are
also called gyroautomorphisms.

Def. 14.1 will turn out rewarding, leading to the elegant result that any bi-
gyrogroup (Rn×mc ,⊕′), m,n ∈ N, is a gyrocommutative gyrogroup.

Theorem 14.2. (Gyrogroup Gyroassociative and gyrocommutative Laws).
The binary operation ⊕′ in Rn×mc obeys the left and the right gyroassociative law

V1⊕′(V2⊕′X) = (V1⊕′V2)⊕′gyr[V1, V2]X (193)

and
(V1⊕′V2)⊕′X = V1⊕′(V2⊕′gyr[V2, V1]X) (194)

and the gyrocommutative law

V1⊕′V2 = gyr[V1, V2](V2⊕′V1) . (195)

Proof. Identities (193) – (194) follow immediately from Def. 14.1 and the left and
right bi-gyroassociative law (189) – (190). Similarly, (195) follow immediately from
Def. 14.1 and the bi-gyrocommutative law (188).

Lemma 14.3. ( [46, Lemma 45]). For any V1, V2 ∈ (Rn×mc ,⊕′), the relation
(192) between bi-gyrations (lgyr[V1, V2], rgyr[V2, V1]) and gyrations gyr[V1, V2] is
bijective.

It is obvious from (192) that a gyration gyr[V1, V2] is determined uniquely by
the bi-gyration (lgyr[V1, V2], rgyr[V1, V2]). It follows from Lemma 14.3 that also
the converse is true, that is, a bi-gyration (lgyr[V1, V2], rgyr[V1, V2]) is determined
uniquely by the gyration gyr[V1, V2].

It is anticipated in Def. 14.1 that gyrations are automorphisms. The following
theorem asserts that this is indeed the case.
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Theorem 14.4. (Gyroautomorphism) ( [46, Like Theorem 46]). For all V1, V2 ∈
Rn×mc , gyrations gyr[V1, V2] of a bi-gyrogroup (Rn×mc ,⊕′) are automorphisms of the
bi-gyrogroup.

Theorem 14.5. (Left Gyration Reduction Properties) ( [46, Like Theorem
47]). Left gyrations of a bi-gyrogroup (Rn×mc ,⊕′) possess the left gyration left
reduction property

lgyr[V1, V2] = lgyr[V1⊕′V2, V2] (196)

and the left gyration right reduction property

lgyr[V1, V2] = lgyr[V1, V2⊕′V1] . (197)

Theorem 14.6. (Right Gyration Reduction Properties) ( [46, Like Theorem
48]). Right gyrations of a bi-gyrogroup (Rn×mc ,⊕′) possess the right gyration left
reduction property

rgyr[V1, V2] = rgyr[V1⊕′V2, V2] (198)

and the right gyration right reduction property

rgyr[V1, V2] = rgyr[V1, V2⊕′V1] . (199)

Theorem 14.7. (Gyration Reduction Properties) ( [46, Like Theorem 49]).
The gyrations of any bi-gyrogroup (Rn×mc ,⊕′), m,n ∈ N, possess the left and right
reduction property

gyr[V1, V2] = gyr[V1⊕′V2, V2] (200)

and
gyr[V1, V2] = gyr[V1, V2⊕′V1] . (201)

Proof. Identities (200) and (201) follow from Def. 14.1 of gyr in terms of lgyr and
rgyr, and from Theorems 14.5 and 14.6.

Finally, we have the most important theorem, which is the V -counterpart of
Theorem 5.3..

Theorem 14.8. (Gyrocommutative Gyrogroup) ( [46, Like Theorem 52]).
Any bi-gyrogroup (Rn×mc ,⊕′), n,m ∈ N, is a gyrocommutative gyrogroup.

15. Scalar Multiplication for the Parameter V
Let M1 and M2 be two square matrices such that the inverse, M−12 , of M2 exists.
If the two matrices satisfy the commuting relation

M1M
−1
2 = M−12 M1 , (202)

then we may use the convenient notation

M1

M2
:= M1M

−1
2 = M−12 M1 . (203)
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We are motivated by the scalar multiplication in (Rn×mc ,⊕′), withm = 1, which
is the scalar multiplication in (Rnc ,⊕E) studied, for instance, in [37, Eq. (6.267),
p. 195]. We wish to extend it from m = 1 to all m ≥ 1. Accordingly, we de-
fine scalar multiplication in (Rn×mc ,⊕′), m,n ∈ N, by each of the following two
equations, which are mutually equivalent.

r⊗V :=
In −

(
ΓLn,V −

√
(ΓLn,V )2 − In

)2r
In +

(
ΓLn,V −

√
(ΓLn,V )2 − In

)2r ΓLn,V√
(ΓLn,V )2 − In

V

= V
Im −

(
ΓRm,V −

√
(ΓRm,V )2 − Im

)2r
Im +

(
ΓRm,V −

√
(ΓRm,V )2 − Im

)2r ΓRm,V√
(ΓRm,V )2 − In

(204)

for all r ∈ R and V ∈ Rn×mc . In the special case when m = 1, the scalar multipli-
cation in (204) specializes to the one in [37, Eq. (6.267), p. 195].

