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Unconditionally Stable Difference Scheme for the

Numerical Solution of Nonlinear Rosenau-KdV
Equation

Akbar Mohebbi? and Zahra Faraz

Abstract
In this paper we investigate a nonlinear evolution model described by

the Rosenau-KdV equation. We propose a three-level average implicit finite
difference scheme for its numerical solutions and prove that this scheme is
stable and convergent in the order of O(τ2 + h2). Furthermore we show the
existence and uniqueness of numerical solutions. Comparing the numerical
results with other methods in the literature show the efficiency and high
accuracy of the proposed method.

Keywords: Finite difference scheme, solvability, unconditional stability, con-
vergence.
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1. Introduction
Nonlinear partial differential equations are useful in describing various phenomena.
These equations arise in various areas of physics, mathematics and engineering.
Analytical solutions of these equations are usually not available. Since only limited
classes of equations are solved by analytical means, numerical solution of these
nonlinear partial differential equations is of practical importance. KdV equation
is a mathematical model of waves on shallow water surfaces. It is particularly
notable as the prototypical example of an exactly solvable model and is as follows

ut + uux + uxxx = 0. (1)

In the study of the dynamics of dense discrete systems, the case of wave-wave and
wave-wall interactions cannot be described using the well-known KdV equation
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[4], so Rosenau [6, 7] proposed the so-called Rosenau equation

ut + uxxxxt + ux + uux = 0. (2)

The existence and the uniqueness of the solution for (2) were proved in [7], but
it is difficult to find the analytical solution for (2). So, much works has been
done on the numerical methods for (2) [1, 5]. On the other hand, for the further
consideration of the nonlinear wave, the viscous term +uxxx needs to be included
[4]

ut + uxxxxt + ux + uux + uxxx = 0, (3)

which is usually called the Rosenau-KdV equation. Some analytical methods for
the solution of this equation are given in [2, 9]. The authors of [4] proposed a
conservative three-level linear finite difference scheme for the numerical solution
of Rosenau-KdV equation. They proved the stability and convergency of method
and existence and uniqueness of numerical solutions. In this paper, we propose
a linear three-level average implicit finite difference scheme for the Rosenau-KdV
equation (3) with the following boundary conditions

u (xL, t) = u (xR, t) = 0, ux (xL, t) = ux (xR, t) = 0,

uxx (xL, t) = uxx (xR, t) = 0, t ∈ [0, T ] ,
(4)

and initial condition

u (x, 0) = u0 (x) , x ∈ [xL, xR] . (5)

The solitary wave solution for (3) is [3, 9]

u (x, t) =
(
− 35

24 + 35
312

√
313
)

× sech4
[

1
24

√
−26 + 2

√
313 ×

(
x−

(
1
2 + 1

26

√
313
)
t
)]
.

(6)

The structure of this paper is as follows. In Section 2, we will describe a three
level average implicit finite difference scheme for the Rosenau-KdV equation and
discuss the estimate for the difference solution. In Section 3, we will show that the
scheme is uniquely solvable. Then, in Section 4, we will prove the convergence and
stability for the difference scheme. Finally numerical results are given in Section 5
to verify our theoretical analysis and efficiency of proposed method in comparison
with other methods in the literature.

2. Proposed Finite Difference Scheme
Let h = (xR − xL)/J and τ be the uniform step size in the spatial and temporal
direction, respectively. Denote xj = xL + jh (j = −1, 0, 1, 2 . . . , J, J + 1), tn =
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nτ(n = 0, 1, 2, . . . , N,N = [T/τ ]), unj ≈ u(xj , tn) and Z0
h = {u = (uj) |u−1 =

u0 = uJ = uJ+1 = 0, j = −1, 0, 1, ..., J, J + 1}. Throughout this paper, we
denote C as a generic positive constant independent of h and τ , which may have
different values in different occurrences. We introduce the following notations [4](

unj
)
x

= 1
h

(
unj+1 − unj

)
,

(
unj
)
x̄

= 1
h

(
unj − unj−1

)
,(

unj
)
x̂

= 1
2h

(
unj+1 − unj−1

)
, (un, υn) = h

∑
j

unj υ
n
j ,

(
ūnj
)

= 1
2

(
un+1
j + un−1

j

)
, ‖un‖2 = (un, un) ,(

unj
)
t̂

= 1
2τ

(
un+1
j − un−1

j

)
, ‖un‖∞ = sup

j

∣∣unj ∣∣ .
(7)

We note that (
up+1

p+ 1

)
x

=
1

p+ 2

[
upux +

(
up+1

)
x

]
, (8)

and (
unj
)
xx

=
(
unj
)
xx

=
unj+1 − 2unj + unj−1

h2
.

