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On Relation between the Kirchhoff Index and
Laplacian-Energy-Like Invariant of Graphs
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Abstract

Let G be a simple connected graph with n ≥ 2 vertices and m edges,
and let µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 be its Laplacian eigenvalues. The
Kirchhoff index and Laplacian–energy–like invariant (LEL) of graph G are
defined as Kf(G) = n

∑n−1
i=1

1
µi

and LEL(G) =
∑n−1
i=1

√
µi, respectively. In

this paper we consider relationship between Kf(G) and LEL(G).

Keywords: Kirchhoff index, Laplacian-energy-like invariant, Laplacian eigen-
values of graph.
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1. Introduction

Let G = (V,E), V = {1, 2, . . . , n}, be a simple connected graph with n ≥ 2 vertices
and m edges, with vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0. Further, let A
be the adjacency matrix of G. Eigenvalues of matrix A, λ1 ≥ λ2 ≥ · · · ≥ λn are
ordinary eigenvalues of graph G. Some of their well known properties are (see for
example [5])

n∑
i=1

λi = 0 and

n∑
i=1

λ2i =

n∑
i=1

di = 2m.

Let D be the diagonal matrix of order n, whose diagonal elements are d1, d2,
. . . , dn. Then L = D−A is the Laplacian matrix of graph G. Eigenvalues of the
matrix L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 form the so-called Laplacian spectrum
of graph G. The Laplacian matrix of a graph and its eigenvalues can be used
in several areas of mathematical research and have a physical interpretation in
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various physical and chemical theories. Laplacian eigenvalues satisfy the following
identities:

n−1∑
i=1

µi =

n∑
i=1

di = 2m and

n−1∑
i=1

µ2
i =

n∑
i=1

d2i +

n∑
i=1

di = M1 + 2m,

where M1 = M1(G) is the first Zagreb index, introduced in [20] by Gutman and
Trinajstić. More about this topological index, as well as the second Zagreb index,
one can found in [3, 4, 14,34].

A concept related to the spectrum of a graph is that of energy. As its name
suggests, it is inspired by energy in chemistry. In 1978, Gutman [11] defined energy
mathematically as the sum of absolute values of the eigenvalues of the adjacency
matrix of graph:

E = E(G) =

n∑
i=1

|λi|.

In the past decade, interest in graph energy has increased and similar definitions
have been formulated for other matrices associated with a graph, such as the
Laplacian, normalized Laplacian, distance matrices, and even for a general matrix
not associated with a graph [41].

In 2006, Gutman and Zhou [21] defined the Laplacian energy of a graph as the
sum of the absolute deviations (i.e. distance from the mean) of the eigenvalues of
its Laplacian matrix:

LE = LE(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ .
Liu and Liu [26] introduced the Laplacian–energy–like invariant, shortly LEL,
defined as

LEL = LEL(G) =

n−1∑
i=1

√
µi.

For more information on these, as well as other graph and matrix energies,
the interested reader can refer to [11–13,16, 17, 19, 21, 23, 24, 26, 31, 32, 39] and the
references cited therein.

The Wiener index, W (G), originally termed as a "path number", is a topolog-
ical graph index defined for a graph on n nodes by

W (G) =
∑
i<j

dij ,

where dij is the number of edges in the shortest path between vertices i and j
in graph G. The first investigations into the Wiener index were made by Harold
Wiener in 1947 [40] who realized that there are correlations between the boiling
points of paraffin and the structure of the molecules.
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In analogy to the Wiener index, Klein and Randić [22] defined the Kirchhoff
index, Kf(G), as

Kf(G) =
∑
i<j

rij ,

where rij is the resistance distance between the vertices i and j of a simple con-
nected graph G, i.e. rij is equal to the resistance between two equivalent points on
an associated electrical network, obtained by replacing each edge of G by a unit
(1 ohm) resistor.

As Gutman and Mohar [18] (see also [44]) proved, the Kirchhoff index can also
be represented as

Kf(G) = n

n−1∑
i=1

1

µi
.

