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Abstract

In this paper, we first present some properties of lower and upper central
series of pair of groups. Then the notion of n-isoclinism for the classification
of pairs of groups is introduced, and some of the structural properties of the
created classes are proved. Moreover some interesting theorems such as Baer
Theorem, Bioch Theorem, Hirsh Theorem for pair of groups are generalized.
Finally, it is shown that each n-isoclinism family of pairs contains a quotient
irreducible pair.

Keywords: n-Isoclinism, pair of groups, quotient irreducible pair, π-groups.

2010 Mathematics Subject Classification: 20D20, 20E34.

How to cite this article
A. Kaheni, S. Kayvanfar, Some structural properties of upper and lower
central series of pairs of groups, Math. Interdisc. Res. 3 (2018) 99-108.

1. Introduction and Motivation

It is a well known fact that classification of groups according to the isomorphism
property leads to the small classes which is not necessarily applicable for the study
of all groups. For this reason, P. Hall [4] introduced the notion of isoclinism for the
classification of groups of prime power order. In fact, the notion of isoclinism is an
equivalence relation on the class of all groups, which is weaker than isomorphism.
Therefore, it causes to provide bigger classes which makes better or sometimes
easier conditions to classify some kinds of groups. A generalization of isoclinism,
that is n-isoclinism of groups, is implicit in a short note of P. Hall [5] on verbal
and marginal subgroup. Later Hekster [6] introduced and generalized some notions
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related to n-isoclinism, such as n-stem groups, and also proved some properties
concerning the internal structure of the families given by n-isoclinism.

On the other hand, pairs of groups as a tool for simultaneous study of a group
and its subgroup, have been verified by many authors during these recent two
decades. By a pair of groups, we mean a group G and a normal subgroup N and
this notion is denoted by (G,N). For instance, Ellis introduced the Schur multi-
plier [3] and also capability [2] for a pair of groups and turned out some of their
properties. Also a work of Salemkar, Moghaddam and Chitti [8] demonstrated
some more properties of the Schur multiplier of a pair, as well as a recent work of
Pourmirzaei, Hokmabadi and the last author [9] has given a criterion for character-
izing the capability of a pair and also a complete classification of finitely generated
abelian capable pairs.

Now, interesting in the study of pairs of groups motivates us to verify more
properties of the pairs. But one of the strongest tools for the verification of each
family or property of groups, is the study of classifications’ tools, as a basic and
fundamental notion. With this in mind, we intend to introduce the notion of n-
isoclinism for pairs of groups and some other notions related to this concept. Then
we will list some of the structural properties created by this type of classification.
But before that, some properties of lower and upper central series of a pair will be
listed. Accordingly this article actually extends some results of [10], generalizes
[6] somehow, and so is a wide generalization of the basic concept of [4].

In this article all the notations are standard. For a group G and elements
x, y ∈ G, the commutator of x and y is defined to be x−1y−1xy and is denoted by
[x, y]. A commutator of weight n+ 1 is defined recursively by [x1, . . . , xn, xn+1] =
[[x1, . . . , xn], xn+1], as a left normed commutator and considering the convention
[x1] = x1. Also if N is a normal subgroup of G, then the subgroup

< [n, g]|n ∈ N, g ∈ G >

of G is denoted by [N,G].

2. The Upper and Lower Central Series
Let (G,N) be a pair of groups. The center of a pair (G,N) is defined to be the
subgroup

Z(G,N) = {n ∈ N |ng = n, ∀g ∈ G},

in which ng = g−1ng denotes the conjugate of n by g. The upper central series for
the pair (G,N) is the series

1 = Z0(G,N) ⊆ Z1(G,N) = Z(G,N) ⊆ Z2(G,N) ⊆ . . . ,

in which each term defined by
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Zn+1(G,N)
Zn(G,N) = Z( G

Zn(G,N) ,
N

Zn(G,N) ).