We propose the following implicit finite difference scheme for solving Eqs. (3)-(5)(
unj
)
t̂

+
(
unj
)
xxxxt̂

+
(
unj
)
x̂

+
(
unj
)
x̂xx

+ 1
3

[
unj
(
unj
)
x̂

+
(
unj u

n
j

)
x̂

]
= 0, (9)

j = 1, 2, 3, . . . , J − 1, n = 1, 2, 3, . . . , N − 1, (10)

u0
j = u0(xj), j = 0, 1, 2, 3, . . . , J, (11)

un ∈ Z0
h, (un0 )x̂ = (unJ)x̂ = 0,

(un0 )xx = (unJ)xx = 0, n = 1, 2, 3, . . . , N.
(12)

We now state some lemmas which are needed to prove stability and convergence
of scheme.

Lemma 2.1. [8] For any two mesh functions u, v ∈ Z0
h we have the following

relations

1. (ux, v) = − (u, vx),

2. (uxx, v) = − (ux, vx),
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3. (uxx, u) = − (ux, ux) = −‖ux‖2,

4. If (u0)xx = (uJ)xx = 0, then (uxxxx, u) = ‖uxx‖2.

Lemma 2.2. [8] There exist two constants C1 and C2 such that

‖un‖∞ ≤ C1 ‖un‖+ C2 ‖unx‖ . (13)

Lemma 2.3. [8] Suppose that ω(k) and ρ(k) is nondecreasing. If C > 0, and

ω (k) ≤ ρ (k) + Cτ

k−1∑
l=0

ω (l) , ∀k, (14)

then
ω (k) ≤ ρ (k) eCτk, ∀k. (15)

Theorem 2.4. If un be the solution of (9)-(12), u0 ∈ H2
0 [xL, xR] and u(x, t) ∈

C5,3
x,t then we have the following relations

‖un‖ ≤ C, ‖unx‖ ≤ C, ‖un‖∞ ≤ C, n = 1, 2, . . . N.

Proof. Taking an inner product of (9) with 2un(i.e., un+1 +un−1), considering the
boundary conditions (12) and Lemma 2.1, we obtain

1
2τ

(∥∥un+1
∥∥2 −

∥∥un−1
∥∥2
)

+ 1
2τ

(∥∥un+1
xx

∥∥2 −
∥∥un−1

xx

∥∥2
)

+ 2 (unx̂ , ū
n) +

2(unx̂xx̄, ū
n) + 2 (P, ūn) = 0, (16)

where Pj = 1
3

[
unj
(
unj
)
x̂

+
(
unj u

n
j

)
x̂

]
. We can write

(P, ūn) = 0,

so we get

1

2τ

(∥∥un+1
∥∥2 −

∥∥un−1
∥∥2

)
+

1

2τ

(∥∥un+1
xx

∥∥2 −
∥∥un−1

xx

∥∥2
)

= −2 (un
x̂xx̄, ū

n)− 2 (un
x̂, ū

n) .

(17)
By Cauchy-Schwarz inequality and Lemma 2.1, we find

(unx̂xx̄, 2ū
n) = − (unx̂x, 2ū

n
x) ,∣∣(unx̂x, un+1

x + un−1
x

)∣∣ 6 ‖unxx‖2 +
1

2

(∥∥un+1
x

∥∥2
+
∥∥un−1

x

∥∥2
)
, (18)

∥∥un+1
x

∥∥2 ≤ 1
2

(∥∥un+1
∥∥2

+
∥∥un+1

xx

∥∥2
)
,

∥∥un−1
x

∥∥2 ≤ 1
2

(∥∥un−1
∥∥2

+
∥∥un−1

xx

∥∥2
)
.

