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Abstract

In this paper, we improve some recent coupled fixed point results for
single-valued operators in the framework of ordered b-metric spaces estab-
lished by Bota et al. [M-F. Bota, A. Petrusel, G. Petrusel and B. Samet,
Coupled fixed point theorems for single-valued operators in b-metric spaces,
Fixed Point Theory Appl. (2015) 2015:231]. Also, we prove that Perov-type
fixed point theorem in ordered generalized b-metric spaces is equivalent with
Ran-Reurings-type theorem in ordered b-metric spaces.
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1. Introduction

In 1966, Perov [11] formulated a fixed point theorem which extends the well-known
contraction mapping principle to the case when the metric d takes values in Rm

+ ,
that is, to the case of a generalized (cone) metric space. In 1989, Bakhtin [2]
introduced the concept of a b-metric space which is another generalization of the
ordinary metric space. After that, several papers have appeared dealing with
results in b-metric spaces (see. e.g., [5, 7, 9] as well as the references therein). For
the concepts of b-convergence, b-Cauchy sequence, b-continuity and b-completeness
in b-metric spaces, see for instance [5, 7]. Furthermore, several new kinds of spaces
have appeared, as generalized b-metric spaces, ordered generalized b-metric spaces,
etc.
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In this paper, we will first show that most of the results of paper [5] on coupled
fixed points in ordered (generalized) b-metric spaces can be obtained in a much
easier way. Further, in Section 3, we will improve these results and show that
Perov-type fixed point theorem in ordered generalized b-metric spaces is equivalent
to Ran-Reurings-type theorem in ordered b-metric spaces. We finish by proving a
result on well-posedness of the given fixed point problem.

2. Remarks on the Paper [5]
Very recently, in [5], M-F. Bota et al. proved some coupled fixed point results for
mixed monotone mappings in ordered generalized b-metric spaces. In this section,
we will show that most of these results are basically not new.

Remark 2.1. (concerning [5, Theorem 2.2]). It is well known that from the con-
dition (ii) of [5, Theorem 2.2], the mixed monotone property of T and by induction
it easily follows that the sequence xn+1 = Tn (x0, y0) = T (xn, yn) is nondecreas-
ing, while the sequence yn+1 = Tn (y0, x0) = T (yn, xn) is nonincreasing. The rest
of the proof of this theorem in [5] is also not new. That is, all is the same as in [4,
Theorem 2.1] for ordinary metric spaces. Moreover, the proof that the sequences
{xn} and {yn} are Cauchy sequences, is again well known (see, e.g., [9, Lemma
3.1]).

Further, it is not hard to see that the estimates of d(Tn(x0, y0), x) and d(Tn(y0,
x0), y) presented in the mentioned theorem hold without assumption that the b-
metric d is continuous. Indeed, our claim follows immediately from the following
two inequalities:

1

s
d (Tn (x0, y0) , x

∗) ≤ d
(
Tn (x0, y0) , T

n+p (x0, y0)
)
+ d

(
Tn+p (x0, y0) , x

∗) ,
1

s
d (Tn (y0, x0) , y

∗) ≤ d
(
Tn (y0, x0) , T

n+p (y0, x0)
)
+ d

(
Tn+p (y0, x0) , y

∗) ,
as well as from the proof of [9, Lemma 3.1].

Finally, it is worth noticing that [5, Theorem 2.2] holds if the condition k ∈
[0, 1s ) is relaxed to k ∈ [0, 1) (see [6, Theorem 1], [7, Theorem 1.8], and Theorem
3.1 below).

In the sequel of [5], the well known Perov’s Theorem is proved for the case of
so-called generalized b-metric spaces (see also [10]).