One should note that Zn(G,N) is not necessarily a characteristic subgroup of N.
A counterexample to this note is when we take G as the dihedral group of order
8 and N to be the Klein 4-group as the subgroup of G. The lower central series
is defined as follows. First define γ1(G,N) = N. Assume that γi(G,N) is defined
inductively for i ≥ 1. Then γi+1(G,N) is defined as the subgroup [γi(G,N), G].
Therefore we obtain the series

N = γ1(G,N) ⊇ γ2(G,N) ⊇ . . .

which is called the lower central series of (G,N). Also we say that (G,N) is nilpo-
tent of class i, if γi+1(G,N) = 1 and γi(G,N) 6= 1. It is easy to see that
γn(G,N)/γn+1(G,N) lies in the center of (G/γn+1(G,N), N/γn+1(G,N)). Also
the above given example which shows Zn(G,N) is not necessarily a characteris-
tic subgroup of N, simultaneously proves that γn(G,N) is not necessarily a fully
invariant subgroup of N, since Z1(G,N) = γ2(G,N) = Z(G).

Theorem 2.1. (Generalized Hirsh Theorem) Let (G,N) be a pair of groups
and M EG. If M ∩ Z(G,N) = 1, then M ∩ Zn(G,N) = 1, for all n ≥ 1.

Proof. The proof is done by induction on n. If x ∈ M ∩ Zn+1(G,N) and g ∈ G,
then [g, x] ∈ M ∩ Zn(G,N), which induction hypothesis implies that [g, x] = 1.
That is x ∈M ∩ Z(G,N). It proves the theorem.

Theorem 2.2. Let (G,N) be a pair of groups and H ≤ G such that G =
HZn(G,N). Then

(i) γn+1(G,N) = γn+1(H,H ∩N),

(ii) Zn(H,H ∩N) = H ∩ Zn(G,N),

(iii) γn+1(G,N) ∩ Zn(G,N) = γn+1(H,H ∩N) ∩ Zn(H,H ∩N).

Proof. Since the subgroup Zn(G,N) = Zn(G) ∩N is marginal in G, therefore (i)
holds. Parts (ii) and (iii) are straightforward.

The following theorem is a wide generalization of a well-known theorem of
Gaschütz to pairs of groups.

Theorem 2.3. (Generalized Gaschütz Theorem) Let (G,N) be a pair of
groups. Then for all n ≥ 0 we have:

γn+1(G,N) ∩ Zn(G,N) ⊆ Φ(G) ∩N.

Proof. By [6, Proposition 2.6] we know that γn+1(G) ∩ Zn(G) ⊆ Φ(G). Since
γn+1(G,N) ∩ Zn(G,N) ⊆ γn+1(G) ∩ Zn(G), then the result follows.

Theorem 2.4. (Generalized Baer Theorem) Let (G,N) be a pair of groups
and n ≥ 0. If G

Zn(G,N) is finite, then γn+1(G,N) is finite.
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Proof. Since Zn(G,N) = Zn(G) ∩ N, then [G,Zn(G)] is finite. Thus from Baer
Theorem [6, Theorem 2.7] we conclude that γn+1(G) is finite. Now the fact that
γn+1(G,N) ⊆ γn+1(G) proves the statement.

The next corollary is attained similar to [6, Corollary 2.8] and will be also
proved analogously.

Corollary 2.5. Let (G,N) be a pair of groups and n ≥ 1. If G
Zn(G,N) is finite,

then γn( G
Z(G,N) ,

N
Z(G,N) ) is finite.

Lemma 2.6. Let (G,N) be a pair of groups and M be a normal subgroup of G
such that M ∩ γn+1(G,N) = 1, n ≥ 1. Then the following properties hold:

(i) M ∩ γn+1−i(G,N) ⊆ Zi(G,N) for all i, 0 ≤ i ≤ n,

(ii) M ∩N ⊆ Zn(G,N) and Zn( GM , MN
M ) = Zn(G,N)

M .

Proof. The proof is done similar to [6, Lemma 2.5].

Theorem 2.7. Let (G,N) be a pair of groups and M EG. If [M,G] ⊆ Zn(G,N),
then [γn+1(G,N),M ] = 1. In particular [γn+1(G,N), Zn+1(G,N)] = 1.