More on the Kirchhoff index, as well as its applications in various areas, such
as in spectral graph theory, molecular chemistry, computer science, etc. can be
found, for example, in [9, 15,25,28–30,35,42].

In this paper we prove some inequalities that establish relationship between
graph invariants Kf(G) and LEL(G). This problem was considered in many
papers (see for example [1, 7, 8, 36, 37]). This work was motivated by the results
obtained in [8].

2. Preliminaries

In this section we recall some analytic inequalities for real number sequences that
will be needed in the subsequent considerations.

Let p = (pi) and a = (ai), i = 1, 2, . . . , n− 1, be two sequences of positive real
numbers with the properties p1 + p2 + · · ·+ pn−1 = 1 and 0 < r ≤ ai ≤ R < +∞.
Rennie [38] proved the following inequality

n−1∑
i=1

piai + rR

n−1∑
i=1

pi
ai
≤ r +R. (1)

Let a = (ai), i = 1, 2, . . . , n − 1, be positive real numbers sequence with the
property 0 < r ≤ ai ≤ R < +∞. In [27] Lupas proved the inequality

n−1∑
i=1

ai

n−1∑
i=1

1

ai
≤ (n− 1)2

(
1 +

α(n− 1)(R− r)2

rR

)
, (2)

where

α(n− 1) =
1

4

(
1− (−1)n + 1

2(n− 1)2

)
.
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Zhou, Gutman, and Aleksić [43] proved the following inequality for positive
real numbers sequence a = (ai), i = 1, 2, . . . , n− 1,

(n− 1)

 1

n− 1

n−1∑
i=1

ai −

(
n−1∏
i=1

ai

) 1
n−1

 ≤ (n− 1)

n−1∑
i=1

ai −

(
n−1∑
i=1

√
ai

)2

≤ (n− 1)(n− 2)

 1

n− 1

n−1∑
i=1

ai −

(
n−1∏
i=1

ai

) 1
n−1

 .

(3)

Let p = (pi), i = 1, 2, . . . , n−1, be positive real numbers sequence, and a = (ai)
and b = (bi), i = 1, 2, . . . , n− 1, sequences of non-negative real numbers of similar
monotonicity. Then [33]

n−1∑
i=1

pi

n−1∑
i=1

piaibi ≥
n−1∑
i=1

piai

n−1∑
i=1

pibi. (4)

If sequences a = (ai) and b = (bi) are of opposite monotonicity, then the sense of
(4) reverses.

Let a = (ai) and b = (bi), i = 1, 2, . . . , n − 1, be two positive real numbers
sequences with the properties

0 < r1 ≤ ai ≤ R < +∞ and 0 < r2 ≤ bi ≤ R2 < +∞ .

In [2] (see also [33]) the following inequality was proven:∣∣∣∣∣(n− 1)

n−1∑
i=1

aibi −
n−1∑
i=1

ai

n−1∑
i=1

bi

∣∣∣∣∣ ≤ (n− 1)2α(n− 1)(R1 − r1)(R2 − r2) , (5)

where

α(n− 1) =
1

n− 1

⌊
n− 1

2

⌋(
1− 1

n− 1

⌊
n− 1

2

⌋)
=

1

4

(
1− (−1)n + 1

2(n− 1)2

)
.

Let a1 ≥ a2 ≥ · · · ≥ an−1 > 0 are positive real numbers. The following was
proven in [6]:

n−1∑
i=1

ai − (n− 1)

(
n−1∏
i=1

ai

) 1
n−1

≥
(√
a1 −

√
an−1

)2
. (6)

3. Main Results
In the following lemma we establish upper bound for Kf(G) in terms of LEL(G),
M1(G), graph parameters n, m, and Laplacian eigenvalues µ1 and µn−1.
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Lemma 3.1. Let G be a simple connected graph with n ≥ 3 vertices and m edges.
Then

Kf(G) ≤
n
((
µ
3/2
1 + µ

3/2
n−1

)
LEL(G)−M1(G)− 2m

)
(µ1µn−1)3/2

. (7)

Equality holds if and only if µ1 = µ2 = · · · = µn−1, or for any s, 1 ≤ s ≤ n − 2,
holds µ1 = µ2 = · · · = µs ≥ µs+1 = · · · = µn−1.

