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Diameter Two Graphs of Minimum Order

with Given Degree Set

Gholamreza Abrishami, Freydoon Rahbarnia⋆ and Irandokht Rezaee

Abstract

The degree set of a graph is the set of its degrees. Kapoor et al. [Degree
sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of
positive integers, there exists a graph of diameter at most two and radius one
with that degree set. Furthermore, the minimum order of such a graph is
determined. A graph is 2-self-centered if its radius and diameter are two. In
this paper for a given set of natural numbers greater than one, we determine
the minimum order of a 2-self-centered graph with that degree set.
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1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). For a vertex
v of G, the degree of v in G, denoted by degG(v). We denote the minimum
and maximum degrees of the vertices of G by δ(G) and ∆(G), respectively. The
distance between two vertices u and v of a connected graph G is denoted by
dG(u, v) and it is the number of edges in a shortest path connecting u and v.
The eccentricity eG(u) of a vertex u, of a connected graph G, is max{dG(u, v)|v ∈
V (G)}. The radius of a connected graph G, rad(G), is the minimum eccentricity
among the vertices of G, while the diameter of G, diam(G), is the maximum
eccentricity. If rad(G)=diam(G)=r, then G is an r-self-centered graph. We use
r-sc as a notation for r-self-centered graph. F. Buckley [2] worked on r-sc graphs,
but the concept of r-sc graphs was developed independently by Akiyama, Ando,
and Avis [1], who called them r-equi graphs. They proved that if G is an r-sc
graph, then G is a block and ∆(G) ≤ |V (G)| − 2(r − 1).
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Hence, for r = 2 we have the following corollary.

Corollary 1.1. If G is a 2-sc graph and v is a vertex of G, then 2 ≤ degG(v) ≤
|V (G)| − 2.

In this paper we study 2-sc graphs in terms of the degree sets, where for a
given graph G the degree set of G, denoted by D(G), is the set of degrees of the
vertices of G. It is a simple observation that any set of positive integers forms the
degree set of a graph. So it is natural to investigate the minimum order of such
graphs. This question is completely answered by a result of Kapoor, Polimeni and
Wall [4]. Their result can be stated as follows.

Theorem 1.2 (S. F. Kapoor et al. [4]). For every set S = {a1, ..., an} of positive
integers, with a1 < · · · < an, there exists a graph G such that D(G) = S and
furthermore,

µ(S) = an + 1,

where µ(S) represents the minimum order of such a graph G.

The graph G in Theorem 1.2 has order an + 1. Therefore G has diameter at
most two and radius one. Hence G is not a 2-sc graph. Corollary 1.1 implies that
every 2-sc graph has no vertex of degree less than or equal to 1. In this paper, we
show that for a finite, nonempty set S of positive integers greater than 1, there
exists a 2-sc graph G such that D(G) = S. Furthermore, the minimum order of
such a graph G is determined.

2. Results
We write Kn and Cn for the Complete graph and the Cycle of order n, respectively.
Also for a graph G, the graph Ḡ is the Complement of G. The union of graphs
G and H is the graph G ∪ H which consists of copies of graphs G and H. Two
graphs are disjoint if they have no vertex in common. If a graph G consists of
k(≥ 2) disjoint copies of a graph H, then we write G = kH.

Let S be a set of positive integers, where S = {a1, ..., an} and 1 < a1 <
· · · < an. We define µr(S) to be the minimum order of an r-sc graph G for which
D(G) = S. In the case when S = {a1}, the following theorem implies that there
exists an a1-regular 2-sc graph of minimum order.

Theorem 2.2. Let a1 be a positive integer greater than 1 and S = {a1}. There
exists a 2-sc graph G such that D(G) = S and furthermore,

µ2(S) =

{
a1 + 2

a1 + 3

if a1 is even
if a1 is odd

.

