Mathematics Interdisciplinary Research 2 (2017) 71 — 84

Ordered S-Metric Spaces and Coupled Common
Fixed Point Theorems of Integral Type

Contraction

Abdolsattar Gholidahneh, Shaban Sedghi, Tatjana Dosenovic¢

and Stojan Radenovi¢ *

Abstract

In the present paper, we introduce the notion of integral type contractive
mapping with respect to ordered S-metric space and prove some coupled
common fixed point results of integral type contractive mapping in ordered
S-metric space. Moreover, we give an example to support our main result.
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1. Introduction

Banach contraction principle [4], is one of the most celebrated fixed point theorem
and has been generalized in various directions. Fixed point problems for contrac-
tive mappings in metric spaces with a partial order have been studied by many
authors (see [1,3,5,8,12,13,17,19]). The study of metric spaces has attracted, and
continued to attract the interest of many authors. There are many generalizations
of metric spaces, such as 2-metric spaces [11], G-metric spaces [20], D*-metric
spaces [24], partial metric spaces [6], cone metric spaces [15], S-metric spaces [22],
b-metric spaces [9] and Gp-metric spaces [2]. In 2012, Sedghi et al. [22] introduced
the notion of S-metric space.
First we recall some notions, results and examples which will be useful later.
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Definition 1.1. [22| Let X be a nonempty set. An S-metric on X is a function
S : X3 — [0,00) that satisfies the following conditions for all x,y,z,a € X:

(S1) 0 < S(z,y,2) for all x,y,z € X with x #y # z;

(52) S(z,y,2) =0 ifx =y =z

(S3) S(x,y,z) < S(z,x,a)+ S(y,y,a) + S(z,2,a) for all x,y,z,a € X.
The pair (X, S) is called an S-metric space.

Example 1.2. [22] Let X = R? and d be an ordinary metric on X. Put S(x,y,2) =
d(z,y) +d(x,2) +d(y,2) for all x,y,z € R?, that is, S is the perimeter of the tri-
angle given by x,y,z. Then S is an S-metric on X.

Lemma 1.3. [21] In an S-metric space, we have S(z,z,y) = S(y,y, ).
Definition 1.4. [23] Let (X,S) be an S-metric space and A C X.

(1) If for every x € X there exists r > 0 such that Bg(x,r) C A, then the subset
A is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists v > 0 such that
S(x,x,y) <r forall z,y € A.

(3) A sequence {x,} in X converges to x if and only if S(xpn,xn,z) — 0 as
n — oo. That s, for each € > 0, there exists ng € N such that for each

n > ng, S(n, Ty, x) < & and we denote by lim x, = x.
n—oo

(4) A sequence {x,} in X is called a Cauchy sequence if for each € > 0, there
exists ng € N such that for each n,m > ng, S(Tpn,Tn, Tm) < €.

(5) The S-metric space (X, S) is said to be complete if every Cauchy sequence
18 convergent.

(6) Let T be the set of all A C X with x € A if and only if there exists r > 0
such that Bs(xz,r) C A. Then 7 is a topology on X.

Lemma 1.5. [23] Let (X,S) be an S-metric space. If there exist sequences

{zn}, {yn} such that lim z, = z and lim y, =y, then lm S(x,,z,,yn) =
n—>oo n—ro0o n—ro0

Sz, z,y).

Lemma 1.6. [10]/ Let (X, S) be an S-metric space. Then
S(x,x,2) <25, z,y) + Sy, 9, 2),
and

S(z,x,z) <25(z,z,y) + S(z,2,y),
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for all z,y,z € X.

Definition 1.7. [14] Let (X, <) be partially ordered set. Then a,b € X are called
comparable if a X b or b < a holds.

Definition 1.8. Let X be a nonempty set. Then (X, S, <) is called an ordered
S-metric space if:

(1) (X,S) is an S-metric space,
(2) (X, =) is a partially ordered set.

