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Hartley Series Direct Method for

Variational Problems

Abbas Saadatmandi ?

Abstract

The computational method based on using the operational matrix of an
orthogonal function for solving variational problems is computer-oriented.
In this approach, a truncated Hartley series together with the operational
matrix of integration and integration of the cross product of two case vectors
are used for finding the solution of variational problems. Two illustrative
examples are included to demonstrate the validity and applicability of the
technique.
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1. Introduction

In the large number of scientific and engineering problems, it is necessary to de-
termine the maximal or minimal of a certain functional. Such problems are called
variational problems. Most variational problems do not have closed form solu-
tions, so approximation and numerical techniques must be used. In the literature,
the direct method of Ritz and Galerkin has been investigated for solving varia-
tional problems by Schecher [11]. Some orthogonal polynomials are applied on
variational problems to find continuous solutions for these problems. The au-
thors of [3, 6–9, 12] introduced the rationalized Haar method, Legendre wavelets
method, differential transformation method, Chebyshev finite difference method,
variational iteration method and the hybrid of block-pulse functions and Lagrange
interpolating polynomials for solving variational problems, respectively.
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In this work, we introduce a new direct computational method to solve vari-
ational problems. The method consists of reducing the variational problem into
a set of algebraic equations by first expanding the candidate function as Hartley
series with unknown coefficients. The operational matrix of integration and inte-
gration of the cross product of two cas function vectors are then used to evaluate
the coefficients of the Hartley series in such a way that the necessary conditions
for extremization is imposed.

The organization of this paper is as follows. In the next section, we describe
the basic formulation of Hartley series required for our subsequent development.
Section 3 summarizes the application of Hartley series method to the solution
of variational problems. As a result a set of algebraic equations is formed and
a solution of the considered problem is introduced. In Section 4, some numerical
results are given to clarify the method. Section 5 ends this paper with a conclusion.

2. Properties of Hartley Series

In Fourier series the basis functions are the complex exponential, eiωt. The Hartley
series utilizes a similar frequency based function, the function cos(ωt) + sin(ωt),
also known as the cosine − and − sine function or cas(ωt). The most important
properties of the cas function are given in [1,5,10]. A periodic function f(t) with
period ` can be approximated by Hartley series as follows:

f(t) =

∞∑
k=−∞

ckTk(t), (1)

where

Tk(t) = cas

(
2kπt

`

)
= cos

(
2kπt

`

)
+ sin

(
2kπt

`

)
, k ∈ Z,

and

ck = 1/`

∫ `

0

f(t)Tk(t), k ∈ Z.

If f(t) is truncated up to (2n+ 1) terms, then (1) can be written as

f(t) '
n∑

k=−n

ckTk(t) = CTT (t), (2)

where the cas coefficient vector C and cas vector T (t) are given by

C = [c−n, . . . , c−1, c0, c1, . . . , cn]
T ,

T (t) = [T−n(t), . . . , T−1(t), T0(t), T1(t), . . . , Tn(t)]
T .
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The elements of the vector T (t) are orthogonal in the interval (0, `) and the
integration of the vector T (t) can be approximated by∫ t

0

T (τ)dτ ' PT (t), (3)

where P is (2n + 1) × (2n + 1) Hartley series operational matrix for integration
and can be found in [4]

P =
`

2π



−1
n

1
n

...
−1
2

1
2

−1 1
1
n · · · 1

2 1 π −1 −1
2 · · · −1

n
−1 1

−1
2

1
2
...

−1
n

1
n


. (4)

The cross-product of two cas vectors is

T (t)TT (t) =



T 2
−n · · · T−nT0 · · · T−nTn
...

...
...

T0T−n · · · T 2
0 · · · T0Tn

...
...

...
TnT−n · · · TnT0 · · · T 2

n

 .

By using
∫ `
0
Tn(t)Tm(t)dt = `δn,m we obtain

H =

∫ `

0

T (t)TT (t)dt = `I2n+1,2n+1, (5)

where I is the identity matrix.

3. Hartley Series Direct Method
Consider the problem of finding the extremum of the functional

J(x) =

∫ 1

0

F [t, x(t), ẋ(t)]dt. (6)

Here we consider a Ritz direct method for solving (6) using Hartley series. Let
` = 1, suppose first that the rate variable ẋ(t) can be expanded approximately as

ẋ(t) '
n∑

k=−n

ckTk(t) = CTT (t). (7)
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Using operational matrix of integration in (3) we have

x(t) '
∫ t

0

ẋ(τ)dτ + x(0) ' (CTP + [0, . . . , 0, x(0), 0, . . . , 0])T (t). (8)

Notice that T0(t) = 1, using (1) for f(t) = t we can express t in (0, 1) in terms of
Hartley series as

t =

∞∑
k=−∞

dkTk(t), dk =

{
1
2 , k = 0,
−1
2kπ , k ∈ Z − {0}.

(9)

If (9) is truncated up to 2n+ 1 terms, then we have

t ' 1

2π

[
1

n
, . . . ,

1

2
, 1, π,−1, −1

2
, . . . ,

−1
n

]
T (t) = dTT (t). (10)

Substituting (7), (8) and (10) in (6) the functional J(x) becomes a function of
c−n, ..., cn. Hence, to find the extremum of J(x) we solve ∂J

∂ck
= 0, k = −n, ..., n.

The above procedure is now used to solve the following variational problems.