(19)
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Substituting (19) into (18), we get

|(unx̂xx, 2un)| ≤ ‖unxx‖
2

+
1

4

(∥∥un+1
∥∥2

+
∥∥un+1

xx

∥∥2
+
∥∥un−1

∥∥2
+
∥∥un−1

xx

∥∥2
)
, (20)

and (
(un)x̂, u

n+1 + un−1
)
≤ ‖unx‖

2
+

1

2

(∥∥un+1
∥∥2

+
∥∥un−1

∥∥2
)
. (21)

It follows from (17)-(21) that∥∥un+1
∥∥2 −

∥∥un−1
∥∥2

+
∥∥un+1

xx

∥∥2 −
∥∥un−1

xx

∥∥2

≤ 2τ
(
‖unxx‖

2
+ 1

4

(∥∥un+1
∥∥2

+
∥∥un+1

xx

∥∥2
+
∥∥un−1

∥∥2
+
∥∥un−1

xx

∥∥2
)

+ ‖unx‖
2

+ 1
2

(∥∥un+1
∥∥2

+
∥∥un−1

∥∥2
))

.

(22)

Using Lemma 2.1 and Cauchy-Schwarz inequality, we obtain

‖unx‖
2 ≤ 1

2

(
‖un‖2 + ‖unxx‖

2
)
, (23)

hence, we can write (22) as follows(∥∥un+1
∥∥2

+ ‖un‖2
)
−
(
‖un‖2 +

∥∥un−1
∥∥2
)

+
(∥∥un+1

xx

∥∥2
+ ‖unxx‖

2
)
−

(
‖unxx‖

2
+
∥∥un−1

xx

∥∥2
)

≤ Cτ
(∥∥un+1

xx

∥∥2
+ ‖unxx‖

2
+
∥∥un−1

xx

∥∥2
+
∥∥un+1

∥∥2
+ ‖un‖2 +

∥∥un−1
∥∥2
)
.

(24)

Let Bn = ‖un‖2 +
∥∥un−1

∥∥2
+ ‖unxx‖

2
+
∥∥un−1

xx

∥∥2
. It follows from (24) that

Bn+1 −Bn ≤ Cτ
(
Bn+1 +Bn

)
,

so

(1− Cτ)
(
Bn+1 −Bn

)
≤ 2CτBn.

If τ is sufficiently small which satisfies 1− Cτ = δ > 0, then

Bn+1 −Bn ≤ CτBn. (25)
Summing up (25) from 0 to n-1, we have

Bn ≤ B0 + Cτ

n−1∑
l=0

Bl.

It follows from Lemma 2.3 that

‖un‖ ≤ C, ‖unxx‖ ≤ C.

From (23), we have ‖unx‖ ≤ C. Using Lemma 2.2, we get ‖un‖∞ ≤ C.



296 A. Mohebbi and Z. Faraz

3. Solvability

Theorem 3.1. The difference scheme (9)-(12) has a unique solution.

Proof. We use from mathematical induction to prove. It is obvious that u0 is
uniquely determined by the initial condition (11). We also can get u1 in order
O(h2 + τ2) by two-level C-N scheme (that is, u0 and u1 are uniquely determined).
Now suppose u0, u1, . . . , un be solved uniquely. Considering equation (9) for un+1

we can get

1
2τ u

n+1
j + 1

2τ

(
un+1
j

)
xxx̄x̄

+ 1
6

[
unj
(
un+1
j

)
x̂

+
(
unj u

n+1
j

)
x̂

]
= 0. (26)

Taking an inner product of (26) with un+1, we obtain

1
2τ

∥∥un+1
∥∥2

+ 1
2τ

∥∥un+1
xx

∥∥2
+ h

6

J−1∑
j=1

[
unj
(
un+1
j

)
x̂

+ un−1
j

(
unj
)
x̂

]
un+1
j = 0. (27)

We can write

1

6
h

J−1∑
j=1

[
unj
(
un+1
j

)
x̂

+
(
unj u

n+1
j

)
x̂

]
un+1
j (28)

=
1

12

J−1∑
j=1

[
unj u

n+1
j+1 u

n+1
j + unj+1u

n+1
j+1 u

n+1
j

]
− 1

12

J−1∑
j=1

[
unj u

n+1
j−1u

n+1
j + unj−1u

n+1
j−1u

n+1
j

]
= 0,

It follows from (27) and (28) that∥∥un+1
∥∥2

+
∥∥un+1

xx

∥∥2
= 0.

That is, (26) has only a trivial solution. Therefore, (9)-(12) determines un+1
j

uniquely.

