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Abstract

Suppose G is a group of order p2q2 where p > q are prime numbers
and suppose P and Q are Sylow p-subgroup and Sylow q-subgroup of G,
respectively. In this paper, we show that up to isomorphism, there are four
groups of order p2q2 when Q and P are cyclic, three groups when Q is a
cyclic and P is an elementary abelian group, p2 +3p/2+7 groups when Q is
an elementary abelian group and P is a cyclic group and finally, p+5 groups
when both Q and P are elementary abelian groups.
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1. Introduction

All finite groups can be broken down into a series of finite simple groups which
have been called the building blocks of finite groups. The history of finite simple
groups originated in the 1830’s with Evariste Galois and the solution of fifth degree
polynomial equations. In the twentieth century, the recognition of the importance
of finite simple groups inspired a huge effort to find all finite simple groups, see [9]
for more details. But the classification of finite groups is still an open problem. In
this paper, by using the notation of [1], we determine all groups of order p2q2 by
a simple method.
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2. Preliminaries and Notations
In this section, we first recall some concepts, notations and results in group theory,
which are used in the next section. We use standard basic group theory terminol-
ogy and notations, see [2, 4, 5, 7, 10, 11] as well as [6, 8]. The set of all Sylow
p-subgroups of G are denoted by Sylp(G).

A semi-direct product is a generalization of a direct product. LetN be a normal
subgroup of G, each element g ∈ G defines an automorphism of N , n → gng−1,
and this defines a homomorphism

θ : G→ Aut(N), g → ig|N.

If there exists a subgroup Q of G such that G→ G/N maps Q isomorphically
onto G/N , then we can reconstruct G from N,Q and the restriction of θ to Q.
Indeed, an element g ∈ G can be written uniquely in the form

g = nq, n ∈ N, q ∈ Q.

q must be the unique element of Q mapping to gN ∈ G/N and n must be gq−1.
Thus, we have a one-to-one correspondence of sets

G↔ N ×Q.

If g = nq and g′ = n′q′, then

gg′ = (nq)(n′q′) = n(qn′q−1)qq′ = nθ(q)(n′).qq′.

Equivalently, G is a semi-direct product of subgroups N and Q if

N EG, NQ = G, N ∩Q = {1}.

Note that Q need not be a normal subgroup of G. When G is the semi-direct
product of subgroups N and Q, we write G = N oQ or N oϕ Q.

Theorem 2.1. [8] Let P be a p-group, Q be a q-group and ψ,ϕ : Q −→ Aut(P )
be two homomorphisms. Then Q nϕ P ∼= Q nψ P if and only if ψ ◦ γ and ϕ are
conjugate in Aut(P ) for some γ ∈ Aut(Q).

Lemma 2.2. [8] Up to isomorphism, there is a 1-1 correspondence between groups
G = Q nϕ P and the number of orbits of action Aut(P ) × Aut(Q) on the set
Hom(Q,Aut(P )) where for all α ∈ Aut(P ), β ∈ Aut(Q) and y ∈ Q, we have

ϕ(α,β)(y) = α ◦ [ϕ ◦ β−1(y)] ◦ α−1.

Suppose Q = 〈y〉 is a cyclic q-group. For every non-trivial homomorphism
ϕ : Q→ Aut(P ), Qy = 〈ϕ(y)〉 is a subgroup of Aut(P ) of order |Q|. On the other
hand, all automorphisms ofQmap y to yj for some j and henceQyj = (Qy)

j = Qy.
Thus, we can deduce the following result.
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Lemma 2.3. Let Q be a cyclic group, then up to isomorphism, all groups of form
G = QnP are corresponding to conjugacy classes of subgroups of Aut(P ) of order
dividing | Q |.

The general linear group of degree n is the set of n× n non-singular matrices,
together with ordinary multiplication of matrices as its binary operation. Because
the product of two non-singular matrices is again non-singular, and the inverse
of a non-singular matrix is non-singular, then it forms a group. Generally, the
general linear group of degree n over any field F is the set of n × n non-singular
matrices with entries from F denoted by GLn(F ) or GL(n, F ).

A field F that contains a finite number of elements is called Galois field. A
finite field of order q exists if and only if the q is a prime power pk where p is a
prime number and k is a positive integer. All fields of a given order are isomorphic.
By this notation, if F is a finite field with q = pn elements, then the general linear
group of degree n over the filed F is denoted by GL(n, q).