Proof. Setting pi =
√
µi

n−1∑
i=1

√
µi

, ai = µ
3/2
i , i = 1, 2, . . . , n− 1, R = µ

3/2
1 , r = µ

3/2
n−1, in

(1), we get
n−1∑
i=1

µ2
i

n−1∑
i=1

√
µi

+ (µ1µn−1)3/2

n−1∑
i=1

1

µi

n−1∑
i=1

√
µi

≤ µ3/2
1 + µ

3/2
n−1,

i.e.
M1(G) + 2m

LEL(G)
+ (µ1µn−1)3/2

1
nKf(G)

LEL(G)
≤ µ3/2

1 + µ
3/2
n−1,

where from inequality (7) follows.
Equality in (1) holds if and only if a1 = a2 = · · · = an, or for any s, 1 ≤

s ≤ n − 2, holds a1 = · · · = as ≥ as+1 = · · · = an−1. Therefore equality in (7)
holds if and only if µ1 = µ2 = · · · = µn−1, or for any s, 1 ≤ s ≤ n − 2, holds
µ1 = · · · = µs ≥ µs+1 = · · · = µn−1.

In the following theorem we determine an upper bound for Kf(G) in terms of
LEL(G), M1(G), n, m, and lower bound, k, of algebraic connectivity of G, µn−1.

Theorem 3.2. Let G be a simple connected graph with n ≥ 3 vertices and m
edges. Then, for any real k with the property µn−1 ≥ k > 0, holds

Kf(G) ≤
(
n3/2 + k3/2

)
LEL(G)−M1(G)− 2m

n1/2k3/2
. (8)

Equality holds if and only if k = n, and G ∼= Kn, or for any s, 1 ≤ s ≤ n − 2,
holds n = µ1 = · · · = µs ≥ µs+1 = · · · = µn−1 = k.

Proof. Consider the function

f(x) =
µ
3/2
n−1LEL(G)−M1(G)− 2m

x3/2
, x > 0.
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Since

M1(G) + 2m =

n−1∑
i=1

µ2
i ≥ µ

3/2
n−1

n−1∑
i=1

√
µi = µ

3/2
n−1LEL(G),

it follows that f(x) is an increasing function for x > 0. Thus, for x = µ1 ≤ n holds
f(µ1) ≤ f(n). From (7) we get

Kf(G) ≤
n
((
n3/2 + µ

3/2
n−1

)
LEL(G)−M1(G)− 2m

)
n3/2µ

3/2
n−1

. (9)

Now, consider the function

g(x) =
n3/2LEL(G)−M1(G)− 2m

x3/2
.

Since

M1(G) + 2m =

n−1∑
i=1

µ2
i ≤ µ

3/2
1

n−1∑
i=1

√
µi ≤ n3/2LEL(G),

the function g(x) is decreasing for x > 0. Then, for x = µn−1 ≥ k > 0 holds
g(µn−1) ≤ g(k). From (9) follows

Kf(G) ≤
n
((
n3/2 + k3/2

)
LEL(G)−M1(G)− 2m

)
n3/2k3/2

,

where from we arrive at (8).

Remark 1. Equality in (8), depending on the parameter k, is attained for a various
classes of graphs. Thus, for example, equality holds for k = 1 and G ∼= K1,n−1, or
k = n

2 and G ∼= Kn
2 ,

n
2
, or k = n− 2 and G ∼= Kn − e.

Corollary 3.3. Let G be a simple connected graph with n ≥ 3 vertices. Then for
any real k, µn−1 ≥ k > 0, we have

Kf(G) ≤ nLEL(G)

k3/2
.

Equality holds if and only if G ∼= Kn.