Definition 1.9. (X, S, X) is said to be regular if it has the following properties:
(i) if for a non-decreasing sequence {x,}, =, —° x as n — oo, then x, <
for all n;
(ii) if for a non-increasing sequence {x,}, T, —° x, as n — oo, then x,, =
for all n.

Definition 1.10. [5] Let (X, <) be partially ordered set and H : X x X — X.
The mapping H is said to has the mixed monotone property if H is monotone
nondecreasing in its first argument and is monotone monincreasing in its second
argument, i.e., for any a,b € X,

ai,ax € X, ay = az = H(ay,b) = H(a,b),
bi,bs € X, by jb2:>H(a,b1) iH(a,bg).

Definition 1.11. [7] Let (X, <) be partially ordered set and suppose H : X X
X - X and g : X — X. The mapping H is said to has the mized g-monotone
property if H is monotone g-nondecreasing in its first argument and is monotone
g-nonincreasing in its second argument, i.e., for any a,b € X,

ar,a2 € X, g(ar) = g(az) = H(a1,b) = H(az,b),
bhbz S X, g(bl) < g(bz) = H(a,bl) - H(a,bg),

Definition 1.12. [5] An element (a,b) € X x X is called a coupled coincidence
point of the mappings FF : X x X — X and g : X — X if F(a,b) = ga and
F(bya) = gb, and their common coupled fized point if F(a,b) = ga = a and
F(b,a) = gb=b.

Definition 1.13. [17] Let X be a nonempty set. Then we say that the mappings
F:XxX— X andg: X — X are commutative if gF(a,b) = F(ga, gb).

Definition 1.14. [17] An element (a,b) € X x X is called a coupled fized point
of mapping F: X x X — X if F(a,b) = a and F(b,a) =b.

Definition 1.15. Let (X,S) and (X',S’) be two S-metric spaces, and let f :
(X,5) = (X',5") be a function. Then f is said to be continuous at a point
a € X if and only if for every sequence x, in X, S(xp,xn,a) — 0 implies
S'(f(xn), f(zn), f(a)) = 0. A function [ is continuous at X if and only if it
s continuous at all a € X.
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Definition 1.16. [16] Let X, Y C (—o0,+00). The function ¢ : X =Y is called
sub-additive integrable function if and only if for all c,d € X,

/Oc+d e(t)dt < /OC p(t)dt + /Od o(t)dt.

Example 1.17. [16] Let X = (0,00), d(z,y) = |z — y|, and o(t) = H% for all
t > 0. Then for all c¢,d € X,

c+d di d dt
d+1), [ -2 ), [ % —md+1
/0 Fr1 meter / nlet ), |y ~ld+ L),

since cd > 0, then c+d+1<c+d+1+4+cd= (c+1)(d+1). Therefore,
In(c+d+1) <In((c+1)(d+1)) =In(c+1) +In(d+ 1).

So, we show that ¢ is sub-additive integrable function.

Example 1.18. Let X = (1,00), and ¢o(t) = e'. Then the function ¢ is not
sub-additive integrable function.

Lemma 1.19. [18] Let {r, }nen be a non-negative sequence such that lim r, = a.

n—oo
Then

Tn

lim p(t)dt = /Oa o(t) dt,

n—oo 0

where ¢ : [0, +00) — [0, +oo] is Lebesgue integrable, summable on each compact
subset of [0, +00) and fo @(t)dt > 0 for each € > 0.

Lemma 1.20. [18/ Let {r,}nen be a non-negative sequence. Then

Tn

lim p(t)dt =0,

n—oo 0

if and only if lim rn, = 0, where ¢ : [0,4+00) — [0, +oo] is Lebesgue integrable,

summable on each compact subset of [0, +00) and [; ¢(t)dt > 0 for each € > 0.