4. Convergence and Stability

Let v(x, t) be the solution of problem (3)-(5), vnj = v(xj , tn), then the truncation
error of the difference scheme (9)-(12) is as follows:

rnj =
(
vnj
)
t̂

+
(
vnj
)
xxxxt̂

+
(
vnj
)
x̂

+
(
vnj
)
x̂xx

+ 1
3

[
vnj
(
vnj
)
x̂

+
(
vnj v

n
j

)
x̂

]
. (29)

Using Taylor expansion, we know that rnj = O(h2 + τ2) holds if h, τ → 0.



Unconditionally Stable Scheme for the Rosenau-KdV Equation 297

Theorem 4.1. Suppose that u0 ∈ H2
0 [xL, xR], then the solution un of (9)-(12)

converges to the solution v(x, t) of problem (3)-(5) in norm ‖.‖∞ and the rate of
convergence is O(τ2 + h2).

Proof. Subtracting (9) from (29) and letting enj = vnj − unj , we have

rnj =
(
enj
)
t̂

+
(
enj
)
xxx̄x̄t̂

+
(
enj
)
x̂

+
(
enj
)
x̂xx

+R1,j +R2,j , (30)

where

R1,j = 1
3

[
vnj
(
v̄nj
)
x̂
− unj

(
unj
)
x̂

]
,

R2,j = 1
3

[(
vnj v̄

n
j

)
x̂
−
(
unj u

n
j

)
x̂

]
.

Computing the inner product of (30) with 2en, we obtain

(rn, 2ēn) = 1
2τ

(∥∥en+1
∥∥2 −

∥∥en−1
∥∥2
)

+ 1
2τ

(∥∥en+1
xx

∥∥2 −
∥∥en−1
xx

∥∥2
)

+

(enx̂ , 2ē
n) + (enx̂xx̄, 2ē

n) + (R1, 2ē
n) + (R2, 2ē

n) .
(31)

We can write (31) as follows

(∥∥en+1
∥∥2 −

∥∥en−1
∥∥2
)

+
(∥∥en+1

xx

∥∥2 −
∥∥en−1
xx

∥∥2
)

=

2τ [(rn, 2ēn)− (enx̂xx̄, 2ē
n)− ((en)x̂, 2ē

n)− (R1, 2ē
n)− (R2, 2ē

n)] .
(32)

By Lemma 2.1, Theorem 2.1, and Cauchy-Schwarz inequality, we have

(R1, 2e
n) = 2

3h
∑
j

(
vnj
(
vnj
)
x̂
− unj

(
unj
)
x̂

) (
ēnj
)

= 1
3h
∑
j

[
vnj
(
vn+1
j + vn−1

j

)
x̂
−vnj

(
un+1
j + un−1

j

)
x̂

+ vnj
(
un+1
j + un−1

j

)
x̂
− unj

(
un+1
j + un−1

j

)
x̂

] (
enj
)

= 2
3h
∑
j

(
vnj
(
enj
)
x̂
− enj

(
unj
)
x̂

) (
ēnj
)

= 2
3h
∑
j

vnj
(
ēnj
)
x̂

(
ēnj
)
− 2

3h
∑
j

enj
(
unj
)
x̂

(
ēnj
)

≤ 2
3Ch

∑
j

(∣∣∣(ēnj )x̂∣∣∣+
∣∣enj ∣∣) ∣∣ēnj ∣∣

≤ C
[
‖ēnx‖

2
+ ‖en‖2 + 2‖ēn‖2

]
≤ C

(∥∥en+1
x

∥∥2
+
∥∥en−1
x

∥∥2
+ 2
∥∥en+1

∥∥2
+ ‖en‖2 + 2

∥∥en−1
∥∥2
)
,

(33)
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and

(R2, 2e
n) = 2

3h
∑
j

((
vnj v

n
j

)
x̂
−
(
unj ū

n
j

)
x̂

) (
ēnj
)

= 2
3h
∑
j

{(
vnj v

n
j

)
x̂
−
(
vnj u

n
j

)
x̂

+
(
vnj u

n
j

)
x̂
−
(
unj u

n
j

)
x̂

}(
enj
)

= − 2
3h
∑
j

{(
vnj
)
enj
(
enj
)
x̂

+
[
vnj − unj

]
unj
(
enj
)
x̂

}
≤ 2

3Ch
∑
j

(∣∣(ēnj )∣∣+
∣∣enj ∣∣) ∣∣∣(ēnj )x̂∣∣∣

≤ C
[
‖ēnx‖

2
+ ‖en‖2 + ‖ēn‖2

]
≤ C

(∥∥en+1
x

∥∥2
+
∥∥en−1
x

∥∥2
+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
)
.