Proof. We know that [M,G] ⊆ Zn(G,N) ⊆ Zn(G). Then by [7, Proposition 2.3]
we have [γn+1(G),M ] = 1. But [γn+1(G,N),M ] ⊆ [γn+1(G),M ], which shows the
assertion holds.

3. n-Isoclinic Pairs of Groups

The notion of isoclinism of groups was generalized to pairs of groups in [10]. That
definition can be easily stated for homoclinism and even in the general form, n-
homoclinism as follows.

Definition 3.1. An n-homoclinism from (G1, N1) to (G2, N2) is a pair of homo-
morphisms (α, β) where α : G1

Zn(G1,N1) −→
G2

Zn(G2,N2) and β : γn+1(G1, N1) −→
γn+1(G2, N2) such that α( N1

Zn(G1,N1) ) = N2

Zn(G2,N2) and α induces β in the follow-
ing sense: if n1 ∈ N1 and g1i

∈ G1 for i = 1, 2, . . . , n, then β([n1, g11
, . . . , g1n

]) =
[n2, g21 , . . . , g2n ], in which n2 ∈ α(n1Zn(G1, N1)) and g2i ∈ α(g1iZn(G1, N1)).

Now one can easily see that if normal subgroups coincide with the groups,
then the notion of n-homoclinism between two pairs is the usual notion of n-
homoclinism between two groups which was introduced in [6]. Therefore the in-
troduced notion is a wide generalization of homomorphism. Also let (α, β) be
an n-homoclinism from (G1, N1) to (G2, N2). Thus α induces β. One can easily
see that β inherit some properties from α and vice versa. For example if α is
surjective, then β is surjective, or if β is injective, then α is injective too.
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Definition 3.2. Let (α, β) be an n-homoclinism from (G1, N1) to (G2, N2). We
say that (G1, N1) and (G2, N2) are n-isoclinic, if α and β are isomorphisms. In
this case we write (G1, N1) ∼n (G2, N2), and we say that the pair (α, β) is an n-
isoclinism between (G1, N1) and (G2, N2). Moreover when n = 1, for the sake of
simplicity we say that these pairs are isoclinic and (α, β) is an isoclinism between
(G1, N1) and (G2, N2).

Corollary 3.3. Let (α, β) be an n-homoclinism from (G1, N1) to (G2, N2). Then
(α, β) is an n-isoclinism between (G1, N1) and (G2, N2) if and only if α is surjective
and β is injective.

Let (α, β) be an n-isoclinism between (G1, N1) and (G2, N2). Since α is iso-
morphism and α(Zn+1(G1,N1)

Zn(G1,N1) ) = Zn+1(G2,N2)
Zn(G2,N2) , then α induces isomorphism

ᾱ : G1

Zn+1(G1,N1) −→
G2

Zn+1(G2,N2) . Now let β̄ = β |γn+2(G1,N1) . It is clear that (ᾱ, β̄)

is an (n+1)-isoclinism between (G1, N1) and (G2, N2). Therefore each n-isoclinism
induces an (n+ 1)-isoclinism. Hence the notion of n-isoclinism provides an equiv-
alence relation on the set of all pairs of groups, which becomes more and more
weak as n increases.

In the remainder of this section, we give some structural results in n-isoclinism
families. These structural properties provide some interesting conclusions. For
instance, let, for two pairs (G1, N1) and (G2, N2), there exist isomorphisms
α : G1

Zn(G1,N1) −→
G2

Zn(G2,N2) and β : γn+1(G1, N1) −→ γn+1(G2, N2) such that
α( N1

Zn(G1,N1) ) = N2

Zn(G2,N2) . We know that if α does not induce β, then we can
not deduce that these pairs are not n-isoclinic. In this situation, using a direct
method for proving the non n-isoclinism of pairs may not be always logically,
whereas applying some of the structural statements helps us to attain the claim.