Theorem 2.4. [8] The conjugacy classes of GL(2, p) are as reported in Table 1.
In this table ρ, σ are primitive elements of GF (p) and GF (p2), respectively.

Table 1: Conjugacy classes of group GL(2, p).
Conjugacy classes Number of such classes No. Elements(

ρa 0
0 ρa

)
(p− 1) 1(

ρa 1
0 ρa

)
(p− 1) (p− 1)(p+ 1)(

ρa 0
0 ρb

)
1
2 (p− 1)(p− 2) p(p+ 1)(

σa 0
0 σap

)
1
2p(p− 1) p(p− 1)

3. Main Results
In this section, the consequences of the Sylow Theorems are cases where the size
of G forces it to have a non-trivial normal subgroup.

Theorem 3.1. Let G be a group of order p2q2. If pq = 6, then G is isomorphic
with one of the following groups:

1. C36,

2. C18 × C2,

3. C6 × C6,
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4. C12 × C3,

5. D6 × C6
∼= S3 × C6

∼= D12 × C3,

6. D6 ×D6
∼= S3 × S3,

7. D18 × C2,

8. A4 × C3,

9. D36,

10. H × C3,

11. K × C2,

12. 〈a, b, c | a3 = b3 = c4 = [a, b] = 1, c−1ac = b, c−1bc = a−1〉,

13. 〈a, b, c | a2 = b2 = c9 = [a, b] = 1, c−1ac = b, c−1bc = ab〉,

14. 〈a, b, c | a3 = b3 = c4 = [a, b] = 1, c−1ac = a−1, c−1bc = b−1〉,

where
H = 〈x, y | x4 = y3 = 1, x−1yx = y−1〉

and
K = 〈a, b, c | a2 = b2 = c2 = (abc)2 = (ab)3 = (ac)3 = 1〉.

If pq 6= 6, then G has one of the following structures:

Cq2 n Cp2 , Cq2 n (Cp × Cp), (Cq × Cq)n Cp2 , (Cq × Cq)n (Cp × Cp).

Proof. If pq = 6, then the proof is clear. Suppose pq 6= 6, since p > q according to
Sylow theorem, it is clear that Sylow p-subgroup of G is normal. We assume that
P ∈ Sylp(G) and Q ∈ Sylq(G). This implies that Q ∩ P = 〈1〉, P / G, G = PQ.
Hence, G is isomorphic with semi-direct product QnϕP , where ϕ : Q −→ Aut(P )
is a homomorphism. Since, every group of order p2 is abelian, then

Sylp(G) = {Cp2 , Cp × Cp} and Sylq(G) = {Cq2 , Cq × Cq}.

By using Lemma 2.2 and Theorem 2.1, the group G is isomorphic with one of the
following presentation:

Cq2 nϕ Cp2 , (Cq × Cq)nϕ Cp2 , Cq2 nϕ (Cp × Cp), (Cq × Cq)nϕ (Cp × Cp).

In continuing, we determine the presentation of all these groups. To do this,
we can consider the following cases:
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1. G ∼= Cq2 nϕ Cp2 , then Aut(Cp2) ∼= Cp(p−1) and consider the homomorphism
ϕ : Cq2 ↪→ Cp(p−1). If Imϕ ∼= 〈1〉, then G ∼= Cq2 × Cp2 . If Imϕ ∼= Cq and
q | (p− 1), since Aut(P ) is cyclic, according to Lemma 2.3 there exists only
one group with the following presentation:

G ∼= 〈a, b | aq
2

= bp
2

= 1, a−1ba = br, rq ≡ 1(mod p2)〉

= 〈a, b | aq
2

= bp
2

= 1, a−1ba = br, r = r
(p−1)p

q

0 〉,

where r0 is p2-th root of unity. If Imϕ ∼= Cq2 and q2 | (p− 1), since Aut(P )
is cyclic, by Lemma 2.3, there exists only one group with the following pre-
sentation:

G ∼= 〈a, b | aq
2

= bp
2

= 1, a−1ba = br, rq
2

≡ 1(mod p2)〉

= 〈a, b | aq
2

= bp
2

= 1, a−1ba = br, r = r
(p−1)p

q2

0 〉,

where r0 is p2-th root of unity.

2. G ∼= (Cq × Cq) nϕ Cp2 and assume that the image of ϕ is not trivial where
ϕ : Cq × Cq ↪→ Aut(Cp2). If Imϕ ∼= 〈1〉, then G ∼= Cq × Cq × Cp2 . Let
Imϕ ∼= Cq and q | (p−1). Since Aut(P ) is cyclic, by using Lemma 1.3, there
exists only one group with the following presentation:

G ∼= 〈a, b, c | aq = bq = cp
2

= 1, [a, b] = [b, c] = 1, a−1ca = cr〉,

where r0 is p2-th root of unity and rq ≡ 1(mod p2).