(34)

Noting that similar to (18)-(21) we have

(rn, 2ēn) =
(
rn, en+1 + en−1

)
≤ ‖rn‖2 +

1

2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)
, (35)

((en)x̂xx̄, 2ē
n) = −

(
(en)x̂x, e

n+1
x + en−1

x

)
6 ‖enxx‖

2
+

1

2

(∥∥en+1
x

∥∥2
+
∥∥en−1
x

∥∥2
)
,

(36)

((en)x̂, 2ē
n) =

(
(en)x̂, e

n+1 + en−1
)
≤ ‖enx‖

2
+

1

2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)
. (37)

From (32)-(37), we have(∥∥en+1
∥∥2

+ ‖en‖2
)
−
(
‖en‖2 +

∥∥en−1
∥∥2
)

+

(∥∥en+1
xx

∥∥2
+ ‖enxx‖

2
)
−
(
‖enxx‖

2
+
∥∥en−1
xx

∥∥2
)

≤ Cτ
(∥∥en+1

∥∥2
+
∥∥en−1

∥∥2
+ ‖en‖2 +

∥∥en+1
x

∥∥2
+ ‖enx‖

2
+
∥∥en−1
x

∥∥2
+ ‖enxx‖

2
)

+

2τ‖rn‖2.
(38)

Similar to the proof of (23), we obtain∥∥en+1
x

∥∥2 ≤ 1
2

(∥∥en+1
∥∥2

+
∥∥en+1
xx

∥∥2
)
,

‖enx‖
2 ≤ 1

2

(
‖en‖2 + ‖enxx‖

2
)
,

∥∥en−1
x

∥∥2 ≤ 1
2

(∥∥en−1
∥∥2

+
∥∥en−1
xx

∥∥2
)
.

(39)

Let Dn = ‖en‖2 + ‖enxx‖
2

+
∥∥en−1

∥∥2
+
∥∥en−1
xx

∥∥2, then (38) can be rewritten as
follows

Dn+1 −Dn ≤ 2τ‖rn‖2 + Cτ
(
Dn+1 +Dn

)
, (40)
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which yields
(1− Cτ)

(
Dn+1 −Dn

)
≤ 2CτDn + 2τ‖rn‖2. (41)

If τ is sufficiently small, which satisfies 1− Cτ > 0, then

Dn+1 −Dn ≤ CτDn + Cτ‖rn‖2. (42)

Summing up (42) from 1 to n, we have

Dn ≤ D0 + Cτ

n−1∑
l=0

∥∥rl∥∥2
+ Cτ

n−1∑
l=0

Dl. (43)

First, we can get u1 in order O(h2+τ2) that satisfiesD0 ≤ C(h2+τ2)2 by two-level
C-N scheme. Since

τ

n−1∑
l=0

∥∥rl∥∥2 ≤ nτ max
0≤l≤n−1

∥∥rl∥∥2 ≤ T.O
(
τ2 + h2

)2
, (44)

we obtain

Dn ≤ O
(
τ2 + h2

)2
+ Cτ

n−1∑
l=0

Dl. (45)

From Lemma 2.3 we get
Dn ≤ O

(
τ2 + h2

)2
, (46)

that is
‖en‖ ≤ O

(
τ2 + h2

)
, ‖enxx‖ ≤ O

(
τ2 + h2

)
. (47)

From (39) we have
‖enx‖ ≤ O

(
τ2 + h2

)
. (48)

By Lemma 2.2, we obtain

‖en‖∞ ≤ O
(
τ2 + h2

)
. (49)

This completes the proof.

Finally, we can state similarly the following theorem.

Theorem 4.2. Under the conditions of Theorem 4.1, the solution un of (9)-(12)
is stable in norm ‖.‖∞.