Proof. Let a1 be a positive integer greater than 1. If a1 is even, then the graph

G = (
a1
2

+ 1)K2,
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is clearly an a1-regular graph with a1+2 vertices. The graph G is also a 2-sc graph
[3]. Additionally, Corollary 1.1 implies that, every 2-sc graph of order a1 + 1 has
no vertex of degree a1. Therefore, we need at least a1 +2 vertices to construct an
a1-regular 2-sc graph. Hence µ2(S) = a1 + 2.

If a1 is odd, then the graph

H = Ca1+3,

is an a1-regular graph of order a1 + 3. The graph H is also a 2-sc graph. Since
the graph H has order at least 6 and for each pair of nonadjacent vertices u and
v of H there exists at least one common neighbour, it follows that dH(u, v) = 2.
Since, in any graph, the number of vertices of odd degree is even. Thus there is no
a1-regular graph of order a1 + 2. Therefore, the graph H has the minimum order
among all such 2-sc a1-regular graphs. Hence µ2(S) = a1 + 3.

The following lemma which is obtained by Z. Stanic [5] has an interesting
applications for constructing 2-sc graphs from other not necessarily 2-sc graphs
and also it will be needed in the proof of our results for non-regular graphs. Recall
that the join G+H of two disjoint graphs G and H is the graph consisting of the
union G ∪H, together with edges xy, where x ∈ V (G) and y ∈ V (H).

Lemma 2.3. (Z. Stanic [5]) Let G and H be simple nontrivial graphs with ∆(G) ≤
|V (G)| − 2 and ∆(H) ≤ |V (H)| − 2, then G+H is a 2-sc graph.

Now, we extend Theorem 2.2 for non-regular graphs in following theorems.

Theorem 2.4. Let a1 be even and S be a set of positive integers, where S =
{a1, . . . , an}, 2 ≤ a1 < · · · < an and n > 1. Then there exists a 2-sc graph G such
that D(G) = S and furthermore,

µ2(S) = an + 2.

Proof. Let S1 = {a2 − a1, a3 − a1, ..., an − a1}. By Theorem 1.2, there exists a
graph H of order an − a1 + 1 such that D(H) = S1. Consider the graph

G = (H ∪K1) + F,

where F = a1

2 K2. The graph G has order an+2. We observe that for each vertices
v of G, one of the following cases occurs:
1) If v ∈ V (K1), then degG(v) = |V (F )| = a1.
2) If v ∈ V (F ), then degG(v) = degF (v)+ |V (K1)|+ |V (H)| = (a1−2)+1+(an−
a1 + 1) = an.
3) If v ∈ V (H), then degG(v) = degH(v) + |V (F )| = degH(v) + a1.

Thus D(G) = S. Moreover, by considering Lemma 2.3, G is a 2-sc graph and
since there is no 2-sc graph of order an + 1, hence µ2(S) = an + 2.
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Theorem 2.5. Let a1 be odd and S be a set of positive integers, where S =
{a1, ..., an}, 3 ≤ a1 < · · · < an and n > 1. Then there exists a 2-sc graph G of
order an + 3 such that D(G) = S.

Proof. Let S1 = {a2 − a1, a3 − a1, ..., an − a1}, where for 1 ≤ i ≤ n, ai ∈ S.
By Theorem 1.2, there exists a graph H of order an − a1 + 1 such that D(H) =
{a2 − a1, ..., an − a1}. Consider the graph

G = (H ∪ 2K1) + F1,

where F1 = Ca1
. The graph G has order an+3. We observe that for each vertices

v of G, one of the following cases occurs.
1) If v ∈ V (2K1), then degG(v) = |V (F1)| = a1.
2) If v ∈ V (F1), then degG(v) = degF1(v) + |V (2K1)|+ |V (H)| = an.
3) If v ∈ V (H), then degG(v) = degH(v) + |V (F1)| = degH(v) + a1.

Thus D(G) = S. Moreover, by Lemma 2.3, G is a 2-sc graph.