2. Results

Theorem 2.1. Let (X, 5, <) be an ordered S-metric space. Let H : X x X — X
and g : X — X be mappings such that H has the mixed g-monotone property on
X and there exist two elements ag,by € X with g(ag) =< H(ag,by) and g(by) =
H(bo,ao). Let there exists a constant k € (0, 3) such that the following holds:

p(t)dt < k

S(H(a,b),H(p,q),H(c,r))
/ Pt ()

/[S(ga,gpm)+S(gb7gq,g7')]

0 0
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for a,b,¢,p,q,7 € X with ga = gp > gc and gb = gq = gr or ga = gp = gc and
gb = gq »= gr, where ¢ : [0,00) — [0, 00) is a Lebesgue integrable mapping which is
summable, non-negative, sub-additive integrable function and such that for each
€ >0, fOE o(t)dt > 0. Assume the following conditions:

Then H and g have a coupled coincidence point (a,b). If ga = gb or ga < gb,
then g(a) = H(a,a) = a.

Proof. Let ag, by be two points such that g(ag) < H(ag,bo) and g(bo) *= H (bg, ap).
As H(X x X) C g(X), we may choose a1, by in a way that g(a;) = H(ag, bo) and
g(b1) = H(bo, ao).

Again since H(X x X) C g(X), we may choose as, by € X such that g(az) =
H(ay,b1) and g(bs) = H(by,a1). Repeating this process, we can build two se-
quences {a,} and {b,} in X such that,

g(an+1) = H(an7 bn) and g(bn-‘rl) = H(bna an)a for all n > 0. (2)

Now, we claim that for all n > 0,

g(an) = g(antr), (3)

and
9(bn) = g(bnt1). (4)
Now we will use mathematical induction. Suppose that n = 0. Since g(ag) =

H(ag,by) and g(by) »= H(bo,an), we see that g(a1) = H(ag,bg) and g(by) =
H (bg,ap), and so g(ap) = g(a1) and g(bg) > g(b1), i.e., (3) and (4) hold for n = 0.
We now suppose that (3) and (4) are valid for some n > 0. As we know that H
has mixed g-monotone property and also g(a,) = g(ant1), 9(bn) = g(bn+1), then
from (2), we have

g(an+1) = H(an»bn) j H(an+17bn)

and

H(bn-‘rla an) = H(bna an) = g(bn+1)

Also we have,

g(an+2) = H(an+1»bn+1) t H(an+1»bn)
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and
H(bny1,an) = H(bpy1,ang1) = g(bny2).

Then from (2) and (3), we get

9(any1) 2 glansz2) and g(bni1) = g(bnia).

We conclude by mathematical induction that (3) and (4) hold for all n > 0.
Continuing this process, we see clearly that

glag) 2 glar) 2 glaz) = ... X g(anyt1)...

and

g(bo) = g(b1) = g(b2) = ... = g(bns1)....

If (ant1,bn+1) = (an,by), then H and g have a coupled coincidence point. So
we suppose that (ap41,bn41) # (an, by) for all n > 0, i.e., we suppose that either

9(ant1) = H(an,by) # glan) or g(bpy1) = H(bn, an) # g(bn).
Next, we proves that, for all n > 0,

S(gan+1,9an+1,9an) 1 [S(ga1,9a1,9a0)+S(gb1,9b1,9b0)]
/ ooyt < (20" [ ot (5)
0 2 0
For n = 1, we have
S(gaz,9a2,9a1) S(H (a1,b1),H (a1,b1),H (ao0,bo))
/ ot = | p(t)dt
0 0
[S(ga1,9a1,9a0)+S(gb1,9b1,9b0)]
< k/ o(t)dt
0
1 [S(ga1,9a1,9a0)+S(gb1,9b1,9b0)]
— sen | plt)i,
0

and hence (5) holds for n = 1. Therefore, we assume that (5) holds for n > 0.
Since g(an+1) = g(an) and g(bp41) = g(by), by using (2) and (5), we have

p(t)dt

S(9an+1,9an+1,9an)
/ o(t)dt =

/S(H(an,bn),H(an,bn),H(an1,bn1))