5. Numerical Results
In this section we present the numerical results of the proposed method on a test
problem. We performed our computations using Matlab 7 software on a PC
with Intel Core 2 Duo, 2.8 GHz CPU and 2 GB RAM. We tested the accuracy
and stability of the method presented in this paper by performing the mentioned
method for different values of ∆t and h.
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Figure 1: Surface plot of approximate solution (left panel) and plot of absolute
error (right panel) with h = 0.05, τ = 0.05 at T = 20.
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Table 1: Errors and computational orders obtained at different final times.

h = τ = 0.2 h = τ = 0.1 h = τ = 0.05

T = 10

‖en‖∞ 2.718820× 10−4 6.853283× 10−5 1.718933× 10−5

C −Order − 1.988 1.995

T = 20

‖en‖∞ 5.026183× 10−4 1.261183× 10−4 3.157146× 10−5

C −Order − 1.995 1.998

T = 30

‖en‖∞ 7.217771× 10−4 1.810695× 10−4 4.532327× 10−5

C −Order − 1.995 1.998

T = 40

‖en‖∞ 9.396398× 10−4 2.356919× 10−4 5.899417× 10−5

C −Order − 1.995 1.998

Also we calculated the computational orders of the method presented in this
article (denoted by C-Order) with the following formula

log(E1

E2
)

log(h1

h2
)
,

in which E1 and E2 are errors correspond to grids with mesh size h1 and h2 re-
spectively. Also we put xL = −40 and xR = 100.

5.1 Propagation of a Single Solitary Wave
We consider the equation (3) with the following exact solution

u (x, t) =
(
− 35

24 + 35
312

√
313
)

× sech4
[

1
24

√
−26 + 2

√
313

×
(
x−

(
1
2 + 1

26

√
313
)
t
)]
.

The initial condition can be obtained from exact solution. Table 1 shows the
computational orders and errors of proposed method with different values of h = τ
at different final times. Numerical results of this table confirm the second order
of accuracy of method. In Tables 2, 3 we compare the errors of proposed method
with the results of [4]. As we see the new method has better accuracy. Figure 1
shows the surface plot of approximate solution (left panel) and plot of absolute
error (right panel) with h = 0.05, τ = 0.05 at T = 20.
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Table 2: Comparison of ‖en‖∞ error at various time steps.
‖en‖∞ h = τ = 0.1 h = τ = 0.05
Method Present Scheme [4] Present Scheme [4]
t = 10 2.718× 10−4 2.507× 10−3 1.719× 10−5 1.585× 10−4

t = 20 5.026× 10−4 4.489× 10−3 3.157× 10−5 2.836× 10−4

t = 30 7.218× 10−4 6.081× 10−3 4.532× 10−5 3.834× 10−4

t = 40 9.396× 10−4 7.444× 10−3 5.899× 10−5 4.709× 10−4

Table 3: Comparison of ‖en‖ error at various time steps.
‖en‖ h = τ = 0.2 h = τ = 0.05

Method Present Scheme [4] Present Scheme [4]
t = 10 7.389× 10−4 6.525× 10−3 4.663× 10−5 4.113× 10−4

t = 20 1.443× 10−3 1.209× 10−2 9.070× 10−5 7.631× 10−4

t = 30 2.132× 10−3 1.683× 10−2 1.339× 10−5 1.063× 10−3

t = 40 2.818× 10−3 2.101× 10−2 1.769× 10−5 1.328× 10−3

5.2 Interaction of Two Solitary Waves
We investigate the interaction of two solitary waves for equation (3) using the
following initial condition

u (x, 0) =

2∑
j=1

3dj sech2 (kj (x− xj)),

in which k1 = 0.4, k2 = 0.3, x1 = 15, x2 = 35, and

dj =
4k2
j

1− 4k2
j

, j = 1, 2.

From the above initial conditions, the solitary waves are propagated rightwards.
Shapes of both waves at times t = 10, 15, 20, 25 and with h = τ = 0.1 are shown in
Figure 2. We see that as the time progresses the collision occurs and after collision
two waves leave each other without changing their shape.

6. Conclusion
In this article, we constructed an implicit finite difference scheme for the solution
of Rosenau-KdV equation. We proved that this scheme is stable and convergent in
the order of O(τ2 + h2). Furthermore we showed the existence and uniqueness of
numerical solutions. We compared the numerical results of this paper with other
methods in the literature and concluded that the proposed method has better
results.
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Figure 2: The numerical solutions of two solitary waves with h = τ = 0.1 obtained
at final times t = 10 (left-top), t = 15 (right-top), t = 20 (left-bottom) and t = 30
(right-bottom).
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