Note that we considered S = {a1, ..., an} and presented a construction method
in Theorem 2.4 to ascertain the value of µ2(S), where a1 is even, whereas if a1 is
odd, the graph G described in the proof of Theorem 2.5 has not necessarily the
minimum order. As an example, for S = {3, 4}, the graph G1 of Figure 1 which
is obtained by the method of Theorem 2.5 has order 7, whereas the 2-sc graph G2

where G2 = P 6 with 6 vertices has also the same degree set (see Figure 1).

Figure 1: The 2-sc graphs G1 and G2 with different orders and the same degree
sets.

In this section, we prove that if at least one element of S is even then µ2(S) =
an + 2. We begin with a simple case.

Theorem 2.6. Let S be a set of positive integers, where = {a1, ..., an}, n > 1,
1 < a1 < a2 < · · · < an, a1 is odd and an = an−1 + 1 then µ2(S) = an + 2.

Proof. Let S1 = {a2 − a1, a3 − a1, ..., an − a1}. By Theorem 1.2, there exists a
graph H of order an − a1 + 1 such that D(H) = S1. Consider the graph

F = (H ∪K1) + Ca1 .

Lemma 2.3 implies that the graph F is a 2-sc graph. The graph F has order
an + 2, and D(F ) = S. Since there is no 2-sc graph of order an + 1, therefore,
µ2(S) = an + 2.
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Now we consider the set S = {a1, ..., an} of positive integers. We prove that
if all the elements of S are odd, then µ2(S) = an + 3, otherwise µ2(S) = an + 2.
Before proving the main result, we need to have the following theorem.

Theorem 2.7. (I. Zverovich [6]) Let S be a set of positive integers, where S =
{a1, ..., an} and 3 ≤ a1 < · · · < an. Then there exists a Hamiltonian graph G such
that D(G) = S and |V (G)| = an + 1.

Lemma 2.8. For a graph G, if ∆(G) = |V (G)| − 2 and G contains at least two
non−adjacent vertices of degree ∆(G), then G is a 2-sc graph.

Proof. Let x and y be two non−adjacent vertices of G with degG(x) = degG(y) =
∆(G) = |V (G)| − 2. Obviously, x and y are adjacent to all other vertices of G.
Therefore, eG(x) = eG(y) = dG(x, y) = 2. Moreover, since ∆(G) = |V (G)| − 2, it
follows that for all other vertices v of G there is at least one non−adjacent vertex.
Hence eG(v) = 2. Therefore G is a 2-sc graph.

Lemma 2.9. Let S be a set of positive integers where S = {a1, ..., an} and 2 ≤
a1 < · · · < an. Then there exists a graph G of order an + 1 such that D(G) = S
and G has a Hamilton path.

Proof. Let S′ = {a1 + 1, ..., an + 1}. Since a1 + 1 ≥ 3, Theorem 2.7 implies
that there exists a Hamiltonian graph G′ of order an + 2 such that D(G′) = S′.
Let C ′ be a Hamilton cycle in G′ where C ′ = (v1, v2, ..., van+2, v1). Without
loss of generality, let v1 be a vertex of degree an + 1 which is connected to all
other vertices of G′. Let G = G′ − v1. Thus D(G) = S, |V (G)| = an + 1.
Furthermore, by removing the vertex v1 of C ′ we obtain the Hamilton path P
where P = (v2, v3, ..., van+1, van+2).

Lemma 2.10. Let S be a set of positive integers where S = {a1, ..., an}, an be
odd and 3 ≤ a1 < · · · < an. Then there exists a graph G of order an + 1 such
that D(G) = S and G has at least two adjacent vertices x and y of degree an.
Moreover, G has a matching of size an−1

2 which contains the edge xy.

Proof. Let S′ = {a1 − 1, ..., an − 1}. By Lemma 2.9, there is a graph G′ of order
an with D(G′) = S′ and a Hamilton path P such that P = (v1, v2, ..., van) where
vi ∈ V (G′) for 1 ≤ i ≤ an. Let x be a vertex of degree an − 1 of G′. We construct
G by adding a new vertex y to G′ adjacent to all vertices of G′. For 1 ≤ i ≤ an
we have

degG(vi) = degG′(vi) + 1.