0 0

IN

o(t)dt.
(6)

/[S(Qan 19 ,gan —1)+S(gbn ,gbn ,gbn_1)]

0

Now,
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S(9an,gan,gan—1) S(H(an—1,bn-1),H(an—-1,bn—1),H(an_2,bn_2))
/ p(t)dt = / e(t)dt
0 0

< k p(t)dt,

(7)

/[S(gan—lvg"’n—l7gaw,—2)+s(gbn—l 791’71,—179571,—2)]
0

and

S(gbn :9bn,gbn—1) S(H(bn—1,an-1),H(bn-1,an—1),H(bn—2,an—2))
i ot = | o(t)dt
0 0

/[S(gbnl agbnfl7gbn72)+s(gan71790171,71 ;gan72)]

< k o(t)dt.

(8)

0

Combining (7) and (8), we get that

S(gan,9an,gan—1) S(gbn,gbn,gbn—1)
/ go(t)dt + / o(t)dt
0 0

[S(9an—1,9an-1,90n—2)+5S(gbn—1,9bn—1,9bn—2)]
< 2]45/ gﬁ(t)dt
0

holds for n € N. From (6), we have

S(9an4+1:9an41,9an) [S(gan,gan,gan—1)+S(gbn,gbn,g9bn—1)]
/ eyt < k[ p(t)dt
0 0
9 [S(9an—1,9an—1,90n—2)+S(gbn—1,9bn—1,9bn_2)]
< 2k / p(t)dt
0
1 [S(g9a1,9a1,9a0)+S(gb1,9b1,9b0)]
< sew [ p(t)dt.
2 0
Hence for all n € N, we have
S(9an+1,9an+1,9an) 1 [S(gai,ga1,9a0)+S(gb1,gb1,9b0)]
/ ooyt < 5 edt. (9)
0 0

Suppose m,n € N, with m > n. First, let m = 2p 4+ 1, (9) and condition that
 is sub-additive integrable function, we have
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S(9am,9am,9an)
/ p(t)dt <
0 0

S(gam—1,90m—1,90m—2)
+ (1))

S(gam,gam,gam—1)
+ / p(t)dt
i=

/S(gan+1 190n41,90n)

DO
—~

Q(t)dt + - - -

IN

2k; 2k m=1y

(gai,g9a1,9a0)+S(gb1,9b1,9b0)]
X / p(t)dt
0
< A2 Semr
[S(gal7901-,gao)'*'s(gbhgbl,gbo)]
« / o(t)dt.

Further, let m = 2p. Again, using (S3), (9) and condition that ¢ is sub-additive
integrable function, we obtain

S(gam,gam,gan) S(g9an+1,9an+1,9an)
/ o)dt < 2(/ o)t + - -
0

0
S(gar,n,gam,gam,l)
v o(t)dt)
0
m—1 ~ rlS(ga1,ga1,9a0)+S(gb1,9b1,9b0)]
< e/ o(t)dt
i=n 0
2k)™ [S(ga1,9a1,9a0)+S(gb1,9b1,9b0)]
< 1(_)%/ o(t)dt.

Letting n, m — oco. Since 2k < 1, using Lemma 1.20 we conclude that

ool S(gam, gam, gan) = 0.

Thus {ga,} is Cauchy sequence in g(X). Similarly, we can show that {gb,} is
Cauchy sequence in g(X). Since g(X) is complete, we have {ga, } and {gb,} are
convergent to some a € X and b € X respectively. Since g is continuous, we have
{g(ga,)} is convergent to ga and {g(gb,)} is convergent to gb, that is,

lim g(g(an)) = g(a) and  lim g(g(bn)) = g(b).
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Since, H and g are commutative, we have

H(g(an)vg(bn)) = g(H(anv bn)) = g(g(an-i-l))

and

H(g(bn), g(an)) = g(H(bn,an)) = g(g(bn+1))-

Next, we claim that (a,b) is coupled coincidence point of H and g.
From (1) we have

S(H(a7b)7H(a)b)7ggan+l) S(H(avb)7H(a7b))H(.qan7gbn)
/ ot = [ p(b)dt
0

[‘S (gavga1ggan) S (gbvgbvggbn )]
k /
0

0

< p(t)dt.

