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Diameter Two Graphs of Minimum Order
with Given Degree Set

Gholamreza Abrishami, Freydoon Rahbarnia® and Irandokht Rezaee

Abstract

The degree set of a graph is the set of its degrees. Kapoor et al. [Degree
sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of
positive integers, there exists a graph of diameter at most two and radius one
with that degree set. Furthermore, the minimum order of such a graph is
determined. A graph is 2-self-centered if its radius and diameter are two. In
this paper for a given set of natural numbers greater than one, we determine
the minimum order of a 2-self-centered graph with that degree set.
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1. Introduction

Let G be a simple graph with vertex set V(G) and edge set F(G). For a vertex
v of G, the degree of v in G, denoted by degg(v). We denote the minimum
and maximum degrees of the vertices of G by §(G) and A(G), respectively. The
distance between two vertices u and v of a connected graph G is denoted by
de(u,v) and it is the number of edges in a shortest path connecting v and v.
The eccentricity ec(u) of a vertex u, of a connected graph G, is maz{dg(u,v)|v €
V(G)}. The radius of a connected graph G, rad(G), is the minimum eccentricity
among the vertices of G, while the diameter of G, diam(G), is the maximum
eccentricity. If rad(G)=diam(G)=r, then G is an r-self-centered graph. We use
r-sc as a notation for r-self-centered graph. F. Buckley [2] worked on r-sc graphs,
but the concept of r-sc graphs was developed independently by Akiyama, Ando,
and Avis [1], who called them r-equi graphs. They proved that if G is an r-sc
graph, then G is a block and A(G) < |V(G)| — 2(r — 1).
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Hence, for » = 2 we have the following corollary.

Corollary 1.1. If G is a 2-sc graph and v is a vertex of G, then 2 < degg(v) <
V(G)| - 2.

In this paper we study 2-sc graphs in terms of the degree sets, where for a
given graph G the degree set of G, denoted by D(G), is the set of degrees of the
vertices of G. It is a simple observation that any set of positive integers forms the
degree set of a graph. So it is natural to investigate the minimum order of such
graphs. This question is completely answered by a result of Kapoor, Polimeni and
Wall [4]. Their result can be stated as follows.

Theorem 1.2 (S. F. Kapoor et al. [4]). For every set S = {a1,...,a,} of positive
integers, with a; < --- < ay, there exists a graph G such that D(G) = S and
furthermore,

w(S) =an+1,

where u(S) represents the minimum order of such a graph G.

The graph G in Theorem 1.2 has order a, + 1. Therefore G has diameter at
most two and radius one. Hence G is not a 2-sc graph. Corollary 1.1 implies that
every 2-sc graph has no vertex of degree less than or equal to 1. In this paper, we
show that for a finite, nonempty set S of positive integers greater than 1, there
exists a 2-sc graph G such that D(G) = S. Furthermore, the minimum order of
such a graph G is determined.

2. Results

We write K, and C,, for the Complete graph and the Cycle of order n, respectively.
Also for a graph G, the graph G is the Complement of G. The union of graphs
G and H is the graph G U H which consists of copies of graphs G and H. Two
graphs are disjoint if they have no vertex in common. If a graph G consists of
k(> 2) disjoint copies of a graph H, then we write G = kH.

Let S be a set of positive integers, where S = {a1,...,a,} and 1 < a; <
-+ < an. We define p1,-(S) to be the minimum order of an r-sc graph G for which
D(G) = S. In the case when S = {a;}, the following theorem implies that there
exists an ai-regular 2-sc graph of minimum order.

Theorem 2.2. Let a; be a positive integer greater than 1 and S = {a1}. There
exists a 2-sc graph G such that D(G) = S and furthermore,

ar +2 if a1 is even

Ha(S) = {al +3 if aq is odd

Proof. Let a1 be a positive integer greater than 1. If a; is even, then the graph

G = (5 +1)Ks,
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is clearly an a;-regular graph with a; 42 vertices. The graph G is also a 2-sc graph
[3]. Additionally, Corollary 1.1 implies that, every 2-sc graph of order a; + 1 has
no vertex of degree a;. Therefore, we need at least a; + 2 vertices to construct an
ay-regular 2-sc graph. Hence po(S) = a1 + 2.

If a; is odd, then the graph

H == 60.1-‘y--?)7

is an aj-regular graph of order a; + 3. The graph H is also a 2-sc graph. Since
the graph H has order at least 6 and for each pair of nonadjacent vertices u and
v of H there exists at least one common neighbour, it follows that dgy (u,v) = 2.
Since, in any graph, the number of vertices of odd degree is even. Thus there is no
ai-regular graph of order a; + 2. Therefore, the graph H has the minimum order
among all such 2-sc a;-regular graphs. Hence us(S) = aq + 3. O

The following lemma which is obtained by Z. Stanic [5] has an interesting
applications for constructing 2-sc graphs from other not necessarily 2-sc graphs
and also it will be needed in the proof of our results for non-regular graphs. Recall
that the join G + H of two disjoint graphs G and H is the graph consisting of the
union G U H, together with edges zy, where x € V(G) and y € V(H).