Lemma 3.4. Let (α, β) be an n-isoclinism between (G1, N1) and (G2, N2). Then
the following hold:

(i) α(xZn(G1, N1)) = β(x)Zn(G2, N2), for every x ∈ γn+1(G1, N1),

(ii) β is an operator-isomorphism in the following sense: if g1 ∈ G1, then
β(xg1) = β(x)

g2 in which g2 ∈ α(g1Zn(G1, N1)),

(iii) if Zn(G1, N1) ⊆ H1 ⊂ G1 and α( H1

Zn(G1,N1) ) = H2

Zn(G2,N2) , then (H1, H1 ∩
N1) ∼n (H2, H2 ∩N2),

(iv) if M1 is a normal subgroup of G1 such that M1 ⊆ γn+1(G1, N1), then
( G1

M1
, N1

M1
) ∼n ( G2

β(M1) ,
N2

β(M1) ).

Proof. The proof of (i) and (ii) are straightforward by the definition. For part
(iii), consider ᾱ : H1

Zn(H1,H1∩N1) −→
H2

Zn(H2,H2∩N2) with ᾱ(h̄1) = h̄2, in which
h2 ∈ α(h1Zn(G1, N1)), and β̄ : γn+1(H1, H1 ∩ N1) −→ γn+1(H2, H2 ∩ N2) with
β̄(x) = β(x). It is easy to see that the pair (ᾱ, β̄) is an n-isoclinism between the
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pairs (H1, H1 ∩ N1) and (H2, H2 ∩ N2). For part (iv), put Ḡ1 = G1

M1
and Ĝ2 =

G2

β(M1) . Define ᾱ : Ḡ1

Zn(Ḡ1,N̄1)
−→ Ĝ2

Zn(Ĝ2,N̂2)
by ᾱ(ḡ1Zn(Ḡ1, N̄1)) = ĝ2Zn(Ĝ2, N̂2),

in which g2 ∈ α(g1Zn(G1, N1)), and β̄ : γn+1(Ḡ1, N̄1) −→ γn+1(Ĝ2, N̂2) with
β̄([n̄1, ḡ11

, . . . , ḡ1n
]) = [n̂2, ĝ21

, . . . , ĝ2n
], where n2 ∈ α(n1Zn(G1, N1)) and g2i

∈
α(g1iZn(G1, N1)) for 1 ≤ i ≤ n. Now (ᾱ, β̄) is an n-isoclinism between the pairs
(Ḡ1, N̄1) and (Ḡ2, N̄2) since (α, β) is an n-isoclinism.

Definition 3.5. Let (G,N) be a pair of groups. We say that (H,M) is a subpair
of (G,N), if H ≤ G and M ≤ N. Also we say that the pair (K,L) is a quotient
pair of (G,N) if K and L are quotient groups of G and N , respectively.

Now, we would like to verify the relation of n-isoclinism between a pair and
its subpair or its quotient pair. For example it may be of interest to know that
if it is possible a pair and its subpair are n-isoclinic? or which facts do we know
about a pair which is n-isoclinic to one of its subpair? or what conditions does a
pair need to be n-isoclinic to one of its quotient pair? and so on. The following
theorem provides some answers to these questions.

Theorem 3.6. (Generalized Bioch Theorem) Let (G,N) be a pair of groups
and n ≥ 0.

(i) If H ≤ G, then (H,H ∩N) ∼n (HZn(G,N), (H ∩N)Zn(G,N)). In particular,
if G = HZn(G,N), then (H,H ∩N) ∼n (G,N). Conversely, if | G

Zn(G,N) | <∞
and (H,H ∩N) ∼n (G,N), then G = HZn(G,N),

(ii) If M is a normal subgroup of G contained in N, then
( GM , NM ) ∼n ( G

M∩γn+1(G,N) ,
N

M∩γn+1(G,N) ). In particular, if M ∩ γn+1(G,N) =

1 then (G,N) ∼n ( GM , NM ). Conversely, if |γn+1(G,N)| < ∞ and (G,N) ∼n
( GM , NM ), then M ∩ γn+1(G,N) = 1.

Proof. The proof is done similar to [1, Lemma 1.3].