Remark 2.2. (concerning [5, Theorem 3.2]). Instead of the condition that f
has a closed graph (condition (3) in [5, Theorem 3.2]), one can suppose that f is
continuous or that (X, d,�) is regular (recall that an ordered (generalized) metric
space is said to be regular if for each nondecreasing sequence {xn} in X, xn → x
as n → ∞ implies that xn � x for n ∈ N). Otherwise, [5, Theorem 3.2] is simply
classical Ran-Reuring’s result in the framework of ordered generalized b-metric
spaces.
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Remark 2.3. (concerning [5, Theorem 3.7]). It is not hard to see that the condi-
tion

d (T (x, y) , T (u, v)) ≤ k1d (x, u) + k2d (y, v) ,

which is assumed in this theorem, implies the following:

d+ (FT (Y ) , FT (V )) ≤ kd+ (Y, V ) , for all Y v V or Y w V, (1)

where k = k1+k2, Y = (x, y), V = (u, v) , d+ (Y, V ) = d (x, u)+d (y, v), FT (Y ) =
(T (x, y) , T (y, x)) and Y v V ⇐⇒ x � u and y � v. Further, (1) implies that

D+ (FT (Y ) , FT (V )) ≤ kD+ (Y, V ) , for all Y v V or Y w V,

where D+ (Y, V ) = ‖d+ (Y, V )‖. Since (X ×X,D+,v) is an ordered generalized
b-metric space, then the proof of [5, Theorem 3.7] follows according to [6, Theorem
1]. Hence, in fact, [5, Theorem 3.7] is not new, that is, all ideas and methods in it
are well known (for more details of respective results in the framework of metric
spaces see [1, 3, 14, 12, 15]).

The authors of [5] discussed also the following system of integral equations:{
x (t) = g (t) +

∫ T

0
G (s, t) f (s, x (s) , y (s)) ds,

y (t) = g (t) +
∫ T

0
G (s, t) f (s, y (s) , x (s)) ds,

(2)

where t ∈ [0, T ]. Using certain b-metric, they proved an existence result for solu-
tions of the system (2).

Remark 2.4. (concerning [5, Theorem 4.1]). First of all, it follows from the
condition (iii) of [5, Theorem 4.1], that

|f (s, u1 (s) , u2 (s))− f (s, v1 (s) , v2 (s)) |
≤ (α (s) + β (s)) max

s∈[0,T ]
{|u1 (s)− v1 (s)| , |u2 (s)− v2 (s)|} ,

while the condition (iv) implies

k := max
t∈[0,T ]

∫ T

0

G (s, t) (α (s) + β (s)) ds < 1.

Then, if S : X ×X → X is defined as in [5], for all (x � u and y � v) or (u � x
and v � y), we have

|S (x, y) (t)− S (u, v) (t) | =

∣∣∣∣∣
∫ T

0

G (s, t) [f (s, x (s) , y (s))− f (s, u (s) , v (s))] ds

∣∣∣∣∣
≤
∫ T

0

G (s, t) |f (s, x (s) , y (s))− f (s, u (s) , v (s))| ds

≤
∫ T

0

G (s, t) (α (s) + β (s)) max
s∈[0,T ]

{|x (s)− u (s)| , |y (s)− v (s)|} ds

= kδ (Y, V ) ,
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where δ (Y, V ) = δ ((x, y) , (u, v)) = max {D (x, u) , D (y, v)} is a metric on X2 if
D is a metric on X. In this case D (x, y) = maxs∈[0,T ] |x (s)− y (s)| is a known
metric on the space C [0, T ].

Further, in the same manner, we have

|S (y, x) (t)− S (v, u) (t) | =

∣∣∣∣∣
∫ T

0

G (s, t) [f (s, y (s) , x (s))− f (s, v (s) , u (s))] ds

∣∣∣∣∣
≤
∫ T

0

G (s, t) |f (s, y (s) , x (s))− f (s, v (s) , u (s))| ds

≤
∫ T

0

G (s, t) (α (s) + β (s)) max
s∈[0,T ]

{|y (s)− v (s)| , |x (s)− u (s)|} ds

= kδ (Y, V ) .