Lemma 2.3. (Z. Stanic [5]) Let G and H be simple nontrivial graphs with A(G) <
[V(G)| —2 and A(H) < |V(H)| — 2, then G+ H is a 2-sc graph.

Now, we extend Theorem 2.2 for non-regular graphs in following theorems.

Theorem 2.4. Let a; be even and S be a set of positive integers, where S =
{ai,...,an}, 2< a1 <--- < a, andn > 1. Then there exists a 2-sc graph G such
that D(G) = S and furthermore,

p2(S) = ap, + 2.

Proof. Let S; = {az — a1,a3 — a1, ...,a, — a1}. By Theorem 1.2, there exists a
graph H of order a,, — a1 + 1 such that D(H) = S;. Consider the graph

G=(HUK;)+F,

where F' = % The graph G has order a,, +2. We observe that for each vertices
v of G, one of the following cases occurs:
1) If v € V(Ky), then degg(v) = |V(F)| = a1.
2) If v € V(F), then degg(v) = degp(v) +|V (K1) |+ |V(H)| = (a1 —2) + 1+ (an —
a1+ 1) = ay.
3) If v € V(H), then degg(v) = degy (v) + |V (F)| = degr (v) + a.

Thus D(G) = S. Moreover, by considering Lemma 2.3, G is a 2-sc graph and
since there is no 2-sc graph of order a,, + 1, hence u2(S) = a,, + 2. O
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Theorem 2.5. Let a; be odd and S be a set of positive integers, where S =
{a1,...;an}, 3 < a; < -+ < ay, and n > 1. Then there exists a 2-sc graph G of
order an, + 3 such that D(G) = S.

Proof. Let S1 = {as — a1,a3 — a1,...,a, — a1}, where for 1 < i < n, a; € S.
By Theorem 1.2, there exists a graph H of order a,, — a; + 1 such that D(H) =
{as — a1, ...,a, — a1 }. Consider the graph

G = (HU2K)) + Fy,

where [ = 6(11. The graph G has order a,, + 3. We observe that for each vertices
v of G, one of the following cases occurs.
1) If v € V(2K4), then degg(v) = |V(F1)| = a1.
2) If v € V(Fy), then degg(v) = degr, (v) + |[V(2K1)| + |V(H)| = an.
3) If v € V(H), then degg(v) = degy (v) + |V (F1)| = degr (v) + a;.
Thus D(G) = S. Moreover, by Lemma 2.3, G is a 2-sc graph. O

Note that we considered S = {a1,...,a,} and presented a construction method
in Theorem 2.4 to ascertain the value of us(S), where a; is even, whereas if a; is
odd, the graph G described in the proof of Theorem 2.5 has not necessarily the
minimum order. As an example, for S = {3,4}, the graph G; of Figure 1 which
is obtained by the method of Theorem 2.5 has order 7, whereas the 2-sc graph G»
where Gy = Pg with 6 vertices has also the same degree set (see Figure 1).

A B

Gy

Figure 1: The 2-sc graphs G; and G5 with different orders and the same degree
sets.

In this section, we prove that if at least one element of S is even then s (S) =
an + 2. We begin with a simple case.

Theorem 2.6. Let S be a set of positive integers, where = {ay,...,an}, n > 1,
l<ay <az < -+ <ap, ar is odd and a, = ap—1 + 1 then ua(S) = a, + 2.

Proof. Let S; = {as — a1,a3 — a1,...,a, — a1 }. By Theorem 1.2, there exists a
graph H of order a,, — a1 + 1 such that D(H) = S;. Consider the graph
F=(HUK;)+C,.

Lemma 2.3 implies that the graph F' is a 2-sc graph. The graph F has order
an + 2, and D(F) = S. Since there is no 2-sc graph of order a,, + 1, therefore,



Diameter Two Graphs of Minimum Order with Given Degree Set 321
I ——

Now we consider the set S = {ay,...,an} of positive integers. We prove that
if all the elements of S are odd, then ps(S) = a, + 3, otherwise us(S) = a, + 2.
Before proving the main result, we need to have the following theorem.

Theorem 2.7. (I. Zverovich [6]) Let S be a set of positive integers, where S =
{a1,...,an} and 3 < aj < --- < a,. Then there exists a Hamiltonian graph G such
that D(G) = S and |V(G)| = an, + 1.

Lemma 2.8. For a graph G, if A(G) = |V(G)| — 2 and G contains at least two
non—adjacent vertices of degree A(G), then G is a 2-sc graph.

Proof. Let x and y be two non—adjacent vertices of G with degg(z) = dega(y) =
A(G) = |V(G)| — 2. Obviously, z and y are adjacent to all other vertices of G.
Therefore, eq(x) = eq(y) = dg(z,y) = 2. Moreover, since A(G) = |V(G)| — 2, it
follows that for all other vertices v of G there is at least one non—adjacent vertex.
Hence eg(v) = 2. Therefore G is a 2-sc graph. O

Lemma 2.9. Let S be a set of positive integers where S = {aq,...,a,} and 2 <
ay < --- < ap. Then there exists a graph G of order a, + 1 such that D(G) = S
and G has a Hamilton path.