Corollary 3.7. Let (G,N) be a pair of groups, H ≤ G, and M EG. Then

(i) if N0 EG and M ∩ γn+1(G,N) = 1, then (G,N) ∼n ( G
N0∩M , N

N0∩M ),

(ii) if M ∩ γn+1(G,N) = 1, then (H,H ∩N) ∼n (HMM , HM∩NM ),

(iii) if G = HZn(G,N), then (HMM , HM∩NM ) ∼n ( GM , NM ),

(iv) if K ≤ G and G = HZn(G,N), then (G,N) ∼n (< H,K >,< H,K > ∩N).

The next proposition implies that the relation of n-isoclinism between a pair
and some of its subpairs is just related to the existence of α.Moreover, the relation
between a pair and some of its quotients depends on the existence of β.

Proposition 3.8. Let (G,N) be a pair of groups, H ≤ G, M EG, and M ≤ N .
Then
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(i) (G,N) ∼n (H,H ∩N) if and only if G
Zn(G,N)

∼= H
Zn(H,H∩N) ,

(ii) (G,N) ∼n ( GM , NM ) if and only if γn+1(G,N) ∼= γn+1( GM , NM ).

Proof. In both statements the “only if" parts are trivial. The isomorphism G
Zn(G,N)

∼=
H

Zn(H,H∩N) implies G = HZn(G,N), which proves part(i) by Theorem 3.6. On
the other hand, the isomorphism γn+1(G,N) ∼= γn+1( GM , NM ) implies the triviality
of M ∩ γn+1(G,N), which proves part (ii) by Theorem 3.6.

In the following an equivalent condition for being n-isoclinic is stated.

Lemma 3.9. Let (G1, N1) and (G2, N2) be pairs of groups, then (G1, N1) ∼n
(G2, N2) if and only if there exist normal subgroups A and B of G, and iso-
morphisms α and β with these properties:A ⊆ Zn(G1, N1), B ⊆ Zn(G2, N2), α :
G1

A −→ G2

B such that α(N1

A ) = N2

B , β : γn+1(G1, N1) −→ γn+1(G2, N2) and
β([n1, g11 , . . . , g1n ]) = [n2, g21 , . . . , g2n ] where for each 1 ≤ i ≤ n and j = 1, 2,
we have, gji ∈ Gj , g2i

∈ α(g1i
A) and n2 ∈ α(n1A).

Proof. It sufficient to show that α(Zn(G1,N1)
A ) = Zn(G2,N2)

B . Therefore, let g1 ∈
Zn(G1, N1) and g2 ∈ α(g1A). Take g21

, . . . , g2n
∈ G2 and g1i

∈ α−1(g2i
B), for

i = 1, 2, . . . , n. Now it follows that α(Zn(G1,N1)
A ) ⊆ Zn(G2,N2)

B . Similar argument
holds for α−1, yielding α(Zn(G1,N1)

A ) ⊇ Zn(G2,N2)
B . This proves the statement.

As Hekster illustrated in [6], in an n-isoclinism family of groups there might be
some quantities which are the same for any two groups in that family. Following
P. Hall [4], Hekster called such quantities “family invariants”. In the following,
we intend to illustrate some family invariants in n-isoclinism classes of pairs of
groups. In fact we will list some properties which are the same for any two pairs
in an n-isoclinism family of pairs of groups.

Theorem 3.10. Let (G1, N1) and (G2, N2) be n-isoclinic pairs of groups. Then
for all i ≥ 0,

(i) γi+1( G1

Zn(G1,N1) ,
N1

Zn(G1,N1) ) ∼= γi+1( G2

Zn(G2,N2) ,
N2

Zn(G2,N2) ),

(ii) γn+1(G1, N1) ∩ Zi(G1, N1) ∼= γn+1(G2, N2) ∩ Zi(G2, N2).

Proof. The proof is done similar to [6, Theorem 3.12].

Theorem 3.11. Let (G1, N1) and (G2, N2) be two isoclinic pairs of groups and
n ≥ 1. Then γn+1(G1, N1) ∼= γn+1(G2, N2).