Hence, we obtain:

max
t∈[0T ]

{|S (x, y) (t)− S (u, v) (t)| , |S (y, x) (t)− S (v, u) (t)|} ≤ kδ (Y, V ) ,

that is,
δ (FS (Y ) , FS (V )) ≤ kδ (Y, V ) ,

where FS (Y ) = FS ((x, y)) = (S (x, y) , S (y, x)). Instead of the method used
in the framework of b-metric spaces as in [5], we can use now simply Banach
Contraction Principle for the proof that the system of integral equations (2) has a
unique solution in the complete metric space C [0, T ]. It is clear that our approach
is brief and natural. Hence, we may conclude that [5, Theorem 4.1] may be proved
without using any technique involving b-metric spaces.

3. Improvements
Now, we announce our first result which generalizes [5, Theorem 2.2].

Theorem 3.1. Let (X, d,�) be a b-complete, partially ordered b-metric space with
parameter s ≥ 1. Let f : X × X → X be a mixed monotone mapping for which
there exists a constant k ∈ [0, 1) such that for all (x � u and y � v) or (x � u and
y � v),

d (f (x, y) , f (u, v)) + d (f (y, x) , f (v, u)) ≤ k [d (x, u) + d (y, v)] . (3)

Suppose that
(a) f is continuous, or
(b) (X, d,�) is regular.
If there exist x0, y0 ∈ X such that (x0 � f (x0, y0) and y0 � f (y0, x0)) or

(x0 � f (x0, y0) and y0 � f (y0, x0)), then there exist x∗, y∗ ∈ X such that x∗ =
f (x∗, y∗) and y∗ = f (y∗, x∗).
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Proof. Consider the mapping d+ : X2×X2 → R+ defined by d+ (Y, V ) = d (x, u)+
d (y, v), for all Y = (x, y), V = (u, v) ∈ X2 and the relation v on X2 de-
fined by Y v V ⇐⇒ x � u and y � v. It is a simple task to check that(
X2, d+,v

)
is an ordered b-metric space. Also,

(
X2, d+,v

)
is b-complete and

regular if (X, d,�) is such. Further, consider the mapping F : X2 → X2 de-
fined by F (Y ) = (f (x, y) , f (y, x)) for all Y = (x, y) ∈ X2. It is clear that for
Y = (x, y) , V = (u, v) ∈ X2, in view of the definition of d+, we have

d+ (F (Y ) , F (V )) = d (F (x, y) , F (u, v)) + d (F (y, x) , F (v, u))

and d+ (Y, V ) = d (x, u) + d (y, v) .

Hence, by the condition (3) we obtain a Banach type contraction (in a b-metric
space):

d+ (F (Y ) , F (V )) ≤ kd+ (Y, V ) ,

for all Y, V ∈ X2 with Y v V or Y w V . The rest of proof follows by [6, 7, 9] or
[13].

Remark 3.2. Theorem 3.1 is a proper generalization of [5, Theorem 2.2] in two
ways. First of all, the condition k ∈ [0, 1s ) is relaxed to k ∈ [0, 1). Secondly,
the contractive condition used in [5, Theorem 2.2] is strictly stronger than the
condition (3). Appropriate examples can be easily constructed similarly as in
[3, 12] and several other papers.

Also, Theorem 3.1 generalizes [3, Theorem 3].

Now, we shall prove the main result of this section.

Theorem 3.3. Theorem 3.2 from [5] is equivalent with the following result:
Let (X, d,�) be a b-complete ordered b-metric space with parameter s ≥ 1 and

let f : X → X be an operator. Suppose that:

(1) for each (x, y) /∈ X� there exists z ∈ X such that (x, z) , (y, z) ∈ X�;

(2) X� ∈ I (f × f) ;

(3) f : X → X has a closed graph;

(4) there exists x0 ∈ X such that (x0, f (x0)) ∈ X�;

(5) there exists a constant k ∈ [0, 1), such that

d (f (x) , f (y)) ≤ kd (x, y) for each (x, y) ∈ X�.