Corollary 3.4. Let G be a simple connected graph with n ≥ 3 vertices and m
edges. Then for any real k, µn−1 ≥ k > 0, holds

4(M1(G) + 2m)Kf(G) ≤ n(LEL(G))2

((n
k

)3/4
+

(
k

n

)3/4
)2

, (10)

with equality if and only if G ∼= Kn.
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Proof. Inequality (10) is obtained from

n3/2k3/2Kf(G) + n(M1(G) + 2m) ≤ n
(
n3/2 + k3/2

)
LEL(G),

and the AG (arithmetic-geometric mean) inequality applied on the right side of
the above inequality (see, for example, [33]).

Corollary 3.5. Let G be a simple connected graph with n ≥ 3 vertices and m
edges. Then for any real k, µn−1 ≥ k > 0,

Kf(G) ≤ n2(LEL(G))2

8m(2m+ n)

((n
k

)3/4
+

(
k

n

)3/4
)2

,

with equality if and only if G ∼= Kn.

Proof. This inequality follows from the inequality (10) and inequality M1 ≥ 4m2

n
proved in [10].

Theorem 3.6. Let G be a simple connected graph with n ≥ 3 vertices. Then, for
any real k with the property µn−1 ≥ k > 0, holds(

Kf(G) + n(n− 1)(n− 2)(nt)−
1

n−1

)
(LEL(G))2

≤ n(n− 1)4

(
1 + α(n− 1)

((n
k

)1/2
+

(
k

n

)1/2

− 2

))2

,
(11)

where t = t(G) = 1
n

∏n−1
i=1 µi is the number of spanning trees in G. Equality holds

if k = n and G ∼= Kn.

Proof. For ai =
√
µi, i = 1, 2, . . . , n− 1, r =

√
µn−1, R =

√
µ1, the inequality (2)

becomes(
n−1∑
i=1

√
µi

)(
n−1∑
i=1

1
√
µi

)
≤ (n− 1)2

(
1 + α(n− 1)

(
4

√
µ1

µn−1
− 4

√
µn−1
µ1

)2
)
,

i.e.(
n−1∑
i=1

√
µi

)2(n−1∑
i=1

1
√
µi

)2

≤ (n− 1)4
(
1 + α(n− 1)

(√
µ1

µn−1
+

√
µn−1

µ1
− 2

))2

. (12)
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The function f(x) = x+ 1
x is increasing for x ≥ 1. Since µn−1 ≥ k and µ1 ≤ n,

it holds x =
√

µ1

µn−1
≤
√

n
k . Therefore from (12) we get

(
n−1∑
i=1

√
µi

)2(n−1∑
i=1

1
√
µi

)2

≤ (n− 1)4

(
1 + α(n− 1)

(√
n

k
+

√
k

n
− 2

))2

. (13)

For ai = 1
µi
, i = 1, 2, . . . , n− 1, inequality on the right side of (3) becomes

(
n−1∑
i=1

1
√
µi

)2

≥
n−1∑
i=1

1

µi
+ (n− 1)(n− 2)

(
n−1∏
i=1

1

µi

) 1
n−1

,

i.e. (
n−1∑
i=1

1
√
µi

)2

≥ 1

n
Kf(G) + (n− 1)(n− 2)(nt)−

1
n−1 . (14)

Now inequality (11) is a direct consequence of inequalities (13) and (14).

Corollary 3.7. Let G be a simple connected graph with n ≥ 3 vertices. Then, for
any real k, µn−1 ≥ k > 0,(

Kf(G) + n(n− 1)(n− 2)(nt)−
1

n−1

)
(LEL(G))2

≤ n(n− 1)4

16

((n
k

)1/2
+

(
k

n

)1/2

+ 2

)2

.

Equality holds if k = n and G ∼= Kn.

Proof. This inequality can be obtained according to (11) and inequality

α(n− 1) ≤ 1

4
.

In the following theorem we prove inequality reverse to (10).