Proof. Since each n-isoclinism induces an (n+1)-isoclinism, the proof is clear.

Corollary 3.12. In the isoclinism families of pairs of groups, the nilpotency class
of pairs of groups is a family invariant.
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4. Subpair and Quotient Pair Reduction

The definitions of subgroup and quotient irreducible with respect to n-isoclinism of
groups can be easily defined for pairs of groups. In this section we first define these
concepts and then show that each n-isoclinism family of pairs contains a quotient
irreducible pair. Subsequently by considering (G,N) to be a pair of groups, P a
property of groups and G

Zn(G,N) a P-group, we will find a pair of P-groups which
is n-isoclinic to (G,N).

Definition 4.1. Let (G,N) be a pair of groups. We say that (G,N) is subpair
irreducible with respect to n-isoclinism if G containing no proper subgroup H
satisfying G = HZn(G,N). Also (G,N) is called quotient irreducible with respect
to n-isoclinism ifG containing no non-trivial normal subgroupM such thatM ⊆ N
and satisfying M ∩ γn+1(G,N) = 1.

Definition 4.2. A pair (G,N) is called n-stem pair if Z(G,N) ⊆ γn+1(G,N).

Proposition 4.3. An n-stem pair is quotient irreducible with respect to n-isoclinism.

Proof. Using Lemma 2.6 (ii) and Theorem 2.1, the proof is straightforward.

Proposition 4.4. Let (G,N) be a pair of groups and Zn(G,N) ⊆ γn+1(G,N).
Then (G,N) is both subpair and quotient irreducible with respect to n-isoclinism.

Proof. The proof is straightforward using Theorem 2.2 (i) and Proposition 4.3.

Now let (G,N) be subpair irreducible with respect to n-isoclinism. It is easy
to see that every element of Zn(G,N) is non-generator in G. More precisely, the
following theorem will determine the main place of the nth term of the upper
central series of such pairs of groups. It will also establish a sufficient condition
under which the converse of the statement is true.

Theorem 4.5. If (G,N) is subpair irreducible with respect to n-isoclinism, then
Zn(G,N) ⊆ Φ(G) ∩N. The converse holds if Zn(G,N)

Zn(G,N)∩γn+1(G,N) is finitely gener-
ated.

Proof. The proof is done similar to [6, Theorem 7.4].

Recall that the socle of G is the group generated by minimal normal subgroups
of G.

Theorem 4.6. A pair (G,N) is quotient irreducible with respect to n-isoclinism
if and only if the socle of G is contained in γn+1(G,N) and Zn(G,N)

Zn(G,N)∩γn+1(G,N) is
a torsion group.

The existence of a quotient irreducible pair of groups in each n- isoclinism
family of pairs of groups is proved in the next theorem.
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Theorem 4.7. Let (G,N) be a pair of groups. Then there exists a normal sub-
group M of G contained in N such that (G,N) ∼n ( GM , NM ) and ( GM , NM ) is quotient
irreducible with respect to n-isoclinism.

Proof. Applying M = {M |M ⊆ N,M E G and M ∩ γn+1(G,N) = 1} instead
of N in [6, Theorem 7.6] and following up a similar proof, the theorem will be
proved.

Lemma 4.8. Let (G,N) be a pair of finite groups such that G
Zn(G,N) is a π-group.

Then there exists a subpair (H,M) of (G,N) such that (H,M) is a pair of π-
groups.

Proof. By substituting Zn(G,N) with Zn(G) and using a similar proof to [6,
Lemma 7.8] the result follows.

Corollary 4.9. Let (G,N) be a pair of groups, such that G
Zn(G,N) be a finite π-

group. Then there exists a pair (H,M) of finite π-group with (G,N) ∼n (H,M). In
particular, γn+1(G,N) is a finite π-group.

Corollary 4.10. Let (G,N) be a pair of finite groups. If (G,N) is a subpair
irreducible with respect to n-isoclinism and G

Zn(G,N) is a π-group, then (G,N) is a
pair of π-groups.
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