Then f is a Picard operator, i.e., Fix (f) = {x∗} and fn (x) → x∗, as n → ∞,
for every x ∈ X.
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Proof. Putting m = 1, we obviously have that [5, Theorem 3.2] implies the for-
mulated result. Conversely, let the given result hold true. We shall show that in
this case [5, Theorem 3.2] also holds. It is known that each generalized b-metric
space is also a cone b-metric space over normal solid cone with the normal constant
K = 1 (for the details see [8]). Therefore, the conditions (2), (5), as well as the
normality of the cone imply that

‖d (fn (x) , fn (y))‖Rm ≤ ‖An‖ ‖d (x, y)‖Rm for each (x, y) ∈ X�. (4)

Further, from the condition (5) of [5, Theorem 3.2] (that sA converges to zero), it
follows that there exists n0 ∈ N such that ‖An0‖ < 1. Hence, (4) becomes

D (fn0 (x) , fn0 (y)) ≤ kD (x, y) for each (x, y) ∈ X�,

where D (a, b) = ‖d (a, b)‖, k = ‖An0‖ < 1. Since (X,D) is a b-metric space with
the same parameter s ≥ 1 and fn0 : X → X, then by ([6, Theorem 1]) fn0 has
a unique fixed point in X. Hence, f has a unique fixed point. Moreover, f is a
Picard operator in generalized metric space (X, d). Indeed, by the assumption,
(fn0)

n
(x)→ x∗ in the b-metric space (X,D) from which we obtain that fn (x)→

x∗, also in (X,D). Since the spaces (X, d) and (X,D) have the same convergent
sequences, the result follows.

Remark 3.4. Theorem 3.3 and [5, Theorem 3.2] show that the celebrated theorem
of Ran-Reurings holds in both frameworks: ordered generalized b-metric spaces
and ordered b-metric spaces.

We finish considering well-posedness of the problem treated in [5, Theorem
3.2], i.e. of a Perov type operator in the framework of an ordered generalized (in
the sense of Perov) b-metric space. Recall that the problem for an operator f with
a unique fixed point x∗ ∈ X is said to be well-posed if for each sequence {yn} in
X, d(yn, fyn)→ θ as n→∞ implies that yn → x∗ as n→∞.

Theorem 3.5. Under the assumptions of [5, Theorem 3.2], the fixed point problem
for f is well-posed.

Proof. According to Theorem [5, Theorem 3.2], the operator f has a unique fixed
point x∗. Suppose that {yn} is a sequence inX such that d(yn, fyn)→ θ as n→∞
in the given generalized ordered b-complete b-metric space (X, d,�). Then we have
that

1

s
d(yn, x

∗) ≤ d(yn, fyn) + d(fyn, x
∗) = d(yn, fyn) + d(fyn, fx

∗)

≤ d(yn, fxn) +Ad(yn, x
∗),

wherefrom (I − sA)d(yn, x∗) ≤ sd(ynfyn) and

d(yn, x
∗) ≤ (I − sA)−1sd(yn, fyn)→ θ

in Rn since (I − sA)−1s ∈Mm×m(R+). Hence, d(yn, x∗)→ θ in the Banach space
Rm, i.e., the given fixed point problem for f is well-posed.
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Remark 3.6. Note that the condition (5) of [5, Theorem 3.2] (that sA converges
to zero, in other words, that ρ(A) < 1

s for the spectral radius of the matrix A)
is crucial in the previous proof. In fact, the similar is true for a Banach-type
contraction f (satisfying d(fx, fy) ≤ kd(x, y)) in an arbitrary b-metric space (X, d)
with parameter s > 1—it has a unique fixed point whenever k ∈ [0, 1), however,
it is well-posed only if k ∈ [0, 1s ).
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