Letting n — oo and also g is continuous, we get

p(t)dt <k

S(H(a,b),H(a,b),ga)
/ (t)dt = 0.

/[S(ga’ga’gaHS(gb,gb’gb)}

0 0

Hence ga = H(a,b). Similarly, we can show that gb = H(b, a).

Next we claim that H(a,a) = g(a) = a. Since (a,b) is a coupled coincidence
point of H and g, we have ga = H(a,b) and gb = H(b,a). Suppose that ga # gb.
Then from (1), we have

S(gb,gb,ga) S(H(b,a),H (b,a),H (a,b))
/ o = | o(t)dt
0 0

[S(gb,gb,ga)+5(ga,ga,gb)]
< k/ o(t)dt.
0
Also,
S(ga,ga,gb) S(H(a,b),H(a,b),H(b,a))
/ ot = | o
0 0
[S(ga,ga,gb)+S(gb,gb,ga)]
< k/ p(t)dt.
0
Therefore,
S(gb,gb,ga) S(ga.ga,gb) [S(gb,gb,ga)+S(ga,ga,gb)]
/ o)t + / o()dt < 2k / o(t)dt.
0 0 0

Since 2k < 1, we get

S(gb,gb,ga) S(ga,ga,gb) S(gb,gb,ga) S(ga,ga,gb)
/ o(t)dt + / o(t)dt < / o(t)dt + / o(t)dt,
0 0 0 0

which is contradiction. Hence ga = gb and
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H(a,b) = ga = gb= H(b,a).

Since {gan+1} is a subsequence of {ga, }, we have {ga,y1} is convergent to a.
Thus,

S(ga,ga,gan+1) S(H(a,b),H(a,b),H (an,by))
/ ot = [ o(t)dt
0

[‘S (ga1ga1gan) S(gbagbvgbn)]
k /
0

< p(t)dt.

Letting n — oo and also g is continuous, we get
S(ga,ga,a) [S(ga,9a,a)+5S(gb,gb,b)]
/ p(t)dt < k/ o(t)dt.
0 0

Similarly, we can show that

S(gb,gb,b) [S(gb,gb,b)+S(ga,9a,a)]
/ o(t)dt < k / o(t)dt.
0 0
Thus
S(ga,ga,a) S(gb,gb,b) [S(ga,ga,a)+S(gb,gb,b)]
/ o()dt + / o()dt < 2k / o(t)dt.
0 0

0

Since 2k < 1, the last inequality happens only if S(ga, ga,a) = 0 and S(gb, gb, b)
= 0. Hence a = ga and b = gb. Thus we get ga = H(a,a) = a. O

Corollary 2.2. Let (X, S, <) be an ordered S-metric space. Let H : X x X — X
and g : X — X be mappings such that H has the mixed g-monotone property on
X and there exist two elements ag,by € X with g(ag) = H(ag,bo) and g(by) =
H(bo, ag). Let there exists a constant k € (0, 3) such that the following holds:

S(H(p,q),H(p,q),H(a,b)) [S(gp,gp,9¢)+S(94,99,97)]
/ o<t [ p(t)dt
0 0

for a,b,p,q € X with ga = gp and gb < gq or ga =X gp and gb > gq, where
© : [0,00) — [0,00) is a Lebesgue integrable mapping which is summable, non-
negative, sub-additive integrable function and such that for each € > 0, fOE o(t)dt >
0. Assume the following conditions:

(i) H(X x X) € g(X),

(ii) g is continuous and commutes with H,
)
)