Proof. Let S = {a; + 1,...,a, + 1}. Since a1 + 1 > 3, Theorem 2.7 implies
that there exists a Hamiltonian graph G’ of order a, + 2 such that D(G’) = 5.
Let C' be a Hamilton cycle in G’ where C" = (v1,vg,...,0q, 42,v1). Without
loss of generality, let v; be a vertex of degree a, + 1 which is connected to all
other vertices of G'. Let G = G’ — v;. Thus D(G) = S, |[V(G)| = an + 1.
Furthermore, by removing the vertex v; of C’ we obtain the Hamilton path P
where P = (UQ,U37 ...7’Ua”+1,’l)a”+2). O

Lemma 2.10. Let S be a set of positive integers where S = {ay,...,an}, an be
odd and 3 < a1 < -+ < a,. Then there exists a graph G of order a, + 1 such
that D(G) = S and G has at least two adjacent vertices x and y of degree a,.

Moreover, G has a matching of size ““T_l which contains the edge xy.

Proof. Let S = {a; — 1,...,a,, — 1}. By Lemma 2.9, there is a graph G’ of order
an with D(G') = S’ and a Hamilton path P such that P = (vy, v, ...,v,, ) where
v; € V(G') for 1 < i < a,. Let « be a vertex of degree a,, — 1 of G’. We construct
G by adding a new vertex y to G’ adjacent to all vertices of G'. For 1 <i < a,
we have

dega(v;) = deggr (v;) + 1.

Clearly, we have two adjacent vertices x and y of degree a,, and also G is a graph
of order a, + 1 such that D(G) = S. We claim that G has a matching of size %==1
which contains the edge zy. Obviously, P is a path in G. Let M’ be a maximal
matching of P such that the vertex x is unsaturated. The size of matching M’
is at least “”2_3. Let M = M' U {zy}. Clearly M is a matching of G such that
M| = ‘I"T*H which completes the proof. O
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Now we prove our main theorem.

Theorem 2.11. Let S be a set of positive integers where S = {ay,...,a,} and
1<ay < <ap. If all elements of S are odd, then us(S) = a, + 3, otherwise
,LLQ(S) =a, + 2.

Proof. Consider the case when all elements of S are odd. Theorem 2.5 implies
that there exists a 2-sc graph G of order a,, + 3 such that D(G) = S. Moreover, as
noted earlier, in any graph, there is an even number of odd vertices. Hence there
is no graph of order a, + 2 with S as its degree set. Therefore G is a 2-sc graph
of minimum order such that D(G) = S, Hence us(S) = a, + 3.

Now assume that at least one even element a; exists in S where 1 < i <n. If
ay is even, then by Theorem 2.4, ps(S) = ap, +2. Now let a; be odd. There exists
at least one 7 where 2 < ¢ < n such that a; is even. Now we have two cases as
follows:

First we consider the case in which a,, is even. Hence |V (G)] is odd. Since a; >
3, Theorem 2.7 implies that there exists a Hamiltonian graph G of order a,,+1 such
that D(G) = S. Let C be a Hamilton cycle in G such that C' = (vy,va, ..., Vg, +1,v1)
where v; € V(G) for 1 <i < a, + 1. Without loss of generality, let v; be a vertex
of degree a,.

Let M be a matching of G where M = {vyv3, 0405, ..., Vg, Va, +1} and the edge
vV for 2 < i < a, is an edge of the Hamilton cycle C' (Notice that exactly one
vertex v1 of G is not saturated by M, hence |M| = %) Let G* = G — M.
Clearly, for 2 < i < a,, +1, we have degg~(v;) = degg(v;) —1 and also degg~(v1) =
degc(v1). Now, we construct a new graph H by adding a new vertex v adjacent
to each vertex of G* except vy. Since degy(v) = degy(v1) = degg(v1) = an
and for 2 < i < a,, we have degy (v;) = degg(v;), it follows immediately that
D(H) = D(G) = S. Furthermore, since |V(H)| = a, + 2 and H has at least two
non—adjacent vertices v and vy of degree a,, by Lemma 2.8, H is a 2-sc graph.
Therefore, ps(S) = ap, + 2.

Now we consider the case in which a, is odd. Lemma 2.10 implies that there
exists a graph G of order a, 4+ 1 such that D(G) = S. Furthermore, the graph G
has at least two adjacent vertices x and y of degree a,, and also G has a matching
of size “”T_l which contains the edge xy . Let v; be a vertex of degree a; where
a; is even and 2 < ¢ < n — 1. Consider the matching M of size % of G which
contains the edge xy. Let

G*'=G-M.
We construct H by adding a new vertex v to G* such that

E(H) = E(G")U{vu; | u; is the vertex of G which is saturated by M, where 1 < i < n}.

Clearly, D(H) = S and H has an order a, + 2. Since H has at least two
non—adjacent vertex x and y such that degy(x) = degn(y) = an, Lemma 2.8
implies that the graph H is a 2-sc graph and us(S) = a, + 2. O
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