3. G ∼= Cq2 nϕ (Cp × Cp) and so Aut(Cp × Cp) ∼= GL(2, p). If Imϕ ∼= 〈1〉,
then G ∼= Cq2 × (Cp ×Cp) and so G is abelian. If Imϕ ∼= Cq, then for given
homomorphism ϕ : Cq2 → GL(2, p), Imϕ ∼= 〈1〉 or Cq or Cq2 . Suppose the
subgroups of order q are in the first class in Table 1. Hence, q|p − 1 and α
is a primitive root of unity of Fp and so

Imϕ ∼= Cq ∼= 〈
(
β 0
0 β

)
| β = α

p−1
q 〉.

This implies that

G ∼= 〈a, b, c | aq
2

= bp = cp = 1, a−1ba = bβ , a−1ca = cβ , bc = cb〉.

Let the subgroups of order q be in the second class of Table 1. Clearly, in
this case, one can not find a new presentation for G. Let subgroups of order
q be in the third class. If q = 2, then

Imϕ ∼= Cq ∼= 〈
(

1 0
0 −1

)
〉
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and so

G ∼= 〈a, b, c | aq
2

= bp = cp = 1, ab = ba, a−1ca = c−1, bc = cb〉.

Let q | (p − 1) and q 6= 2, then α is a p-th root of unity and β = α
p−1
q . All

solutions of equation xq ≡ 1(mod p) are

x1 = 1, x2 = β, x3 = β2, . . . , xq = βq−1.

This means that there are q+1
2 non-conjugate cyclic groups of order q as

follows:

〈
(

1 0
0 β

)
〉, 〈

(
β 0
0 βi

)
〉

where i = 2, 3, . . . , q−12 and q − 1. Hence in this case, one can verify that

G ∼= 〈a, b, c | aq
2

= bp = cp = 1, ab = ba, a−1ca = cβ , bc = cb〉,
G ∼= 〈a, b, c | aq

2

= bp = cp = 1, a−1ba = bβ , a−1ca = cβ
i

, bc = cb〉.

Finally, let the subgroups of order q be in the fourth row in Table 1. For
q = 2 there is no group of order two. If q 6= 2 and q|p− 1, then there is no a
subgroup of order q, but if q divides p+1, then we can construct a subgroup
of order q as follows:

Suppose σ be a primitive root of GF (p) and α0 = σ
p2−1

q , then

a0 = σ
p2−1

q
= α+ β

√
D : α, β,D ∈ GF (p), β 6= 0, D is not square

and so (
α0 0
0 αp0

)
∈ [

(
α βD
β α

)
]

where for an element g ∈ G, [g] means the conjugacy class of g in G. This
means that

G ∼= 〈a, b, c | aq
2

= bp = cp = 1, a−1ba = bαcβD, a−1ca = bβcα, bc = cb〉.

Suppose Imϕ ∼= Cq2 , then all non-conjugate cyclic subgroups of order q2 in
GL(2, p) are as follows:

(a) The cyclic subgroups of order q2 are in the first row in Table 1. Further,
q2 divides p− 1 and α is a p-primitive root of unity in Fp, thus

Imϕ ∼= Cq2 ∼= 〈
(
β 0
0 β

)
〉, β = α

p−1

q2 .

Hence

G ∼= 〈a, b, c | aq
2

= bp = cp = 1, a−1ba = bβ , a−1ca = cβ , bc = cb〉.
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(b) The cyclic subgroups of order q2 are in the second row. In this case,
there is no a cyclic subgroup of order q2.

(c) The cyclic subgroups of order q2 are in the third row. If q2 divides p−1,
then the equation xq

2 ≡ 1 (mod p) has exactly q2 roots. Among them,
q(q− 1) subgroups are of order q2 and so there are q2+q

2 non-conjugate
subgroups of order q2 as follows:
Let α be a p-primitive root of unity, then

β = α
p−1

q2 and Ciq2 = 〈
(
β 0
0 βi

)
〉,

where 2 ≤ i ≤ (q2 − 1)/2 or i = kq (k ≥ (q + 1)/2) or i = q2 − 1. Thus,
there are (q2 + q)/2 groups with the following presentation:

Gi ∼= 〈a, b, c | aq
2

= bp = cp = 1, a−1ba = bβ , a−1ca = cβ
i

, bc = cb〉.