(iii) ¢g(X) is complete,

(iv) (X, S, =) is regular.
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Then there exists a € X such that ga = H(a,a) = a.
Proof. From Theorem 2.1 by taking a = p and b = q. O
Corollary 2.3. Let (X, S, <) be an ordered S-metric space. Let H : X x X — X
be mapping such that H has the mixed monotone property on X and there exist

two elements ag, by € X with ag < H(ag,bo) and by = H(bg,ag). Let there exists
a constant k € (0, %) such that the following holds:

S(H(p,q),H(p,q),H(a,b)) [S(p,p,a)+S(q,q,b)]
/ o<t [ (0t
0 0

fora,b,p,q € X witha > pand b < gora < pand b = ¢, where ¢ : [0,00) — [0, 0)
is a Lebesgue integrable mapping which is summable, non-negative, sub-additive
integrable function and such that for each ¢ > 0, foe p(t)dt > 0. If (X,S,=) is
regular then there exists @ € X such that H(a,a) = a.

Proof. We defined g : X — X by ga = a. Then the mappings H and g satisfy all
the conditions of Corollary 2.2. Hence the result follows. O

Corollary 2.4. Let (X, S, <) be an ordered S-metric space. Let H : X x X — X
and g : X — X be mappings such that H has the mixed g-monotone property on
X and there exist two elements ag,by € X with g(ag) =< H(ag,bo) and g(by) =
H(bo, ag). Let there exists a constant k € (0, 3) such that the following holds:

S(H(p,q), H(p,q),H(a,b)) < k[S(gp, gp, ga) + S(94, 94, gb)]

for a,b,p,q € X with ga = gp and gb < gq or ga < gp and gb = gq. Assume the
following conditions:

(a) H(X x X) C g(X),
(b) g(X) is complete,
(c) g is continuous and commutes with H,
(d) (X, S, =) is regular.
Then there exists a € X such that H(a,a) = ga = a.

Proof. Put ¢(t) = 1 for all t € [0,00), the result follows. Moreover, we get a
generalization of theorem given in [5]. O

Corollary 2.5. Let (X, S, =) be a complete ordered S-metric space. Let H :
X x X — X be mapping has the mixed monotone property on X and there exist
two elements ag, byp € X with ag < H(ag,bo) and by = H(bg,ag). Let there exists
a constant k € (0, ) such that the following holds:

S(H(p,q), H(p,q), H(a,b)) < k[S(p,p,a) + S(q,q,b)]

for a,b,p,q € X witha > pand b=<gora=<pandb>q. If (XS5, =) is regular,
then there exists a € X such that H(a,a) = a.
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Proof. Let g : X — X be defined as g(a) = a. Then all conditions of Corollary
2.4 are satisfied. O

Example 2.6. Suppose X = [0,1] be ordered by the following relation a < b if
and only if a < b. Let the metric S be defined by

S(a,b,c) =|b+c—2al+ |b—¢|.

Then clearly, (X,S,=) is a complete ordered S-metric space. Let g : X — X and
H: X x X — X be defined by

a+b
20 °

ga:% and H(a,b) =

Let o(t) = et. Then by (1), we have

p(t)dt =

S(H(a,b),H(p,q),H(c,r))
/ p(t)dt

/\H(p,Q)+H<cm)—2H(a,b)\+\H(p,f1)—H(cm)\
0

2(a+b
p+q+c+r (0+ )‘Herq c;gr‘

/0 o(t)dt

2 2
‘p+c aH_‘q-f—r b|+

20 |
</ plt)dt
0
5 (lgp+gc—2gal+|ga+gr—2gb|+|gp—gel+Iga—gr|)
-/ plt)at
0
5 (S(ga.gp,gc)+S(gb,gq,97))
-/ plo)at
0
1 S(ga,gp,gc)+S(gb,gq,97)
< 10 p(t)dt.

Hence for k = m, all the conditions of Theorem 2.1 are satisfied. Therefore there
exists a € X such that H (a,a) = g (a) = a. In this example we have that a = 0.
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