Theorem 3.8. Let G be a simple connected graph with n ≥ 2 vertices and m
edges. Then

(M1(G) + 2m)Kf(G) ≥ n(LEL(G))2, (15)

with equality if and only if G ∼= Kn.
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Proof. Setting pi = 1
µi
, ai = bi = µ

3/2
i , i = 1, 2, . . . , n− 1, in (4) we get

(
n−1∑
i=1

1

µi

)(
n−1∑
i=1

µ2
i

)
≥

(
n−1∑
i=1

√
µi

)2

,

where from directly follows (15).
Equality in (4) holds if and only if a1 = a2 = · · · = an−1 and/or b1 = b2 =

· · · = bn−1, therefore equality in (15) holds if and only if µ1 = µ2 = · · · = µn−1,
i.e. G ∼= Kn.

Corollary 3.9. Let G be a simple connected graph with n ≥ 2 vertices. Then

Kf(G) ≥ LEL(G)√
n

.

Equality holds if and only if G ∼= Kn.

By a similar procedure as in case of Theorem 3.8, the following result can be
proved.

Theorem 3.10. Let G be a simple connected graph with n ≥ 3 vertices and m
edges. Then

(Kf(G)− 1)(M1 + 2m− (1 + ∆)2) ≥ n
(
LEL(G)−

√
n
)2
,

with equality if and only if G ∼= Kn, or G ∼= K1,n−1.

In the next theorem we establish lower and upper bounds for LEL.

Theorem 3.11. Let G be a simple connected graph with n ≥ 3 vertices and m
edges, and k be an arbitrary real number so that µn−1 ≥ k > 0. Then(

(1 + ∆)1/4 −
(

2m

n− 1

)1/4
)2

≤ LEL− (n− 1)(nt)
1

2(n−1)

≤ (n− 1)2α(n− 1)
(
n1/4 − k1/4

)2
,

(16)

where t = t(G) = 1
n

∏n−1
i=1 µi is the number of spanning trees in G.

Equality on the left side of (16) holds if k = n and G ∼= Kn, and on the right
side when G ∼= Kn.
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Proof. For ai = bi = µ
1/4
i , i = 1, 2, . . . , n−1, R1 = R2 = µ

1/4
1 and r1 = r2 = µ

1/4
n−1,

the inequality (16) transforms into

(n− 1)

n−1∑
i=1

√
µi −

(
n−1∑
i=1

4
√
µi

)2

≤ (n− 1)2α(n− 1)
(
µ
1/4
1 − µ1/4

n−1

)2
,

i.e.

(n− 1)LEL−

(
n−1∑
i=1

4
√
µi

)2

≤ (n− 1)2α(n− 1)
(
µ
1/4
1 − µ1/4

n−1

)2
. (17)

For ai = µ
1/2
i from the left side of (3) we get(

n−1∑
i=1

µ
1/4
i

)2

≤ (n− 2)

n−1∑
i=1

√
µi + (n− 1)

(
n−1∏
i=1

µ
1/2
i

) 1
n−1

,

i.e. (
n−1∑
i=1

µ
1/4
i

)2

≤ (n− 2)LEL− (n− 1)(nt)−
1

2(n−1) . (18)

Now, from (17) and (18) we obtain

LEL− (n− 1)(nt)
1

2(n−1) ≤ (n− 1)2α(n− 1)
(
µ
1/4
1 − µ1/4

n−1

)2
.

From the above inequality and µ1 ≤ n, µn−1 ≥ k > 0, the right side of (16) is
obtained.

For ai =
√
µi, i = 1, 2, . . . , n− 1, the inequality (6) becomes

n−1∑
i=1

√
µi − (n− 1)

(
n∏
i=1

√
µi

) 1
n−1

≥
(
µ
1/4
1 − µ1/4

n−1

)2
,

i.e.
LEL− (n− 1)(nt)

1
2(n−1) ≥

(
µ
1/4
1 − µ1/4

n−1

)2
.

From the above, and inequalities µ1 ≥ 1 +∆ and µn−1 ≤ 2m
n−1 , the left side of (16)

is obtained.