As expected, the scalar multiplication in (204) satisfies the equation

Bc(r⊗V ) = Bc(V )r (205)

so that V ∈ Rn×mc ⇒ r⊗V ∈ Rn×mc . In fact, (204) is derived from (205) by
calculating the matrix Bc(V )r for r ∈ N and then analytically continuing r off the
positive integers.

Furthermore, (205) implies the scalar distributive law and the scalar associative
law

(r1 + r2)⊗V = r1⊗V⊕′r2⊗V

(r1r2)⊗V = r1⊗(r2⊗V )
(206)

and, hence, the monodistributive law

r⊗(r1⊗V⊕′r2⊗V ) = r⊗(r1⊗V )⊕′r⊗(r2⊗V ) (207)

for all r, r1, r2 ∈ R and all V ∈ Rn×mc .
Naturally in gyrolanguage, the triple (Rn×mc ,⊕′,⊗) is said to be a bi-gyrovector

space. Here ⊕′ is the binary operation in Rn×mc given by (186).

16. Scalar Multiplication for the Parameter P
In this section we continue using the notation in (202) – (203).

We introduce the following β-notation,

βLn,P :=
√
In + c−2PP t

−1
∈ Rn×n

βRm,P :=
√
Im + c−2P tP

−1
∈ Rm×m ,

(208)
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in analogy with the Γ-notation in (140).
We are motivated by the scalar multiplication in (Rn×m,⊕′) withm = 1, which

is the scalar multiplication in (Rn,⊕U) studied, for instance, in [37, Eq. (6.285),
p. 200]. We wish to extend it from m = 1 to all m ≥ 1. Accordingly, we de-
fine scalar multiplication in (Rn×m,⊕′), m,n ∈ N, by each of the following two
equations, which are mutually equivalent.

r⊗P :=
1

2

(
In +

√
In − (βLn,P )2

)r
−
(
In −

√
In − (βLn,P )2

)r
(βLn,P )r−1

√
In − (βLn,P )2

P

=
1

2
P

(
Im +

√
Im − (βRm,P )2

)r
−
(
Im −

√
Im − (βRm,P )2

)r
(βRm,P )r−1

√
Im − (βRm,P )2

(209)

for all r ∈ R and P ∈ Rn×m. In the special case when m = 1, the scalar multipli-
cation in (209) specializes to the one in [37, Eq. (6.285), p. 200].

As expected, the scalar multiplication in (209) satisfies the equation

Bc(r⊗P ) = Bc(P )r (210)

where Bc(P ) is the bi-boost in (134). In fact, (209) is derived from (210) by
calculating the matrix Bc(P )r for r ∈ N and then analytically continuing r off the
positive integers.

Identity (210) implies the scalar distributive law and the scalar associative law

(r1 + r2)⊗P = r1⊗P⊕′r2⊗P

(r1r2)⊗P = r1⊗(r2⊗P )
(211)

and, hence, the monodistributive law

r⊗(r1⊗P⊕′r2⊗P ) = r⊗(r1⊗P )⊕′r⊗(r2⊗P ) (212)

for all r, r1, r2 ∈ R and all P ∈ Rn×m.
Hence, the triple (Rn×m,⊕′,⊗) is a bi-gyrovector space. Here ⊕′ is the binary

operation in Rn×m given by (15).

17. Paving the Road to the Eigenball Geometry
We have exposed the structure of the bi-gyrovector space (Rn×mc ,⊕′,⊗) of the
eigenball Rn×mc of the ambient space Rn×m of all rectangular real matrices of order
n ×m, m,n ∈ N. The bi-gyrovector space structure forms the algebraic setting
for the non-Euclidean geometry that underlies the eigenball, just as the vector
space structure forms the algebraic setting for the standard model of Euclidean
geometry [41]. Indeed, in the special case when m = 1 the situation is well-known:

In this special case, when m = 1,
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1. the eigenball Rn×mc specializes to the ball Rn×1c = Rnc of the Euclidean n-
space Rn, as shown in Example 8.2, p. 249; and

2. the binary operation ⊕′ in Rn×1c = Rnc specializes to the binary operation
given by Einstein’s velocity addition law of relativistically admissible veloc-
ities in special relativity, as indicated in Example 8.7, p. 252.

Thus, when m = 1 the bi-gyrovector space (Rn×mc ,⊕′,⊗) specializes to the
gyrovector space (Rnc ,⊕′,⊗). The latter, in turn, forms the algebraic setting for
the Beltrami-Klein ball model of hyperbolic geometry that underlies the ball Rnc ,
where ⊕′ in Rn×mc specializes to Einstein addition in Rnc . The resulting analytic
hyperbolic geometry has been studied since 2001 in the seven books [36,37,40–43,
45] and in many articles.

It is, therefore, expected that the bi-gyrovector space structure, studied in [46]
and in the present article, paves the road to to the discovery of the extended
analytic hyperbolic geometry that regulates the eigenball Rn×mc of the ambient
space Rn×m for any m,n ∈ N.
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