4. Illustrative Examples
To show the efficiency of the method described above, we present some examples.
These examples are chosen such that there exist exact solutions for them.
Example 1. Consider the problem of finding the minimum of [2, 6, 7]

J(x) =

∫ 1

0

[
ẋ2(t) + tẋ(t)

]
dt, (11)

with the boundary conditions

x(0) = 0, x(1) =
1

4
, (12)

using (5), (7), (10) and (11) we obtain

J(x) '
∫ 1

0

[
CTT (t)TT (t)C + dTT (t)TT (t)C

]
dt = CTHC + dTHC

=
1

2

n∑
k=−n,k 6=0

(
c2k −

1

2kπ
ck

)
+ c20 +

1

2
c0, (13)

now using (7), we have

x(t) '
n∑

k=−n,k 6=0

ck
2kπ

(sin 2kπt+ 1− cos 2kπt) + x(0) + c0t. (14)
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Imposing the boundary conditions (12) we obtain c0 = 1
4 . Thus (13) becomes

J(x) ' 3

16
+

1

2

n∑
k=−n,k 6=0

(
c2k −

1

2kπ
ck

)
. (15)

Therefore
∂J

∂ck
= ck −

1

4kπ
k = −n, . . . ,−1, 1, . . . , n,

setting the derivative of J with respect to ck, equal to zero we obtain ck = 1
4kπ .

Hence, the extremal function is

ẋ(t) ' 1

4
+

n∑
k=−n,k 6=0

1

4kπ
(cos 2kπt+ sin 2kπt) ,

and

x(t) ' 1

4
t+

n∑
k=−n,k 6=0

1

8k2π2
(1 + sin 2kπt− cos 2kπt)

=
1

4
t+

1

8π2

n∑
k=−n,k 6=0

1

k2
+

1

8π2

n∑
k=−n,k 6=0

sin 2kπt

k2
− 1

8π2

n∑
k=−n,k 6=0

cos 2kπt

k2
.

But
∑n
k=−n,k 6=0

sin 2kπt
k2 = 0, thus

x(t) ' 1

4
t+

1

4π2

n∑
k=1

1

k2
− 1

4π2

n∑
k=1

cos 2kπt

k2
.

Now noting that
∑∞
k=1

1
k2 = π2

6 and
∑∞
k=1

cos 2kπt
k2 = π2

6 − π
2t(1− t), therefore

lim
n→∞

x(t) =
1

4
t+

1

4
t(1− t) = 1

2
t− 1

4
t2,

which is the exact solution of the problem.
Example 2. In this example we use the Hartley series to a heat conduction
problem. Consider the extermization of [6, 7]

J =

∫ 1

0

[
1

2
ẏ2 − yg(x)

]
dx =

∫ 1

0

F [x, y, ẏ]dx (16)

where g(x) is a known function satisfying
∫ 1

0
g(x)dx = 0, with the boundary con-

ditions
y(0) = 0, ẏ(0) = ẏ(1) = 0. (17)

Consider the case where g(x) is given by

g(x) =

{
−1, 0 ≤ x < 1

4 ,
1
2 ≤ x < 1,

3, 1
4 ≤ x <

1
2 .

(18)
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Note that the exact solution is

yexact(x) =


1
2x

2, 0 ≤ x ≤ 1
4 ,

− 3
2x

2 + x− 1
8 ,

1
4 ≤ x ≤

1
2 ,

1
2x

2 − x+ 3
8 ,

1
2 ≤ x ≤ 1.

(19)

To solve this problem using Hartley series let

u(x) = y(x)− xy(1), (20)

thus using (17) we have u(0) = u(1) = 0. Now suppose

u̇(x) ' CTT (x), where CT = [c−n, . . . , c−1, c0, c1, . . . , cn], (21)

integration both sides of (21) and using (8), we obtain

u(x) ' CTPT (x) + u(0), (22)

we can expanded g(x) in Hartley series as

g(x) ' βTT (x), βi =

∫ 1

0

g(x)Ti(x)dx i = −n, . . . , n. (23)

Using (20) and suppose y(1) = y1, we can write (16) as

J =
1

2

∫ 1

0

u̇2dx+ y1

∫ 1

0

u̇dx+
1

2
y21 −

∫ 1

0

ug(x)dx+
1

8
y1.

Employing (21) and (23) we get

J ' 1

2
CTHC + y1C

Tα− CTPHβ +
1

2
y21 +

1

8
y1, (24)

where α =
∫ 1

0
T (x)dx. Now using (5) in (24) we have

J ' 1

2
CTC + y1C

Tα− CTPβ +
1

2
y21 +

1

8
y1. (25)

The boundary conditions (17) can be expressed in terms of Hartley series as

CTT (0) + y1 = 0, CTT (1) + y1 = 0. (26)

We now minimize (25) subject to (26) using the Lagrange multiplier technique.
Suppose

J? = J + λ1(C
TT (0) + y1) + λ2(C

TT (1) + y1), (27)
where λ1 and λ2 are the two multipliers. Differentiating (27) with respect to C
and setting the partial derivative equal to zero, we obtain

C + y1α−Pβ + λ1T (0) + λ2T (1) = 0. (28)

Equations (26) and (28) define a set of (2n + 4) linear algebraic equations from
which the coefficient vector C and the multipliers λ1 and λ2 and value of y1 can
be found. Using this method with n = 10 and n = 12, the approximate solution
is calculated and the absolute errors |y − yexact| are plotted in figures 1 and 2
respectively.
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Figure 1: Plot of the absolute error with n = 10 for example 2.
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Figure 2: Plot of the absolute error with n = 12 for example 2.



30 A. Saadatmandi

4. Conclusion

This paper described an efficient method for solving variational problem. The
Hartley series operational matrix P, together with the integration of the product of
two cas vectors, are used to solve the variational problem. Our approach reduces a
variational problem into a set of algebraic equations. The obtained results showed
that this approach can solve the problem effectively.
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