References
[1] B. Arsić, I. Gutman, K. Ch. Das, K. Xu, Relations between Kirchhoff and

Laplacian–energy–like invariant, Bull. Cl. Sci. Math. Nat. Sci. Math. 37
(2012) 59–70.



On Relation between the Kirchhoff Index and LEL Invariant of Graphs 151

[2] M. Biernacki, H. Pidek, C. Ryll-Nardzewski, Sur une inégalité entre des in-
tégrales définies (French), Ann. Univ. Mariae Curie-Sklodowska. Sect. A. 4
(1950) 1–4.

[3] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds
and Extremal graphs, In: Bounds in Chemical Graph Theory – Basics, I.
Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Math-
ematical Chemistry Monographs, MCM 19, University of Kragujevac and
Faculty of Science Kragujevac, Kragujevac„ 2017, pp. 67–153.

[4] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices,
MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.

[5] F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series
in Mathematics, 92. Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Provi-
dence, RI, 1997.

[6] V. Cirtoaje, The best lower bound depended on two fixed variables for
Jensen’s inequality with ordered variables, J. Inequal. Appl. (2010) Art. ID
128258,12 pp.

[7] K. C. Das, K. Xu, I. Gutman, Comparison between Kirchhoff index and the
Laplacian–energy–like invariant, Linear Algebra Appl. 436 (2012) 3661–3671.

[8] K. Ch. Das, K. Xu, On relation between Kirchhoff index, Laplacian–energy–
like invariant and Laplacian energy of graphs, Bull. Malays. Math. Sci. Soc.
39 (2016) S59–S75.

[9] K. C. Das, On the Kirchhoff index of graphs, Z. Naturforsch 68a (2013)
531–538.

[10] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull.
London Math. Soc. 9 (1977) 203–208.

[11] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103
(1978) 22 pp.

[12] I. Gutman, The energy of a graph: old and new results, In: Algebraic Com-
binators and Applications, Springer, Berlin, 2001, pp. 196–211.

[13] I. Gutman, Editorial, Census of graph energies, MATCH Commun. Math.
Comput. Chem. 74 (2015) 219–221.

[14] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Com-
mun. Math. Comput. Chem. 50 (2004) 83–92.



152 E. I. Milovanović, I. Ž. Milovanović and M. Matejić

[15] I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.),
Bounds in Chemical Graph Theory – Basics, Mathematical Chemistry Mono-
graphs, MCM 19, University of Kragujevac and Faculty of Science Kragujevac,
Kragujevac, 2017.

[16] I. Gutman, E. Milovanović, I. Milovanović, Bounds for Laplacian-type graph
energies, Miskolc Math. Notes 16 (2015) 195–203.

[17] I. Gutman, X. Li, (Eds.), Energies of Graphs – Theory and Applications,
Mathematical Chemistry Monographs, MCM 17, University of Kragujevac
and Faculty of Science Kragujevac, Kragujevac, 2016.

[18] I. Gutman, B. Mohar, The quasi–Wiener and the Kirchhoff indices coincide,
J. Chem. Inf. Comput. Sci. 36 (1996) 982–985.

[19] I. Gutman, S. Radenković, S. Djordjević, I. Ž. Milovanović, E. I. Milovanović,
Total π-electron and HOMO energy, Chem. Phys. Lett. 649 (2016) 148–150.

[20] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-
electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–
538.

[21] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414
(2006) 29–37.

[22] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.

[23] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

[24] B. Liu, Y. Huang, Z. You, A survey on the Laplacian–energy–like invariant,
MATCH Commun. Math. Comput. Chem. 66 (2011) 713–730.

[25] J. Liu, J. Cao, X. F. Pan, A. Elaiw, The Kirchhoff index of hypercubes and
related complex networks, Discrete Dyn. Nat. Soc. (2013) Art. ID 543189, 7
pp.

[26] J. Liu, B. Liu, A Laplacian–energy–like invariant of a graph, MATCH Com-
mun. Math. Comput. Chem. 59 (2008) 355–372.