Clearly, we have two adjacent vertices x and y of degree an and also G is a graph
of order an+1 such that D(G) = S. We claim that G has a matching of size an−1

2
which contains the edge xy. Obviously, P is a path in G. Let M ′ be a maximal
matching of P such that the vertex x is unsaturated. The size of matching M ′

is at least an−3
2 . Let M = M ′ ∪ {xy}. Clearly M is a matching of G such that

|M | = an−1
2 , which completes the proof.
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Now we prove our main theorem.

Theorem 2.11. Let S be a set of positive integers where S = {a1, ..., an} and
1 < a1 < · · · < an. If all elements of S are odd, then µ2(S) = an + 3, otherwise
µ2(S) = an + 2.

Proof. Consider the case when all elements of S are odd. Theorem 2.5 implies
that there exists a 2-sc graph G of order an+3 such that D(G) = S. Moreover, as
noted earlier, in any graph, there is an even number of odd vertices. Hence there
is no graph of order an + 2 with S as its degree set. Therefore G is a 2-sc graph
of minimum order such that D(G) = S, Hence µ2(S) = an + 3.

Now assume that at least one even element ai exists in S where 1 ≤ i ≤ n. If
a1 is even, then by Theorem 2.4, µ2(S) = an+2. Now let a1 be odd. There exists
at least one i where 2 ≤ i ≤ n such that ai is even. Now we have two cases as
follows:

First we consider the case in which an is even. Hence |V (G)| is odd. Since a1 ≥
3, Theorem 2.7 implies that there exists a Hamiltonian graph G of order an+1 such
that D(G) = S. Let C be a Hamilton cycle in G such that C = (v1, v2, ..., van+1, v1)
where vi ∈ V (G) for 1 ≤ i ≤ an + 1. Without loss of generality, let v1 be a vertex
of degree an.

Let M be a matching of G where M = {v2v3, v4v5, ..., vanvan+1} and the edge
vivi+1 for 2 ≤ i ≤ an is an edge of the Hamilton cycle C (Notice that exactly one
vertex v1 of G is not saturated by M , hence |M | = |V (G)|−1

2 ). Let G∗ = G −M .
Clearly, for 2 ≤ i ≤ an+1, we have degG∗(vi) = degG(vi)−1 and also degG∗(v1) =
degG(v1). Now, we construct a new graph H by adding a new vertex v adjacent
to each vertex of G∗ except v1. Since degH(v) = degH(v1) = degG(v1) = an
and for 2 ≤ i ≤ an, we have degH(vi) = degG(vi), it follows immediately that
D(H) = D(G) = S. Furthermore, since |V (H)| = an + 2 and H has at least two
non−adjacent vertices v and v1 of degree an, by Lemma 2.8, H is a 2-sc graph.
Therefore, µ2(S) = an + 2.

Now we consider the case in which an is odd. Lemma 2.10 implies that there
exists a graph G of order an + 1 such that D(G) = S. Furthermore, the graph G
has at least two adjacent vertices x and y of degree an and also G has a matching
of size an−1

2 which contains the edge xy . Let vi be a vertex of degree ai where
ai is even and 2 ≤ i ≤ n − 1. Consider the matching M of size ai

2 of G which
contains the edge xy. Let

G∗ = G−M.

We construct H by adding a new vertex v to G∗ such that

E(H) = E(G∗)∪{vui | ui is the vertex of G which is saturated by M , where 1 ≤ i ≤ n}.

Clearly, D(H) = S and H has an order an + 2. Since H has at least two
non−adjacent vertex x and y such that degH(x) = degH(y) = an, Lemma 2.8
implies that the graph H is a 2-sc graph and µ2(S) = an + 2.
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