(d) The cyclic subgroups of order q2 are in the fourth row. If q = 2, then
two following cases hold:

1) p = 4k + 1 and so (p2 − 1)/q2 = 2k(2k + 1). Hence, there is not a
cyclic group of order q2.

2) p = 4k+3 and so p2− 1 = 8(k+1)(2k+1). This leads us to verify
that (p2 − 1)/q2 = 2(k + 1)(2k + 1).

In this case, we can construct a cyclic subgroup as follows:
Let σ be a generator of multiplicative group GF (p2), then

σ
p2−1

4 = α+ β
√
D : α, β,D ∈ GF (p), β 6= 0, D is not square

and so

G ∼= 〈a, b, c | a4 = bp = cp = 1, a−1ba = bαcβD, a−1ca = bβcα, bc = cb〉.

Let q 6= 2 and q2 | p+ 1 or q2 | p− 1. If q2 | p− 1, then q | p− 1 and so
we can not construct a new presentation. Suppose q2 | p+ 1 and σ is a
multiplicative subgroup of GF (p2). Then

G ∼= 〈a, b, c | aq
2

= bp = cp = 1, a−1ba = bαcβD, a−1ca = bβcα, bc = cb〉.

4. G ∼= (Cq × Cq) nϕ (Cp × Cp), first notice that Aut(Cp × Cp) ∼= GL(2, p).
We are interested about all automorphism of the form ϕ : (Cq × Cq) ↪→
Aut(Cp × Cp) ∼= GL(2, p). If Imϕ ∼= 〈1〉, then G ∼= Cq × Cq × Cp × Cp is an
abelian group of order p2q2. If Imϕ ∼= Cq, then all non-conjugate subgroups
of order q in GL(2, p) are as follows:
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(a) Subgroups belonging to the first row in Table 1. If q | (p− 1) and α is
a p-primitive root of unity, then

Imϕ ∼= Cq ∼= 〈
(
β 0
0 β

)
〉, β = α

p−1
q

and hence

G ∼= 〈a, b, c, d | aq = bq = cp = dp = 1, b−1cb = cβ , b−1db = dβ〉

where [a, c] = [a, d] = [a, b] = [c, d] = 1.
(b) Subgroups belonging to the second row in Table 1. In this case there is

no element of order q.
(c) Subgroups belonging to the third row in Table 1. If q = 2, then

Imϕ ∼= Cq ∼= 〈
(

1 0
0 −1

)
〉

and so

G ∼= 〈a, b, c, d | aq = bq = cp = dp = 1, b−1cb = c−1〉,

where [a, b] = [a, c] = [a, d] = [b, d] = [c, d] = 1. If q 6= 2, q | (p − 1),
then α is a root of unity and β = α

p−1
q . Thus, all roots of the equation

xq ≡ 1(mod p) are

x1 = 1, x2 = β, x3 = β2, . . . , xq = βq−1.

Hence, there are (q + 1)/2 non-conjugate cyclic subgroups

〈
(

1 0
0 β

)
〉, 〈

(
β 0
0 βi

)
〉,

where i = 2, 3, 4, . . . , q−12 or i = q − 1. Similar to our last discussion, we
get two presentations for G which are not new.

(d) Subgroup of order q belonging to the fourth row in Table 1. It is not
difficult to see that in this case a group of order q exists if q 6= 2,
p− 1 6= kq and q | p+ 1. Let σ be a root of unity in GF (p2) and

α0 = σ
p2−1

q = α+ β
√
D : α, β,D ∈ GF (p), β 6= 0, D is not square.

Then (
α0 0
0 αp0

)
∈ [

(
α βD
β α

)
]

and hence

G ∼= 〈a, b, c, d | aq = bq = cp = dp = 1, b−1cb = cαdβD, b−1db = cβdα〉,
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where [a, b] = [a, c] = [a, d] = [c, d] = 1. Finally, suppose Imϕ ∼= Cq×Cq
and α is p-th primitive root of unity, β = α

p−1
q , and q | p− 1. Then

Cq × Cq ∼= 〈
(
β 0
0 1

)
,

(
1 0
0 β

)
〉

and so

G ∼= 〈a, b, c, d | aq = bq = cp = dp = 1, a−1ca = cβ , b−1db = dβ〉,

where [a, b] = [b, c] = [c, d] = [a, d] = 1.

This completes the proof.
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