[27] A. Lupas, A remark on the Schweitzer and Kantorovich inequalities, Univ.
Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 383 (1972) 13–15.

[28] I. Milovanović, I. Gutman, E. Milovanović, On Kirchhoff and degree Kirchhoff
indices, Filomat 29 (2015) 1869–1877.

[29] I. Ž. Milovanović, E. I. Milovanović, On some lower bounds of the Kirchhoff
index, MATCH Commun. Math. Comput. Chem. 78 (2017) 169–180.



On Relation between the Kirchhoff Index and LEL Invariant of Graphs 153

[30] I. Ž. Milovanović, E. I. Milovanović, Bounds of Kirchhoff and degree Kirchhoff
indices, In: Bounds in Chemical Graph Theory – Mainstreams, I. Gutman,
B. Furtula, K. C. Das, E. Milovanović, I. Milovanović, (Eds.), Mathematical
Chemistry Monographs, MCM 20, University of Kragujevac and Faculty of
Science Kragujevac, Kragujevac, 2017, pp. 93–119.

[31] I. Ž. Milovanović, E. I. Milovanović, Remarks on the energy and the minimum
dominating energy of a graph, MATCH Commun. Math. Comput. Chem. 75
(2016) 305–314.

[32] I. MIlovanović, E. Milovanovioć, I. Gutman, Upper bounds for some graph
energies, Appl. Math. Comput. 289 (2016) 435–443.

[33] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer Verlag, Berlin-
Heidelberg–New York, 1970.

[34] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30
years after, Croat. Chem. Acta 76 (2003) 113–124.

[35] J. L. Palacios, Some additional bounds for the Kirchhoff index, MATCH Com-
mun. Math. Comput. Chem. 75 (2016) 365–372.

[36] S. Pirzada, H. A. Ganie, I. Gutman, On Laplacian–energy–like invariant and
Kirchhoff index, MATCH Commun. Math. Comput. Chem. 73 (2015) 41–59.

[37] S. Pirzada, H. A. Ganie, I. Gutman, Comparison between Laplacian–energy–
like invariant and the Kirchhoff index, Electron. J. Linear Algebra 31 (2016)
27–41.

[38] B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963)
442–448.

[39] D. Stevanović, S. Wagner, Laplacian–energy–like invariant: Laplacian coef-
ficients, extremal graphs and bounds, In: Energies of Graphs – Theory and
Applications, I. Gutman, X. Li (Eds.), Mathematical Chemistry Monographs,
MCM 17, University of Kragujevac and Faculty of Science Kragujevac, Kragu-
jevac, 2017, pp. 81–110.

[40] H. Wiener, Structural determination of paraffin boiling points, J. Amer.
Chem. Soc. 69 (1947) 17–20.

[41] C. Woods, My Favorite Application Using Graph Eigenvalues: Graph Energy,
Avaliable at http://www.math.ucsd.edu/ fan/teach/262/13/ 262notes/ Woods_
Midterm.pdf

[42] B. Zhou, N. Trinajstić, A note on Kirchhoff index, Chem. Phys. Lett. 455
(2008) 120–123.



154 E. I. Milovanović, I. Ž. Milovanović and M. Matejić

[43] B. Zhou, I. Gutman, T. Aleksić, A note on the Laplacian energy of graphs,
MATCH Commun. Math. Comput. Chem. 60 (2008) 441–446.

[44] H. Y. Zhu, D. J. Klei, I. Lukovits, Extensions of the Wiener number, J. Chem.
Inf. Comput. Sci. 36 (1996) 420–428.

Emina I. Milovanović
Faculty of Electronic Engineering,
Univerity of Niš,
Niš, Serbia
E-mail: ema@elfak.ni.ac.rs

Igor Ž. Milovanović
Faculty of Electronic Engineering,
Univerity of Niš,
Niš, Serbia
E-mail: igor@elfak.ni.ac.rs

Marjan M. Matejić
Faculty of Electronic Engineering,
Univerity of Niš,
Niš, Serbia
E-mail: marjan.matejic@elfak.ni.ac.rs


